Languages

  • English
  • Українська

Search

Syndicate

Syndicate content

2020


Papers

  1. Bryk T., Pierleoni C., Ruocco G., Seitsonen A.P., Characterization of molecular-atomic transformation in fluid hydrogen under pressure via long-wavelength asymptote of charge density fluctuations // J. Mol. Liq., 312, 113274 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2020.113274.
  2. Bryk T., Mryglod I., Ruocco G., Non-hydrodynamic modes in viscoelastic behavior of simple fluids // Philos. Mag., 100, 2568 (2020); WoS, Scopus, Q1; https://doi.org/10.1080/14786435.2020.1805646.
  3. Bryk T., Demchuk T., Jakse N., Wax J.-F., Pressure-induced effects in the spectra of collective excitations in pure liquid metals // J. Phys.: Condens. Matter, 32, 184002 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab6a31.
  4. Huerta A., Bryk T., Pergamenshchik V.M., Trokhymchuk A., Kosterlitz-Thouless-type caging-uncaging transition in a quasi-one-dimensional hard disk system // Phys. Rev. Res., 2, 033351 (2020); https://doi.org/10.1103/PhysRevResearch.2.033351.
  5. Cazzato S., Izzo M.G., Bryk T., Scopigno T., Ruocco G., Propagating density fluctuations in hydrodynamics and beyond // Atti della Accademia Peloritana dei Pericolanti, 98(S1), A2 (2020); Scopus, Q4; https://doi.org/10.1478/AAPP.98S1A2.
  6. Ruocco G., Bryk T., Pierleoni C., Seitsonen A.P., Velocity autocorrelations across the molecular-atomic fluid transformation in hydrogen under pressure // Condens. Matter Phys., 23, 23607 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23607.
  7. Patsahan O., Bryk T., Developing soft matter theory, computer simulations and more...: On 60-th anniversary of Ihor Mryglod // Condens. Matter Phys., 23, 20101 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23607.
  8. Yaremchuk D.,Toshchevikov V., Ilnytskyi J., Saphiannikova M., Magnetic energy and a shape factor of magneto-sensitive elastomer beyond the point dipole approximation // J. Magn. Magn. Mater., 513, No. 1, 167069 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.jmmm.2020.167069.
  9. Slyusarchuk A.Y., Yaremchuk D.L., Ilnytskyi J.M., Adsorption of decorated nanoparticles on a liquid crystalline polymer brush: molecular dynamics study // Math. Model. Comput., 7, No. 2, 207–218 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.02.207.
  10. Mryglod I.M., Histories of time: irreversibility vs reversibility. – In: Horizons of Science II: Histories of Time, Holovatch Yu., Hrytsak Ya., Novosyadlyj B. (Eds.), Ukrainian Catholic University, Lviv, 2020, pp. 29-49 (in Ukrainian).
  11. Mryglod I.M., Science. – In: Encyclopedia of Modern Ukraine, Vol. 22, NASU Institute of Encyclopaedic Research, Kyiv, 2020 (in Ukrainian).
  12. Mryglod I.M., Ivankiv O.L., Shvaika A.M., In memory of Ihor V. Stasyuk: A short essay on the life path and scientific work // J. Phys. Stud., 24, No. 1, 1001 (2020); Scopus, Q4; https://doi.org/10.30970/jps.24.1001 (in Ukrainian).
  13. Mryglod I.M., Ivankiv O.L., Ihor Yukhnovskii. A short biography of the patriarch of modern Ukrainian physics and politics. – In: Ihor Rafailovych Yukhnovskii: Bibliographic index. Bibliographies of Ukrainian scientists series, Institute for Condensed Matter Physics of NASU, Lviv, 2020, pp. 3-39 (in Ukrainian).
  14. Mryglod I., Holovko M., Ivankiv O., Kozlovskii M., Stasyuk I., Tokarchuk M., Ihor Yukhnovskii and Lviv School of Statistical Physics. – In: Ihor Rafailovych Yukhnovskii: Bibliographic index. Bibliographies of Ukrainian scientists series, Institute for Condensed Matter Physics of NASU, Lviv, 2020, pp. 40-59 (in Ukrainian).
  15. Derzhko O.V., Matvyeyev O.P., Mryglod I.M., A short biography and scientific activity of Andrii Shvaika. - In: Andrii Mykhailovych Shvaika: Bibliographic index. Bibliographies of Ukrainian scientists series, Institute for Condensed Matter Physics of NASU, Lviv, 2020, pp. 3-17 (in Ukrainian).
  16. Shvaika A.M., Krokhmalskii T.Y., Mryglod I.M., A short biography and scientific activity of O.V. Derzhko. - In: Oleh Volodymyrovych Derzhko: Bibliographic index. Bibliographies of Ukrainian scientists series, Institute for Condensed Matter Physics of NASU, Lviv, 2020, pp. 3-14 (in Ukrainian).
  17. Ciach A., Patsahan O., Meyra A., Effects of fluctuations on correlation functions in inhomogeneous mixtures // Condens. Matter Phys., 23, 23601 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23502.
  18. Haydukivska K., Blavatska V., Paturej J., Universal size ratios of Gaussian polymers with complex architecture: radius of gyration vs hydrodynamic radius // Sci. Rep., 10, 14127 (2020); WoS, Scopus, Q1; https://doi.org/10.1038/s41598-020-70649-z.
  19. Blavatska V., Haydukivska K., Holovatch Yu., Shape analysis of random polymer networks // J. Phys.: Condens. Matter, 32, 335102 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab88f4.
  20. Blavatska V., On the shape of invading population in anisotropic environments // Math. Modell. Nat. Phenom., 15, 4 (2020); WoS, Scopus, Q3; https://doi.org/10.1051/mmnp/2019046.
  21. Humenyuk Y.A., Kotrla M., Netočný K., Slanina F., Separation of dense colloidal suspensions in narrow channels: A stochastic model // Phys. Rev. E, 101, No. 3, 032608 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevE.101.032608.
  22. Strečka J., Gálisová L., Verkholyak T., Enhanced magnetoelectric effect near a field-driven zero-temperature quantum phase transition of the spin-1/2 Heisenberg-Ising ladder // Phys. Rev. E, 101, 012103 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevE.101.012103.
  23. Krokhmalskii T., Verkholyak T., Baran O., Ohanyan V., Derzhko O., Spin-1/2 XX chain in a transverse field with regularly alternating g factors: Static and dynamic properties // Phys. Rev. B, 102, 144403 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.102.144403.
  24. Strečka J., Gálisová L., Verkholyak T., Insights into nature of a magnetization plateau of 3d-4f coordination polymer [Dy2Cu2]n from a spin-1/2 Ising-Heisenberg orthogonal-dimer chain // Condens. Matter Phys., 23, No. 4, 43708 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.43708.
  25. Przybylska M., Maciejewski A.J., Yaremko Yu., Electromagnetic trap for polar particles // New J. Phys., 22, 103047 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1367-2630/abb913.
  26. Ignatyuk V., Dynamic correlations in open quantum systems: The dephasing model // Open Syst. Inf. Dyn., 27, No. 2, 2050007 (2020); WoS, Scopus, Q2; https://doi.org/10.1142/S1230161220500079.
  27. Duviryak A., Rotary dynamics of the rigid body electric dipole under the radiation reaction // Eur. Phys. J. D, 74, No. 9, 189 (2020); WoS, Scopus, Q3; https://doi.org/10.1140/epjd/e2020-100605-3.
  28. Yukhnovskii I.R., Bar’yakhtar V.G., Bakai A.S., Loktev V.M., Yatskiv Y.S., Zagorodny A.G., Bryk T.M., Derzhko O.V., Folk R., Holovatch Y.V., Holovko M.F., Ivankiv O.L., Kozlovskii M.P., Patsahan O.V., Tokarchuk M.V., A prominent representative of the new generation of Ukrainian physicists (to the 60th birthday of Ihor Mryglod) // Ukr. J. Phys., 65, 552 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.6.552.
  29. Hvozd T., Kalyuzhnyi Y.V., Vlachy V., Aggregation, liquid-liquid phase separation, and percolation behaviour of a model antibody fluid constrained by hard-sphere obstacles // Soft Matter, 16, 8432 (2020); WoS, Scopus, Q1; https://doi.org/10.1039/d0sm01014f.
  30. Kalyuzhnyi Y.V., Nezbeda I., Cummings P.T., Integral equation theory for a mixture of spherical and patchy colloids: analytical description // Soft Matter, 16, 3456 (2020); WoS, Scopus, Q1; https://doi.org/10.1039/c9sm02309g.
  31. Nelson A.K., Kalyuzhnyi Y.V., Patsahan T., McCabe C., Liquid-vapor phase equilibrium of a simple liquid confined in a random porous media: Second-order Barker-Henderson perturbation theory and scaled particle theory // J. Mol. Liq., 300, 112348 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2019.112348.
  32. Holovko M.F., Korvatska M.Ya., Diffusion of hard sphere fluids in disordered porous media: Enskog theory description // Condens. Matter Phys., 23, No. 2, 23605 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23605.
  33. Holovko M.F., Shmotolokha V.I., On generalization of Van der Waals approach for isotropic-nematic fluid phase equilibria of anisotropic fluids in disordered porous medium // Condens. Matter Phys., 23, No. 1, 13601 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.13601.
  34. Kostrobij P.P., Markovych B.M., Tokarchuk M.V., Generalized diffusion equation with nonlocality of space-time. Memory function modelling // Condens. Matter Phys., 23, No. 2, 23003 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23003.
  35. Tsizh M., Novosyadlyj B., Holovatch Yu., Libeskind N.I., Large-scale structures in the ΛCDM Universe: network analysis and machine learning // Mon. Not. R. Astron. Soc., 495, 1311 (2020); WoS, Scopus, Q1; https://doi.org/10.1093/mnras/staa1030.
  36. Shapoval D., Dudka M., Fedorenko A.A., Holovatch Yu., Possibility of a continuous phase transition in the random anisotropy magnets with a generic random axis distribution // Phys. Rev. B, 101, 064402 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.101.064402.
  37. Holovatch Yu., Hrytsak Ya., Novosyalyj B., Camille Flammarion and his paper 'Present, future and time paradox'. - In: Horizons of Science. Vol. II: Histories of Time, Holovatch Yu., Hrytsak Ya., Novosyalyj B. (Eds.), UCU Publishing House, Lviv, 2020, pp. 168-172 (in Ukrainian).
  38. Folk R., Holovatch Yu., Crossing borders in the 19th century and now - two examples of weaving a scientific network // Condens. Matter Phys., 23, 23001 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23001.
  39. Brodiuk S., Palchykov V., Holovatch Yu., Embedding technique and network analysis of scientific innovations emergence in an arXiv-based concept network. - In: Proceedings of the 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, August 21-25, 2020, ISBN: 978-1-7281-3213-6, pp. 366–371.
  40. Krasnytska M., Berche B., Holovatch Yu., Kenna R., Ising model with variable spin/agent strengths // J. Phys.: Complexity, 1, 035008 (2020); https://doi.org/10.1088/2632-072X/abb654.
  41. Mryglod О., Mryglod І., Collective authorship in Ukrainian science: marginal effect or new phenomenon? // Bull. Nat. Acad. Sci. Ukraine, 7, 34 (2020); https://doi.org/10.15407/visn2020.07.034 (in Ukrainian).
  42. Pylyuk I.V., Fluid critical behavior at liquid-gas phase transition: Analytic method for microscopic description // J. Mol. Liq., 310, 112933 (2020); WoS, Scopus, Q1; https://doi.org/10.1016/j.molliq.2020.112933.
  43. Pylyuk I.V., Dobush O.A., Equation of state of a cell fluid model with allowance for Gaussian fluctuations of the order parameter // Ukr. J. Phys., 65, 1080 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.12.1080.
  44. Kozlovskіі M.P., Dobush O.A., Phase behavior of a cell fluid model with modified Morse potential // Ukr. J. Phys., 65, 428 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.5.428.
  45. Kozitsky Yu.V., Kozlovskii M.P., Dobush O.A., A phase transition in a Curie-Weiss system with binary interactions // Condens. Matter Phys., 23, 23502 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.23502.
  46. Kozlovskіі M.P., Dobush O.A., Behavior of a binary asymmetric mixture of interacting particles in the supercritical region // Ukr. J. Phys., 65, 768 (2020); Scopus, Q4; https://doi.org/10.15407/ujpe65.9.768.
  47. Shapoval D., Dudka M., Bénichou O., Oshanin G., Equilibrium properties of two-species reactive lattice gases on random catalytic chains // Phys. Rev. E, 102, 032121 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/physreve.102.032121.
  48. Dudka M., Holovatch Yu., Clandestine Ukrainian university in Lviv. – In: Leopolis Scientifica, Petruk O. (Ed.), Artos, Lviv, 2020, pp. 163-196 (in Ukrainian).
  49. Holovatch Yu., Honchar J., Krasnytska M., Physics and Physicists in the Shevchenko Scientific Society in Lviv. - In: Leopolis Scientifica ІІ, Petruk O. (Ed.), Artos, Lviv, 2020, pp. 412 (in Ukrainian).
  50. Dey P., Hansen T., Shpot M., Operator expansions, layer susceptibility and two-point functions in BCFT // J. High Energy Phys., 12, 051 (2020); WoS, Scopus, Q2; https://doi.org/10.1007/JHEP12(2020)051.
  51. Shchur Ya., Pavlyuk O., Andrushchak A.S., Vitusevich S., Kityk A.V., Porous Si partially filled with water molecules - crystal structure, energy bands and optical properties from first principles // Nanomaterials, 10, 396 (2020); WoS, Scopus, Q1; https://doi.org/10.3390/nano10020396.
  52. Derzhko O., Hutak T., Krokhmalskii T., Schnack J., Richter J., Adapting Planck’s route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet // Phys. Rev. B, 101, 174426 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.101.174426.
  53. Krupnitska O., Frustrated quantum Heisenberg double-tetrahedral and octahedral chains at high magnetic fields // Phys. Rev. B, 102, 064403 (2020); WoS, Scopus, Q1; https://doi.org/10.1103/PhysRevB.102.064403.
  54. Rojas O., Strečka J., Derzhko O., de Souza S.M., Peculiarities in pseudo-transitions of a mixed spin-(1/2,1) Ising-Heisenberg double-tetrahedral chain in an external magnetic field // J. Phys.: Condens. Matter, 32, 035804 (2020); WoS, Scopus, Q1; https://doi.org/10.1088/1361-648X/ab4acc.
  55. Skorobagatko G.A., Self-equilibration theorem in quantum-point contacts of interacting electrons: Time-dependent quantum fluctuations of tunnel transport beyond the Levitov-Lesovik scattering approach // Ann. Phys., 422, 168298 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.aop.2020.168298.
  56. Derzhko O., Schnack J., Dmitriev D.V., Krivnov V.Ya., Richter J., Flat-band physics in the spin-1/2 sawtooth chain // Eur. Phys. J. B, 93, 161 (2020); WoS, Scopus, Q2; https://doi.org/10.1140/epjb/e2020-10224-1.
  57. Levitskii R.R., Zachek I.R., Moina A.P., Thermodynamic characteristics of quasi-one-dimensional CsH2PO4 type ferroelectrics // Ferroelectrics, 567, No. 1, 37 (2020); WoS, Scopus, Q3; https://doi.org/10.1080/00150193.2020.1791585.
  58. Dobushovskyi D.A., Shvaika A.M., Thermoelectric properties of Mott insulator with correlated hopping at microdoping // Condens. Matter Phys., 23, No. 1, 13703 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.13703.
  59. Vdovych A.S., Zachek I.R., Levitskii R.R., Effect of hydrostatic pressure and longitudinal electric field on phase transitions and thermodynamic characteristics of quasione-dimensional CsH2PO4 ferroelectric // Condens. Matter Phys., 23, No. 3, 33702 (2020); WoS, Scopus, Q3; https://doi.org/10.5488/CMP.23.33702.
  60. Moina A.P., Effects of diagonal strains and H-bond geometry in antiferroelectric squaric acid crystals // Condens. Matter Phys., 23, No. 3, 33704 (2020); WoS, Scopus, Q3; https://doi.org/ 10.5488/CMP.23.33704.
  61. Vdovych A.S., Levitskii R.R., Zachek I.R., Field and deformation effects in RbHSO4 ferroelectric // J. Phys. Stud., 24, No. 2, 2702 (2020); Scopus, Q4; https://doi.org/10.30970/jps.24.2702.
  62. Vdovych A.S., Zachek I.R., Levitskii R.R., Moina А.Р., Influence of uniaxial and hydrostatic pressures and shear stress s5 on the phase transition and thermodynamic properties of quasi-one-dimensional ferroelectrics of the CsH2PO4 type // Math. Model. Comput., 7, No. 1, 64 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.01.064.
  63. Duviryak A., Yaremko Yu., Physical Collection of the Shevchenko Scientific Society, 10, 106-127 (2020) (in Ukrainian).
  64. Duviryak A., Physical Collection of the Shevchenko Scientific Society, 10, 128-144 (2020) (in Ukrainian).
  65. Vavrukh M.V., Dzikovskyi D.V., Solovyan V.B., The calculation of photoionization cross-section of negative hydrogen ions in the Born approximation // Math. Model. Comput., 7, No. 1, 125-139 (2020); Scopus, Q4; https://doi.org/10.23939/mmc2020.01.125.
  66. Holovatch Yu., Plyatsko R., Svarnyk H., Peter Puluj and the archive of Ivan Puluj // Physical Collection of the Shevchenko Scientific Society, 10, 77-98 (2020) (in Ukrainian).
  67. Strečka J., Krupnitska O., Richter J., Investigation of entanglement measures across the magnetization process of a highly frustrated spin-1/2 Heisenberg octahedral chain as a new paradigm of the localized-magnon approach // EPL, 132, 30004 (2020); Scopus, Q2; https://doi.org/10.1209/0295-5075/132/30004.
  68. Yukhnovskii I.R., Hlushak P.A., Tokarchuk M.V., Physical Collection of the Shevchenko Scientific Society, 10, 34-56 (2020) (in Ukrainian).
  69. Omelyan I., Kozitsky Y., Pilorz K., Algorithm for numerical solutions to the kinetic equation of a spatial population dynamics model with coalescence and repulsive jumps // Numerical Algorithms, 2020; WoS, Scopus, Q1; https://doi.org/10.1007/s11075-020-00992-9.
  70. Omelyan I., Spatial population dynamics: Beyond the Kirkwood superposition approximation by advancing to the Fisher–Kopeliovich ansatz // Physica A, 544, 123546 (2020); WoS, Scopus, Q2; https://doi.org/10.1016/j.physa.2019.123546.