Condensed Matter Physics, 2005, vol. 8, No. 4(44), p. 737-748, English
DOI:10.5488/CMP.8.4.737
Title:
Critical slowing down in random anisotropy magnets
Author(s):
 
| M.Dudka
(Institute for Condensed Matter Physics of the National
Academy of Sciences of Ukraine, 79011 Lviv, Ukraine; Institut
für Theoretische Physik, Johannes Kepler Universität Linz,
A-4040, Linz, Austria)
,
|
 
| R.Folk
(Institut für Theoretische
Physik, Johannes Kepler Universität Linz, A-4040, Linz,
Austria)
,
|
 
| Yu.Holovatch
(Institute for Condensed Matter Physics of
the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine;
Institut für Theoretische Physik, Johannes Kepler Universität
Linz, A-4040, Linz, Austria; Ivan Franko National University of
Lviv, 79005 Lviv, Ukraine)
, |
 
| G.Moser
(Institut für Physik und
Biophysik, Universität Salzburg, A-5020 Salzburg, Austria)
,
|
We study the purely relaxational critical dynamics with
non-conserved order parameter (model A critical dynamics) for
three-dimensional magnets with disorder in a form of the random
anisotropy axis. For the random axis anisotropic distribution, the
static asymptotic critical behaviour coincides with that of random
site Ising systems. Therefore the asymptotic critical dynamics is
governed by the dynamical exponent of the random Ising model.
However, the disorder effects considerably the dynamical
behaviour in the non-asymptotic regime. We perform a
field-theoretical renormalization group analysis within the
minimal subtraction scheme in two-loop approximation to
investigate asymptotic and effective critical dynamics of random
anisotropy systems. The results demonstrate the non-monotonic
behaviour of the dynamical effective critical exponent zeff.
Key words:
critical dynamics, disordered systems, random
anisotropy, renormalization group
PACS:
05.50.+q, 05.70.Jk, 61.43.-j, 64.60.Ak, 64.60.Ht
|