Languages

  • English
  • Українська

Search

Syndicate

Syndicate content

96-22U

96-22U


By icmp_admin - Posted on 08 February 2012

UDC: 
532; 533; 536.7
PACS: 
05.20-y, 05.20.Gg, 05.70.Ce, 05.70.Fh, 61.20.Gy, 64.10.+h

$N$-particle partial structure factors in the long-wave limit. Two-component system of hard spheres.

O.V. Patsahan

For an arbitrary multicomponent system the relationships for three- and four-particle partial structure factors in the long-wave limit ($S_{\gamma _{1}\gamma _{2}\gamma _{3}}(k_{i}=0)$ and $S_{\gamma _{1}\gamma _{2}\gamma _{3}\gamma _{4}}(k_{i}=0)$) are obtained on the basis of the previously derived recurrent formula. Recurrent formulae for $s$-particle correlation functions $h_{\gamma _{1}\dots \gamma _{s}}^{s}(1,2,\dots ,s)$ and distribution functions $g_{\gamma _{1}\dots \gamma _{s}}^{s}(1,2,\dots ,s)$ are deduced. For two-component system of hard spheres of diameters $\sigma _{aa}$ and $\sigma _{bb}$ the explicit expressions for $S_{\gamma _{1}\gamma _{2}\gamma _{3}}(0,0,0)$ and $S_{\gamma _{1}\gamma _{2}\gamma _{3}\gamma _{4}}(0,\dots )$ ($\gamma _{i}=a,b$) are found in the Percus-Yevick approximation, the dependences of their behaviour on the reduce density $\eta $ ($\eta =\eta _{a}+\eta _{b}$, $\eta _{i}=\rho _{i}\sigma _{ii}^{3}\pi /6$), the concentration of the $b$th species $x$ and the size ratio $\alpha $ ($\alpha =\sigma _{aa}/ \sigma _{bb}$) are demonstrated.

Year: 
1996
Pages: 
36
Download: