Мови

  • English
  • Українська

Пошук

Синдикація

RSS-матеріал

2020


Статті

  1. Bryk T., Pierleoni C., Ruocco G., Seitsonen A.P., Characterization of molecular-atomic transformation in fluid hydrogen under pressure via long-wavelength asymptote of charge density fluctuations // J. Mol. Liq., 312, 113274 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2020.113274.
  2. Bryk T., Mryglod I., Ruocco G., Non-hydrodynamic modes in viscoelastic behavior of simple fluids // Philos. Mag., 100, 2568 (2020); WoS, Scopus, Q1; https://doi.org/10.1080/14786435.2020.1805646.
  3. Bryk T., Demchuk T., Jakse N., Wax J.-F., Pressure-induced effects in the spectra of collective excitations in pure liquid metals // J. Phys.: Condens. Matter, 32, 184002 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab6a31.
  4. Huerta A., Bryk T., Pergamenshchik V.M., Trokhymchuk A., Kosterlitz-Thouless-type caging-uncaging transition in a quasi-one-dimensional hard disk system // Phys. Rev. Res., 2, 033351 (2020); https://doi.org/10.1103/PhysRevResearch.2.033351.
  5. Cazzato S., Izzo M.G., Bryk T., Scopigno T., Ruocco G., Propagating density fluctuations in hydrodynamics and beyond // Atti della Accademia Peloritana dei Pericolanti, 98(S1), A2 (2020); Scopus, Q4; https://doi.org/10.1478/AAPP.98S1A2.
  6. Ruocco G., Bryk T., Pierleoni C., Seitsonen A.P., Velocity autocorrelations across the molecular-atomic fluid transformation in hydrogen under pressure // Condens. Matter Phys., 23, 23607 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23607.
  7. Patsahan O., Bryk T., Developing soft matter theory, computer simulations and more...: On 60-th anniversary of Ihor Mryglod // Condens. Matter Phys., 23, 20101 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23607.
  8. Yaremchuk D.,Toshchevikov V., Ilnytskyi J., Saphiannikova M., Magnetic energy and a shape factor of magneto-sensitive elastomer beyond the point dipole approximation // J. Magn. Magn. Mater., 513, No. 1, 167069 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.jmmm.2020.167069.
  9. Slyusarchuk A.Y., Yaremchuk D.L., Ilnytskyi J.M., Adsorption of decorated nanoparticles on a liquid crystalline polymer brush: molecular dynamics study // Math. Model. Comput., 7, No. 2, 207–218 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.02.207.
  10. Мриглод І.М., Історія часу: необоротність vs оборотність. – В кн.: Обрії науки. ІІ. Історія часу, Головач Ю., Грицак Я., Новосядлий Б. (Ред.), Видавничий дім УКУ, Львів, 2020, с.29-49.
  11. Мриглод І.М., Наука. – В кн.: Енциклопедія сучасної України, т. 22, Ін-т енциклопедичних досліджень НАН України, Київ, 2020.
  12. Мриглод І.М., Іванків О.Л., Швайка А.М., Пам’яті Ігоря Васильовича Стасюка: короткий нарис про життєвий шлях і наукову працю // Журн. фіз. досл., 24, No. 1, 1001 (2020); Scopus, Q4; https://doi.org/10.30970/jps.24.1001.
  13. Мриглод І.М., Іванків О.Л., Ігор Юхновський. Короткий життєпис патріарха сучасної української фізики та політики. – В кн.: Ігор Рафаїлович Юхновський. Бібліографія українських вчених, Львів, 2020, с. 3-39.
  14. Мриглод І., Головко М., Іванків О., Козловський М., Стасюк І., Токарчук М., Ігор Юхновський і Львівська школа статистичної фізики. – В кн.: Ігор Рафаїлович Юхновський. Бібліографія українських вчених, Львів, 2020, с. 40-59.
  15. Держко О.В., Матвєєв О.П., Мриглод І.М., Короткий життєпис і наукова діяльність Андрія Швайки. - В кн.: Андрій Михайлович Швайка. Бібліографія українських вчених, Львів, 2020, с. 3-17.
  16. Швайка А.М., Крохмальський Т.Є., Мриглод І.М., Короткий життєпис і наукова діяльність О.В. Держка. - В кн.: Олег Володимирович Держко. Бібліографія українських вчених, Львів, 2020, с. 3-14.
  17. Ciach A., Patsahan O., Meyra A., Effects of fluctuations on correlation functions in inhomogeneous mixtures // Condens. Matter Phys., 23, 23601 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23502.
  18. Haydukivska K., Blavatska V., Paturej J., Universal size ratios of Gaussian polymers with complex architecture: radius of gyration vs hydrodynamic radius // Sci. Rep., 10, 14127 (2020); WoS, Scopus, Q1; https://doi.org/10.1038/s41598-020-70649-z.
  19. Blavatska V., Haydukivska K., Holovatch Yu., Shape analysis of random polymer networks // J. Phys.: Condens. Matter, 32, 335102 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab88f4.
  20. Blavatska V., On the shape of invading population in anisotropic environments // Math. Modell. Nat. Phenom., 15, 4 (2020); WoS, Scopus, Q3; https://doi.org/10.1051/mmnp/2019046.
  21. Humenyuk Y.A., Kotrla M., Netočný K., Slanina F., Separation of dense colloidal suspensions in narrow channels: A stochastic model // Phys. Rev. E, 101, No. 3, 032608 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevE.101.032608.
  22. Strečka J., Gálisová L., Verkholyak T., Enhanced magnetoelectric effect near a field-driven zero-temperature quantum phase transition of the spin-1/2 Heisenberg-Ising ladder // Phys. Rev. E, 101, 012103 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevE.101.012103.
  23. Krokhmalskii T., Verkholyak T., Baran O., Ohanyan V., Derzhko O., Spin-1/2 XX chain in a transverse field with regularly alternating g factors: Static and dynamic properties // Phys. Rev. B, 102, 144403 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.102.144403.
  24. Strečka J., Gálisová L., Verkholyak T., Insights into nature of a magnetization plateau of 3d-4f coordination polymer [Dy2Cu2]n from a spin-1/2 Ising-Heisenberg orthogonal-dimer chain // Condens. Matter Phys., 23, No. 4, 43708 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.43708.
  25. Przybylska M., Maciejewski A.J., Yaremko Yu., Electromagnetic trap for polar particles // New J. Phys., 22, 103047 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1367-2630/abb913.
  26. Ignatyuk V., Dynamic correlations in open quantum systems: The dephasing model // Open Syst. Inf. Dyn., 27, No. 2, 2050007 (2020); WoS, Scopus, Q2; https://doi.org/10.1142/S1230161220500079.
  27. Duviryak A., Rotary dynamics of the rigid body electric dipole under the radiation reaction // Eur. Phys. J. D, 74, No. 9, 189 (2020); WoS, Scopus, Q3; https://doi.org/10.1140/epjd/e2020-100605-3.
  28. Юхновський I.Р., Бар’яхтар В.Г., Бакай О.С., Загороднiй А.Г., Локтєв В.М., Яцкiв Я.С., Брик Т.М., Головач Ю.В., Головко М.Ф., Держко О.В., Iванкiв О.Л., Козловський М.П., Пацаган О.В., Токарчук М.В., Фольк Р., Яскравий представник нової ґенерацiї українських фiзикiв (до 60-рiччя Iгора Мриглода) // УФЖ, 65, 548-550 (2020); Scopus, Q3; https://doi.org/10.15407/ujpe65.6.552.
  29. Hvozd T., Kalyuzhnyi Y.V., Vlachy V., Aggregation, liquid-liquid phase separation, and percolation behaviour of a model antibody fluid constrained by hard-sphere obstacles // Soft Matter, 16, 8432 (2020); WoS, Scopus, Q1; https://doi.org/10.1039/d0sm01014f.
  30. Kalyuzhnyi Y.V., Nezbeda I., Cummings P.T., Integral equation theory for a mixture of spherical and patchy colloids: analytical description // Soft Matter, 16, 3456 (2020); WoS, Scopus, Q1; https://doi.org/10.1039/c9sm02309g.
  31. Nelson A.K., Kalyuzhnyi Y.V., Patsahan T., McCabe C., Liquid-vapor phase equilibrium of a simple liquid confined in a random porous media: Second-order Barker-Henderson perturbation theory and scaled particle theory // J. Mol. Liq., 300, 112348 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2019.112348.
  32. Holovko M.F., Korvatska M.Ya., Diffusion of hard sphere fluids in disordered porous media: Enskog theory description // Condens. Matter Phys., 23, No. 2, 23605 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23605.
  33. Holovko M.F., Shmotolokha V.I., On generalization of Van der Waals approach for isotropic-nematic fluid phase equilibria of anisotropic fluids in disordered porous medium // Condens. Matter Phys., 23, No. 1, 13601 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.13601.
  34. Kostrobij P.P., Markovych B.M., Tokarchuk M.V., Generalized diffusion equation with nonlocality of space-time. Memory function modelling // Condens. Matter Phys., 23, No. 2, 23003 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23003.
  35. Tsizh M., Novosyadlyj B., Holovatch Yu., Libeskind N.I., Large-scale structures in the ΛCDM Universe: network analysis and machine learning // Mon. Not. R. Astron. Soc., 495, 1311 (2020); WoS, Scopus, Q1; https://doi.org/10.1093/mnras/staa1030.
  36. Shapoval D., Dudka M., Fedorenko A.A., Holovatch Yu., Possibility of a continuous phase transition in the random anisotropy magnets with a generic random axis distribution // Phys. Rev. B, 101, 064402 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.101.064402.
  37. Головач Ю., Грицак Я., Новосядлий Б., Каміль Фламмаріон і його стаття “Теперішнє-майбутнє і парадокс часу”. - В кн.: Обрії науки. II. Історії часу, Головач Ю., Грицак Я., Новосядлий Б. (Ред.), УКУ, Львів, 2020, с. 168-172.
  38. Folk R., Holovatch Yu., Crossing borders in the 19th century and now - two examples of weaving a scientific network // Condens. Matter Phys., 23, 23001 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23001.
  39. Brodiuk S., Palchykov V., Holovatch Yu., Embedding technique and network analysis of scientific innovations emergence in an arXiv-based concept network. - In: Proceedings of the 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, August 21-25, 2020, ISBN: 978-1-7281-3213-6, pp. 366–371.
  40. Krasnytska M., Berche B., Holovatch Yu., Kenna R., Ising model with variable spin/agent strengths // J. Phys.: Complexity, 1, 035008 (2020); https://doi.org/10.1088/2632-072X/abb654.
  41. Мриглод О., Мриглод І., Колективне авторство в українській науці: маргінальний ефект чи нове явище? // Вісник НАН України, 7, 34 (2020); https://doi.org/10.15407/visn2020.07.034.
  42. Pylyuk I.V., Fluid critical behavior at liquid-gas phase transition: Analytic method for microscopic description // J. Mol. Liq., 310, 112933 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2020.112933.
  43. Pylyuk I.V., Dobush O.A., Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter // Ukr. J. Phys., 65, 1080 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.12.1080.
  44. Kozlovskіі M.P., Dobush O.A., Phase behavior of a cell fluid model with modified Morse potential // Ukr. J. Phys., 65, 428 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.5.428.
  45. Kozitsky Yu.V., Kozlovskii M.P., Dobush O.A., A phase transition in a Curie-Weiss system with binary interactions // Condens. Matter Phys., 23, 23502 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23502.
  46. Kozlovskіі M.P., Dobush O.A., Behavior of a binary asymmetric mixture of interacting particles in the supercritical region // Ukr. J. Phys., 65, 768 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.9.768.
  47. Shapoval D., Dudka M., Bénichou O., Oshanin G., Equilibrium properties of two-species reactive lattice gases on random catalytic chains // Phys. Rev. E, 102, 032121 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/physreve.102.032121.
  48. Дудка М., Головач Ю., Таємний Український університет у Львові. – В кн.: Leopolis Scientifica. Наука у Львові до середини XX століття. Частина I. Наукові осередки: збірник наукових праць, Петрук О. (Ред.), Артос, Львів, 2020, с.163-196.
  49. Головач Ю., Гончар Ю., Красницька М., В кн.: Leopolis Scientifica. Наука у Львові до середини XX століття. Частина IІ. Наукові осередки: збірник наукових праць, Петрук О. (Ред.), Артос, Львів, 2020, с. 412.
  50. Dey P., Hansen T., Shpot M., Operator expansions, layer susceptibility and two-point functions in BCFT // J. High Energy Phys., 12, 051 (2020); WoS, Scopus, Q2; https://doi.org/10.1007/JHEP12(2020)051.
  51. Shchur Ya., Pavlyuk O., Andrushchak A.S., Vitusevich S., Kityk A.V., Porous Si partially filled with water molecules - crystal structure, energy bands and optical properties from first principles // Nanomaterials, 10, 396 (2020); WoS, Scopus, Q1; https://doi.org/10.3390/nano10020396.
  52. Derzhko O., Hutak T., Krokhmalskii T., Schnack J., Richter J., Adapting Planck’s route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet // Phys. Rev. B, 101, 174426 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.101.174426.
  53. Krupnitska O., Frustrated quantum Heisenberg double-tetrahedral and octahedral chains at high magnetic fields // Phys. Rev. B, 102, 064403 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.102.064403.
  54. Rojas O., Strečka J., Derzhko O., de Souza S.M., Peculiarities in pseudo-transitions of a mixed spin-(1/2,1) Ising-Heisenberg double-tetrahedral chain in an external magnetic field // J. Phys.: Condens. Matter, 32, 035804 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab4acc.
  55. Skorobagatko G.A., Self-equilibration theorem in quantum-point contacts of interacting electrons: Time-dependent quantum fluctuations of tunnel transport beyond the Levitov-Lesovik scattering approach // Ann. Phys., 422, 168298 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.aop.2020.168298.
  56. Derzhko O., Schnack J., Dmitriev D.V., Krivnov V.Ya., Richter J., Flat-band physics in the spin-1/2 sawtooth chain // Eur. Phys. J. B, 93, 161 (2020); WoS, Scopus, Q2; https://doi.org/10.1140/epjb/e2020-10224-1.
  57. Levitskii R.R., Zachek I.R., Moina A.P., Thermodynamic characteristics of quasi-one-dimensional CsH2PO4 type ferroelectrics // Ferroelectrics, 567, No. 1, 37 (2020); WoS, Scopus, Q3; https://doi.org/10.1080/00150193.2020.1791585.
  58. Dobushovskyi D.A., Shvaika A.M., Thermoelectric properties of Mott insulator with correlated hopping at microdoping // Condens. Matter Phys., 23, No. 1, 13703 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.13703.
  59. Швайка А.М., Андерсон, Філіп Воррен. — В кн.: Велика українська енциклопедія, Т. 2, Киридон А.М. (Укл.); Локтєв В.М. (Ред.),  Державна наукова установа «Енциклопедичне видавництво», Київ, 2020,  с. 460–461.
  60. Vdovych A.S., Zachek I.R., Levitskii R.R., Effect of hydrostatic pressure and longitudinal electric field on phase transitions and thermodynamic characteristics of quasione-dimensional CsH2PO4 ferroelectric // Condens. Matter Phys., 23, No. 3, 33702 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.33702.
  61. Moina A.P., Effects of diagonal strains and H-bond geometry in antiferroelectric squaric acid crystals // Condens. Matter Phys., 23, No. 3, 33704 (2020); WoS, Scopus, Q3; https://doi.org/ 10.5488/CMP.23.33704.
  62. Vdovych A.S., Levitskii R.R., Zachek I.R., Field and deformation effects in RbHSO4 ferroelectric // J. Phys. Stud., 24, No. 2, 2702 (2020); Scopus, Q4; https://doi.org/10.30970/jps.24.2702.
  63. Vdovych A.S., Zachek I.R., Levitskii R.R., Moina А.Р., Influence of uniaxial and hydrostatic pressures and shear stress s5 on the phase transition and thermodynamic properties of quasi-one-dimensional ferroelectrics of the CsH2PO4 type // Math. Model. Comput., 7, No. 1, 64 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.01.064.
  64. Дувіряк А., Яремко Ю., Праці львівської групи теорії релятивістичних систем в царині гравітації // Фізичний збірник НТШ, 10, 106-127 (2020).
  65. Дувіряк А., Оленева протидія зарядженої дзиґи // Фізичний збірник НТШ, 10, 128-144 (2020).
  66. Vavrukh M.V., Dzikovskyi D.V., Solovyan V.B., The calculation of photoionization cross-section of negative hydrogen ions in the Born approximation // Math. Model. Comput., 7, No. 1, 125-139 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.01.125.
  67. Головач Ю., Пляцко Р., Сварник Г., Петер Пулюй i архiв Iвана Пулюя // Фізичний збірник НТШ, 10, 77-98 (2020).
  68. Strečka J., Krupnitska O., Richter J., Investigation of entanglement measures across the magnetization process of a highly frustrated spin-1/2 Heisenberg octahedral chain as a new paradigm of the localized-magnon approach // EPL, 132, 30004 (2020); Scopus, Q2; https://doi.org/10.1209/0295-5075/132/30004.
  69. Юхновський І., Глушак П., Токарчук М.В., Деякі питання узгодженого опису кінетики та гідродинаміки систем взаємодіючих частинок // Фізичний збірник НТШ, 10, 34-56 (2020).
  70. Omelyan I., Kozitsky Y., Pilorz K., Algorithm for numerical solutions to the kinetic equation of a spatial population dynamics model with coalescence and repulsive jumps // Numerical Algorithms, 2020; WoS, Scopus, Q1; https://doi.org/10.1007/s11075-020-00992-9.
  71. Omelyan I., Spatial population dynamics: Beyond the Kirkwood superposition approximation by advancing to the Fisher–Kopeliovich ansatz // Physica A, 544, 123546 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.physa.2019.123546.