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1. Introduction

An intensive investigation of binary systems (liquid mixtures, melts,
polymer solutions) had been started more then 25 years ago and at
present is being characterized by a considerable advance in understand-
ing of many aspects of nature of the object mentioned above. Starting
from the very beginning one should refer to papers by Bhatia et al.
[1,2] where authors considered both static and dynamic properties (stat-
ic and dynamic structure factors, thermodynamic values, Green - Kubo
relations) of binary mixtures. Though their results had a good agreement
with scattering experiments [3] in the domain of small wave numbers k
and frequencies w, it was challenging to extend the description out from
the framework of pure hydrodynamic approach. Suchlike investigations
were stimulated by discovery of “fast sound” phenomenon in mixtures
having been enriched by lighter component [4-7], which could be inter-
pretated as collective motion of lighter particles on background of heavier
ones and obviously presents the collective excitation of kinetic origin.

Another reason of going out from hydrodynamic description followed
from the development of computer methods for calculations of time cor-
relation functions for binary mixtures what sets up the problem of the-
oretical study of the dynamics at finite values of wave-vector k and
frequency w what is in fact the problem of the generalized hydrody-
namics. One should emphasize that this problem is very important from
experimental point as well, because neutron scattering experiments (es-
specially in mixtures with disparate masses in the species) are being
carried out in such a domain of k¥ where usual hydrodynamic description
is not applicable any more.

During the last decade an essential progress in understanding of dy-
namic properties of fluids has been achieved in connection with the gen-
eralized collective modes approach [8-11]. The extension of this method
on binary liquids in the parameter—free form has been undertaken very
recently [12] what opened the way of construction of generalized hydro-
dynamics of mixtures [11]. In comparison with five-mode formalism of
Ref. [4] the approach proposed in [12] has really no fitting parameters
and is based only on Markovian approximation for higher-order mem-
ory kernels being very effective in case of an extended set of dynamic
variables [13]. Ref. [12] gave us an answer to the question: what set of
dynamic variables is appropriate for the correct description of binary
mixtures dynamics for small and intermediate values of k& and w?

In parallel way the construction of generalized hydrodynamics of bi-
nary mixtures was going on [14,15]. The results of these studies were
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the explicit expressions for generalized thermodynamic quantities and
transport coefficients which had been obtained in the rigorous statistical
approach without any phenomenologic—based presumptions.

A logical completion of these investigations might be the calcula-
tion of generalized k,w-dependent transport coefficients that leads us to
nonlocal transport equations. There were proposed in the literature sev-
eral methods for solving of this problem for fluids: mode-coupling theory
[16,17], generalized kinetic theory for gases [18,19], formalism of memo-
ry functions [20,21] and generalized collective mode approach [11,22] as
one of the versions of memory function formalism. The mode-coupling
theory allows us to study nonanalytical vk and \/w—dependent correc-
tions to the hydrodynamic transport coefficients appeared in the region
of small wave-vectors and frequencies due to nonlinear fluctuations of
coarse-grained variables. The methods of kinetic theory are limited by
consideration of low-density systems. In present paper we shall dwell our-
selves on the method of generalized collective modes applying recursive
relations for higher-order memory functions [13].

The paper is organized as follows: in Section 2 we introduce dynamic
variables which serve as basic set for construction of memory functions
in the strict microscopic approach. Some words will be said about an ad-
vantage of our choice of dynamic variables. In Section 3 we extend initial
set of hydrodynamic densities taking into consideration their first time
derivatives. Then we apply recursive relations for higher-order memory
kernels to obtain k- and w—dependent transport coefficients. In the last
Section some concluding remarks are made.

2. Equations of generalized hydrodynamics

Let us introduce the basic dynamic variables in the following way:

1 e
fa(k) = i ;exp(ikri) , a=1,2 (1)

is the Fourier-transform of the ath partial number density;
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denotes the Fourier-transform of the longitudinal component of total
momentum density;

>

a=1 i=1 b 1j=1

Ng 2

—r;|) | exp(ikr) (3)

%\H

is the Fourier—transform of energy density. It should be noted that the
dynamic variables (1)-(3) obey conservation laws in the form

ai(k) = ikI;(k) , (4)

where &;(k) = iLa;(k), iL is a Liouville operator, and I;(k) denote the
microscopic fluxes corresponding to the variables a;(k):

N,
7 1 < D;
. (k) \/N—a;maexp(z ;) (5)
1 Na papﬁ
0 =009 = 1 (33 22 ety
’ \/N a=1 i=1 a
: (rf — )7 — 1)) .
5SS v T B < etk
a,b 1,5
(6)
N 3 0t o ERE Do SRUT]
Ig(k) = —< L + = V |’T‘Z — ’T‘J|) exp(lkrz)
AA=t=R Pmd b=1 j#i=1 J
!
&) &
L ! Py pf (r =r§)(ry —1})
2 ; ). V'(|ri — r]|)<4ma + 4mb) Ea— (7)

X Pr(r; — ;) exp(ikrﬁ) ,

where Py (1) = [1 — exp(—ikr)]/[ikr] — 1 when k — 0.
In Ref. [15] one has shown that passing from conserved variables
(1)-(3) to the following ones determined as

1,}1 (k) = ﬁ’(k) = Z'ﬁ/a(k) ’ (8)
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1/Z(k) = 7%l(k) = (]- - Pn)ﬁl (k) ’ (9)
Ys(k) = pll (k) (10)
Yi(k) = h(k) = (1 - P, — Pa,)é(k), (11)

one can express the static structure factors of “density-density”, “con-
centration-concentration”, “density-concentration” as well as the other
generalized thermodynamic quantities of the system only via correlation
functions of variables (8)-(11) and their fluxes. In (8)-(11) N = N; + N,
denotes the total particle number and Mori-like projecting operator P,
acts accordingly

Po...= < . .,&(—k)) <d(k),&(—k)> - ak), (12)

with a = {n, 711 }. For a static correlation function (a(k), a(—k)) we used
the notation

Fap(k) = (a(k),a(=k)) = (Aa(k)Ab(=k))o, (13)

where

Aa(k) = a(k) — (a(k))o

and (...)o means an averaging with an equilibrium distribution py in
grand canonical ensemble,

2
Po = €xXp ﬁ(Q_E_ZNQNa) . (14)

In (14) one has as ussual that 8 = 1/kpT is an inverse temperature,
e denote of chemical potentials, and Q@ = Q(V, T, u1, u2) is the ther-
modynamic potential which depends on volume V', temperature 1" and
chemical potentials p,.

Thus static structure factor “density-concentration” equals

SNC(k) = Fn1n(k) - Cann(k) ; (15)

where C; = N;/N denotes concentration of the i-th species and Fup(k)
means corresponding static correlation functions (one can write down,
for instance, relation between static structure factur “density—density”
Snan(k) = Fun(k) and partial static structure factors Sy, (k) =
(ni(k),nj(—k)){i,1}=1,2, as follows: Fy,,,(k) = C1Sn,n, (k)+ C2Sn,n, (k)
+2 \% Cl CZSTLNQ (k))7

Scc(k) = Fpyn, (k) = 2C1 Fp, (k) + C2 (k) (16)




5 IIpenpunT

denotes “concentration-concentration” structure factor;

N Fon(k)Fryny (F)
(k) = =kpTKyp(k) = —7—+1— 1
where K7 (k) means generalized compressibility;
Snc(k)
o(k)=— 18
(K) Sco(h) (18)
denotes generalized N-C dilatation factor [1,2];
1 F2 (k) FZ2 _(k)
k)= — Fss k) — —ne _ n1e 1

means the generalized specific heat at constant volume. Variables (17)-
(19) in the limit & — 0 transfer to their thermodynamic values, accord-

ingly:

. N N 1 [0V
fim o) = st = g (5 (5,)), @
. V="
lim 6(k) = ——, (21)
lim cy (k) = cv,nc (22)

k—0

where V; denotes i-species volume, p denotes pressure and corresponding
long-wave limits of (15)-(16) coincide with static structure factors of
Bhatia—Thornton [1,2].

Using the method of nonequilibrium statistical operator [23] one can
obtain the chain of equations for Laplace-transforms

Fyy, (, 2) = /exp(—zt)Fyiyj(k,t) dt, z=iwtecms0 (23)
0

of time correlation functions (TCF)

Fy,y, (k,t) = (}(k), exp(—iLt) Aj(—k)> (24)
in matrix form:

2Fy,y, (k, 2) — Qv (k) Fy,y, (k, 2) + @,y (k, 2) Fyy, (k, 2)
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:FYin(kat:O)a (25)

where frequency matrix iQy,y, (k) is determined as

<iﬁffi(k), fg-(-k))

(%500, 751

i€yay; () = , (26)

Pv,v; (k,z) is Laplace-transform of memory function

o0 = [ exp(—er>((1 — Pu)iLYik),

— 00

exp [—i(l —Py)L(1 - PH)T] iﬁg(-k)) ( ;i (k), }(—k)) B dr, (27)

where

P =3 Py Py = (..,ﬁ-(—k)) (ﬁ(km(—k))lﬁ(k) (28)

i=1

denotes Mori projecting operator on hydrodynamic basis (8)-(11) and
€ — 40 after thermodynamic transition V' — oo, N — oo, N/V =n =
const.

One should point out that according construction dynamic variables

(8)-(11) are orthogonal: (ﬁ(k),f@(—k)) = 0i; <Yl(k),f/,(—k)>, di; is

Kronecker delta-symbol. Transport equations for variables Y;(k) look
similarly to (25) (see next section).

Frequency matrixes (26) determine generalized thermodynamic val-
ues of binary mixture [15]; we shall not dwell our attention on this theme
any more referring readers to [12,14,15]. Instead of it we shall study mem-
ory kernels (27) more thoroughly.

The Fourier transforms of memory functions (27) could be expressed
via generalized kinetic (Onzager) coefficients in the standart way [14]:

V/N

By.y- = k2Llyy. S S
oviy; (k,w) =k mo(k,W)ﬂijyj(k;O),

(29)
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where generalized kinetic coefficients EyiyJ (k,w) are the Laplace trans-
forms of time dependent functions

Ly,v; (k,t) :/exp(—eT) ((1 - P)};’El)(k), exp [—(1 - P)ifn’}
x (1— P)?il) (—k)) dr.  (30)

Relations (29)-(30) allow us to introduce generalized (nonlokal) trans-
port coefficients in a standart way having been determined them through
kinetic coeflicients Lyz (k,w). Then we have:

0k, w) + (k) (31)

Lk w) = 3

means generalized “longitudinal” viscousity, where 7(k,w) denotes gen-
eralized shear viscousity and ((k,w) is generalized bulk viscousity;

Lun(k,w) = TA(k,w), (32)
where A(k,w) means generalized thermal conductivity;
Lon = D(k,w), (33)
where D(k,w) denotes generalized interdiffusion coefficient;
L (k,w) = Ly (k,w) = Dp(k,w), (34)

where Dr(k,w) denotes generalized thermal diffusion coefficient.
Transverse component of the stress tensor (6) determines shear vis-
cousity n(k,w) (cf. (31)):

I:jp(k,w) =n(k,w). (35)

Besides (31)-(34) there are transport coefficients describing interac-
tion between dissipative fluxes of the different tensor dimensions. For
instance, generalized transport coefficient

Eph(kaw) = I:hp(kaw) = f(kaw) (36)
describes cross—effect “thermal conductivity — viscousity” and

Lop(k,w) = Lypn (k,w) = v(k,w) (37)
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defines correlations of diffusive and viscous dissipative fluxes.
Further simplification can be reached in Markovian approximation
(oo}

for memory kernels ¢y, y, (k,w) = @v,y;(k,0) = [ vy, (k,t)dt. In this
0

approximation in the limit ¥ — 0 memory kernels Py,y; could be written
as follows:

VIN

Dy, =k°L
(pyly(k—)oz—)O) k YY]ﬂFyy(k OtZO)’ (38)
0 LnAf
Lyiyj = V Afyz exp ZLt)Afy] dt, (39)
0
where Afy, = fy, — (fy,)o mean fluctuations of dissipative fluxes fy,
determined by relations
I (k) = (1= Pr)il¥i(k) = Vi(k) = vy, (k)Y (),
I¢ (k — 0) = ik fy; . (40)

In hydrodynamic limit (¢ — 0, z — 0) transport coefficients (33)-
(34) are known to be expressed via Kubo relations [1,3] while cross—
effects transport coefficients (36)-(37), determined on the different tensor
dimension fluxes, tend to zero in the complete conformity with Curie
principle [23] being not observable in ordinary hydrodynamics.

Taking into account properties (28) of projecting operator Py and
expression (9) for 7, (k) one might obtain besides (31)-(34) some auxil-
iary relations for other kinetic koefficients:

Ln?’u = L’FL17’L = ALnn; L’Fb1h = Lhﬁ1 = Ath; Lﬁ1’ﬁ1 = AQLnn: (41)

where factor A in long-wave limit could be expressed explicitly via ther-
modynamic quantities:

Vé 1
A= —— — — 42
ZpKT+V(52 Om ( )
where
6m— mlmmZ; m:mlcl —l—m2025m101 +m2(1—01),

Op . _
zp = <acl> _— = — pa . (43)
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Note that transport coefficients (33)-(34) in the limit (k — 0, z = 0)
are connected with experimentally observed coefficients of mutual
diffusion D and thermal diffusion kD, where x means thermal diffusion
ratio. One can obtain these expressions, taking into account relations
between Onzager coefficients constructed on partial number densities
Lying» Lnjn, which could be presented in the form

2 2
> Milnin; =0, > mily =0, (44)
=1 =1

and the fact that thermodynamic force V (4) could be written down in
the terms of concentration C7, temperature 7' and pressure p as follows:

&) o+ (o), v+ (5)
AT e VO + | == VT + [ =— Vp, 45
7 <801 Y 1 iT) . . ) o, P (45)

~

that gives us the well known form for observable dissipative flux {fy, )o
[3,23]:

A 1 K K
o =——pD (VO + =VT + LVp). 46
(nido = ==pD (V€1 + VT + 22 (40
Lnn X2 e .
In (46) D = — means mutual diffusion coefficients, where X =
~ Tz
M, m = mme means reduced mass, S,, denotes “mass con-
mo — My mi + mo

centration—mass concentration” static structure factor, related with Sc¢
2
myms X 0
as follows: S, = %S@o, kD = — <L, +XT <_,u> de-
m m C1.,p

notes thermal diffusion coefficient, while &, = pT'S;, (?TZ) denotes
1, T
barodiffusion coefficient. '

It should be mentiond that the chain of equation for TCF (25) is not
closed yet: one can write down the equation for memory kernels where the
functions constructed on derivatives of hydrodynamic densities will be
involved [24]. Hence, it is necessary to perform certain ansatz to calculate
generalized transport coefficients (33)-(37) defined accordingly (29) via
memory functions. To solve this problem and, consequently, to consider
time—spatial dispersion of transport coefficients we shall extend the set
of hydrodynamic variables (8)-(11) having included their derivatives and
having redefined memory kernels on the basis of recursive relations for
the dynamic variables of kinetic nature. This is a subject of the next
section.
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3. Extended set of dynamic variables and definition
of the generalized transport coefficients.

To go out from the framework of hydrodynamics and to make possible
the generalization of transport coefficients in domain of arbitrary values
of k and w let us include into the basic set of dynamic variables (8)-(11)
their derivatives, namely

Bi(k) = ilVO(k), i=1,...,4. (47)

Further step is to orthogonalize Bz(k) with respect to the hydrodynamic
variables (here and afterwards we supply Y;(k) from (8)-(11) with su-
perscript (0) to differ them from kinetic variables — the derivatives of

V9 (k) - defined below):

(3

(k) = (1 Pu)Balk) = (1 - Pr)Vy (k). (48)

(3

We confine ourselves only by the first derivatives of hydrodynamic vari-
ables referring readers for studying the general case of higher derivatives
to [13,27]. One has to remark that three variables from 8 of the set
Yi(k) = Yi(o)(k) ®Yi(1)(k), namely }73(0), }71(1), )72(1), are not indepen-
dent (it is easy to verify writing them down explicitly). Hence we ommit
variable };2(1) = (1—Py)iLn, (k) and shall operate with 7 variables: four

hydrodynamic V,” (k) = {fq“” k), V{2 (k), VLK), v,\” (k)} (vari-

ables (8)-(11)) and three kinetic Y (k) = {Yf”(k), v (k), Yj”(k)}.

One has to point out that variables f’i(l) (k) are not mutualy orthogonal
being orthogonal only with respect to Yi(o)(
nal” ortogonalization of (48) leads Y2(1)(k)
the second reason for ommitting it.

Using method of nonequilibrium statistical operator (NSO) [23] we

can write down the system of equations for Fourier—transforms

k). The procedure of “inter-
to become zero and this is

@ATiw)° = [ explivt)(AT:(0) di (49)

of averaged over NSO dynamic variables — the chain of transport equa-
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tions for the extended set:
( Moo(k,w) | Moy (k) ) ( (AY O (k)y~ )
—— || - === =0, (50)
Mo (k) | Mu(k,w) (AY D (k)

where subblocks of the matrix in the left-hand side are of the following
structure:

iw 0 —iQp(k) 0
0 ] —1Q%,p(k 0
Mg o) = | e i) (51)
—iQpn (k)  —iQps, (k) iw —iQpn(k)
0 0 —iQpp(k) iw
denotes hydrodynamic matrix of 4 x 4 — dimension;
-1 0 0
—iof™M@& 0 o0
MAX3(E) = L3y 592
W) A (52)
0 0 -1

means matrix of 4 X 3 — dimension;
[1(k) Tia(k) 0 Dy4(k)
Mgt (k) = 0 0 Tss(k) 0 (53)
Cy1(k) Taa(k) 0 Dyq(k)

is 3 x 4 — dimension matrix. In (51)-(53) we have used the definitions
for frequency matrixes (26), constructed on whole set Yj(k) = Yi(o) (k)
®f’i(1)(k), taking into account nonorthogonality of variables Yi(l)(k).
One can easily prove that corresponding elements of the subblock Mo (k)
reduce to units (exept the element —iﬂf(ﬁl)(k)) while the elements of
Mio(k) can be written down as follows:

Lij (k) = i (k) = (54)
(-(0) (- (0)
(70,5, -w)
The last equations for i,j # 2 could be presented as
o (1) (1)
(700,72 (-1)
- (55)
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What about kinetic subblock Mj; (k,w), in Markovian approximation
it has the form

M11 (k, W) =
iw+ @ (k0 =il k) + Y (k0 Y (k,0)
—iQN (k) + %) (k,0)  iw + @l (k,0)  —iQ5) (k) + & (k,0) |,
FUk,0) =i E) + 5 (k,0) iw+ 3L (k,0)
(56)
with elements

-1

M$@»=ZX?9wxﬁ”em)(W“wxﬂnem) 6D

l 1j
o) () = [ expl-iot) o) (1) dt, 3)
where

t

@E;)(k,t) = Z / exp(—er) ((1 — ’P)};fil)(k),exp [—(1 — P)iﬁr]

l

x (1 —P)?fl)(—k)> <?<1>(k),ff<1>(—k)> s (59)

lj

denote memory kernels constructed on basis )A/i(l)(k), where projecting
operator P consists of two terms:

P =Py +PD =p® 4 pl) (60)

with Mori-like projecting operators P(®) = Py (see eqn. (28)) defined
on hydrodynamic basis (8)-(11) and P") defined as

pux.;:§:<”.géwp*§)(Yﬂnkx?uk—kﬂ

4,3

1
(1)
ij
. . - (0)
From (59)-(61) immediately follows that (1 — P©) —PW)Y, (k) =0
so memory kernels remain only in the subblock My (k,w).
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Note that the Markovian approximation for memory kernels con-
structed on derivatives of hydrodynamic densities is well grounded be-
cause these memory functions are damping more rapidly than TCF of
hydrodynamic variables [10,13].

Now we have prepared everything for solution to the problem how
to introduce the generalized transport coefficients. Having solved the
second equation of (50) with respect to (A}A’i(l)(k))“’ and substituting
obtained result into the first equation one can write down the following
matrix relation:

(Moo(k,w) — Moy (k) M3 (k,w) Mio(k)) (AVO(R))* =0,  (62)
where from it is easy to indentify $(%) (k,w):
@O (k,w) = —Mo; (k) M3 (k,w) Myo(k) . (63)

The last equations, being the result of recursive relations procedure,
has its general meaning what allows one to introduce the generalized
transport coefficients of any system as quick as extended set of dynamic
variables was taken into consideration. For instance, in Ref. [27] the gen-
eralized coefficients of simple Lennard—Jones liquid have been evaluated
taking into account derivatives of hydrodynamic densities up to the third
order.

Now using (29) one can calculate k- and w—dependent kineic coef-
ficients L;j(k,w) related with generalized transport coefficients n(k,w),
((k,w, D(k,w), Dr(k,w), AM(k,w), £(k,w) and v(k,w).

On figure (1) we have presented k-dependence of transport coeffi-
cients at w = 0 and on figures (2)-(5) w-dependence of transport coef-
ficients (accordingly- their real and imiginary parts) at fixed values of
wave—vector k. As input data we have used MD simulation results of Ref.
[12], namely: static correlation functions, constructed on the basic set of
partial densities and derivatives of total momentum and total energy
densities

Vilk) = {in (k, o (k), b (), pl (), (), 5 (), E(R)}  (64)

and hydrodynamic relaxation times, defined accordingly
f Fyiyj (ka t) dt
0

Fyiyj (k,O) .

The expressions for transport equations (cf. (50)), constructed on basic
set (64) as well as the form of transition matrix £ from (64) to the vari-
ables Y;(k) are presented in the Appendix. We would like to emphasize

TY; Y; (k) = (65)
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Figure 1. Kinetic coefficients Lj;(k,0), Lss(k,0), Lsa(k,0) (squares),
L14(k,0) (circles), Ls4(k,0) (squares), Ly3(k,0) (circles) as functions of
k.
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Figure 2. k = 0.247A~'. Real (squares) and image (circles) parts of
kinetic coefficients L;;j(k,w) as functions of wr.

L, (k @

L, (k @)

L, (k, @)

0.10 0.5+
- ._7.,.._7.‘..__\.\ N —
0.08 " 0.4 \
\
\
. 1y
0.06 . ~ 0.3
\ 3
,ﬁ- < .
\ - o
0.04 - / -\_\ B 024 \\.L
;N Ly
0.02- , N $oLe
b 0.1 s 1 \
Y : L
\ \\. K RN
o
0.00 4—¢-eeemm—o-ovetsm—*° o B 1] Prad \'\
r . . r r 0.0 4—o-s0smmn—o-0com —o-o 00 " —
1E-3 001 0.1 1 10 100 T T T
1E-3 001 0.1 1 10 100
0.75 -
e a m  a
¢—0-coomm_o-o00mn ¢ cosmy,
\ 0.06 \.\.
050 \ \-\
0.04 ]
L P
J " 3, h
s 3 H !
L
0.25- I 7 K .
" 0.02 {8 -\
)
N / \
u". L] \°~ \-
=2 NaL Mo o .
0.00 -4—o-e0esum —o-cossm —o- s 0ot B — 0.00 4—m-m mem— - e —" 1‘:"-
T T T T T \.
1E-3 001 01 1 10 100 T T T ey
1E-3 001 0.1 1 10 100
0.06 - 0.25 -
f - —
"~ 3-ssoomm s somm—scvemm_,
. 0.20- ,
H %
3
0.04 %
0.15- .
g \
Y >
3 -
3& = 0.10 HA
0.02- ./ by iy ’ \
3 \ 0.05 / |
s 1 7 A
o . \. .
o ., / \
0,00 4—_s-sosmum_s.e -_so” 1"'\_,___ 0.00 4—n-u mm——-n m——n- [ L)
1E-3 001 01 1 10 100 T T T T
1E-3 001 0.1 1 10 100
Wt

Figure 3. k = 0.494A~'. Real (squares) and image (circles) parts of
kinetic coefficients L;;j(k,w) as functions of wr.




17

IIpenpunT

0.075+

\l
\
.
\
.
0.050] \

L, (k, w)

.
0.025 '

0.000-4—0-0 eoemm —o-esssmn—2-*

0.4+

—uE— - —

\

0.2+

Lk, @)

// * \\, s

1E-3 0.01 0.1 1

0.45

0.304

L, (k, @)
it

~
.
el

.
0.154

0
0.00-¢ —nqu—a—n-—-oao-./.

] ‘\\.\ e

T~
-
—

o
0.0 41--.--.700‘/'

T
1E-3 0.01 0.1 1 10

0.06

4
0.04 \
.

Ly, (K, @)
e

0.02- J

— 0004 - —

T T T T
1E-3 0.01 0.1 1 10 100

0.045+

0.030

L, (k @)

0.015- / \'-

0.0004 o cesemn_o-somm 0009

T T T
1E-3 001 01 1
0.12+

—e-0cemm —o-cocmm o cosmm_,
-e,

0.094

0
oe®
-

T T T
1E-3 0.01 0.1 1

wT

Figure 4. k = 0.856A~'. Real (squares) and image (circles) parts of
kinetic coefficients L;;j(k,w) as functions of wr.

0.044 0.25-
" 77.,.._7.7.._7.,._-.,.’\
1
E 0.20 1
0.03 7 \
.
0.15-
3 0024 . ,
d \ 3 /_s
3 - 3
< s\ X< 0.0 \»
I Py 19 ) ()
- 0014 g '\ . & 11
; (1
7 % 0.051 1 \
* L [N
0_00_,.,._,.,._...../ e . NN
o -
r r r r r 0 0.00 9—0-000mm —0-¢ conm —0-¢ ooud- 1
1E-3 001 0.1 1 10 100 :
1000
—
0.34 \\
b
0.2 '\.
3 o
< / 1%
< \
- 014 '\_\\
/ LY
.
o \I\ ~ 0.00+7-7-—.-7-——4""“‘I x;':l—
0.04—o oot o comm o s0smd - ] \,/
T T T T T T
1E-3 001 0.1 1 10 100 1000 -0.01 : : : . : .
1E-3 001 01 1 10 100 1000
0.025 - 0.107,,.,..-4,._—000——07.\
%
0.020- 0.08-
L 7.'._7.—.._7.—._'.’..
.
™
= 0.015- 0.06 1
3 \
3 R \
5 0.010- 0.04+ Fll
i ] \
] .
4 " \
0.005- 0.02 |
o Y
P L
0.00 - n \ \:]_
0.000-4—o-oossmm _o.commm o cosmm_q %
T T T T T T o
1E-3 001 0.1 1 10 100 1000 -0.02 . . . . .
1E-3 001 01 1 10 100 1000
wl
wl

Figure 5. k = 1.211A~'. Real (squares) and image (circles) parts of
kinetic coefficients L;;j(k,w) as functions of wr.




19 IIpenpunT

once more that none approximation except Markovian was done during
calculation of memory functions which, as one can see from Appendix,
reduce to evaluation of higher order static correlation functions. Hence,
our approach indeed appears to be parameter—free.

MD simulations have been performed for a gas mixture of Heg g5-
Neg.35 at a number density n=0.0186 A3 at temperature T=39.3K.
The system of 864 particles interacting through Aziz-potentials [25,26]
at constant volume has been considered.

(From figure (1)-(5) one can see that process of heat transfer is the
dominant in comparison with the others (value of A(k,0) is one order
larger then interdiffusion and thermal diffusion coefficients and is three
times as much as longitudnial viscousity). The profile of thermal diffu-
sion coefficient is much smoother then A(k,0) and D(k,0) and becomes
negligible already at k = 0.4A~!. It means that behaviour of tempera-
DZ(k,0)
D(k,0)
coefficient x(k,w) to be measured in heat transfer experiments) reflects
the main features of heat conductivity being only slightly shiffted be-
cause of interdiffusion and thermal diffusion processes. From fig. (1) one
can observe coefficients £(k,0), v(k,0) (their imiginary parts) appear to
be comparative with longitudnial viscousity and interdiffusion coefficient
respectively. On the other hand, they tend to zero when k£ — 0, though
we can not obtain this due to limited volume of simulation box.

Inspecting fig. (2)-(4) one can see that real parts of transport coef-
ficients have character relaxation behaviour from their maximum values
at w = 0 to infinitesimal values when w becomes large. On the contrary,
their imiginary parts increase from zero at w = 0 to maximum in the
vicinity of fast sound frequency (see [12]) renormalizing sound dispersion
and shifting sound peak of dynamic structure factor to the right.

Transport coefficient £(k,w) and v(k,w) that describe fluxes with
different tensor dimensiality have pure imiginary parts at w = 0 as it
should be according Curie principle. One can see that their imiginary
parts tend to zero from below changing their signs at frequencies where
corresponding real parts become of the maximum values. So their be-
haviour resembles the behaviour of cross-effect transport coefficient and
bulk viscosity in simple liquid [27]. The common feature of all transport
coefficients is decreasing of their values (both real and imiginary parts)
with growth of k.

An availability of a small peak in longitudnial viscosity 4/3n(k,w) +
((k,w) at low values of wave—vector as well as appearance of similar peak
in thermal diffusion coefficient at intermidiate values of k in our opinion

ture conductivity coefficient x(k,0) = A(k,0) — (it is exactly
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is the only result of our restriction by the first derivatives of the dynamic
variables in recursive relations. As has been already said a further exten-
tion of our method on case of higher derivatives is straightforward and
could be the subject of further research.

Note, that generalized transport coefficients in the domain of small
wave-vectors have Lorentz form [28] like TCF in Markovian approxima-
tion [10].

4. Conclusion

In the present paper we have presented the method of calculation of
time—spatial dispersion of transport coefficients. Nonlocality of obtained
transport coefficients is a result of consistent description of kinetics and
hydrodynamics of the system (an initial set of transport equations for
hydrodynamic variables has been extended at the expence of includ-
ing kinetic variables). Taking into consideratin kinetic variables makes
Markovian approximation for the memory kernels well grounded because
memory functions constructed on derivatives of hydrodynamic densities
are known to relax in time more rapidly then corresponding hydrody-
namic time correlation functions [13]. At the same time it would be inter-
esting to include the second derivatives into our set of dynamic variables.
It corresponds to 7—modes approximation for TCF in the theory of sim-
ple fluids [10] and should improve the whole recursive procedure because
the convergence of calculations grows with extending of the basic set of
variables.

Another way of introducing generalized transport coefficients is appli-
cation of the mode—coupling theory. As one has already said this method
allows us to calculate nonanalytical corrections to the transport coeffi-
cients explicitly. Thus, one can obtain vk-dependence of cross—effect
coefficients £(k, 0, v(k,0) in hydrodynamic region, while kinetic theory
of simple fluids give us behaviour linear in k. However the limiting frame
of mode—coupling theory is requirement for k& to be small. On the other
hand, MD simulations are restricted by the box volume that is - by &
from below. It is challenging to invastigate just this intermediate region
of wave—vectors to answer to the question whether including into consid-
eration higher fluctuations and higher derivatives of dynamic variables
are equivalent procedures.

It would be interesting to investigate time—spatial dispersion of trans-
port coefficients of other binary mixtures, such as Ar-Kr, Ar-Xe, where
the mass ratio of heavier to lighter component is not so large as in present
case to possess enough statistics about behaviour of these coefficients.
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For instance, slow decreasing of transport coefficients in k in the inter-
mediate domain of wave—vector (see Fig.(1) could be the result of such a
masses ratio. Quite different systems are polymers, where the molecular
masses of species are about the same.

All problems mentioned here could be the subject of a separate study
which authors hope to carry out in future.

Appendix

Transport equations (50), constructed on the set of partial densities (64),
in Markovian approxiamtion can be written down in the matrix form [10]:

iw(AYi(k))” + Tij (k)(AY; (k) = 0, (A1)

where the dynamic matrix Tj;(k) = —iQy,y, (k) + ¢y, y, (k,0) can be ex-
pressed via matrix Fy,y, (k) = (;)Z(k), J}j(—k)) of corresponding static

- o0
correlation functions and the inverse matrix to Fy,y, (k) = [ Fy,y, (k,t) dt
0

as follows:
7 N -1
Ty(k) = Y Fyon (B) [FB)] (4.2)
— Wi Y;
where matrix of relaxation times F),y, (k) can be presented as:
Fyiyj (k) =
Tn1n1Fn1n1 Tn1n2Fn1n2 mTan1n1 mTan1n2 Tn16Fn1E 0 _Fn15
Tmnsznz Tnznanznz MZI anz MZ2 Fnznz TmEF"zE 0 _Fnzs
_llznl Fn1n1 —z,znl Fn1n2 0 0 lmTanﬁ _Fll’llpl 0
R S 0 B —Flp, 0
Tn1EF’ﬂ1€ TanFnzg —721?11 Fn16 72]?1_2 Fnzs TEEFEE 0 _FEE
0 0 F1|)|1p1 FI|J|2P2 0 0 _FILL
F,. Fo,. 0 0 Fe F,. 0
(A.3)

Here we have used definition (65) for corresponding relaxation times 7
while the other elements could be expressed via static correlation func-
tions Fy,y, (k). One can see from (A.1)-(A.3) that memory functions,
constructed on basic set (64), are expressed only via static correlation
functions and relaxation times without any complex time dependence
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through projecting technique (unlike memory kernels (59)), so they turn
out to be quite simple functions for MD simulations.

Transition matrix £ (k) from the set Y;(k) to the variables Y (k)
can be presented as follows:

1 1 0 0 0 00
Lon Loz 0 0 0 0 0
0O 0 1 1 0 00

Cij(k)=amk) =| Lun L O 0 1 00 (A.4)
0Y; (k) 0 0 Ls3 Lss 0 0 0O
561 £62 0 0 £65 ]. 0
0 0 Ly Lo O O 1|

In (A.4) we have the following nonzero elements (except £11 = L12 =
L33 = L34 = La5 = Log = L7 = 1):

_omk)

L1 (k) = any (k) (A(k),n(=k))’

553(k):m{mil—%}, (A.9)
Ls4(k) :m{miz - %} (A.10)
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(5 k), (k) (5 (k). (k)
=G w A Y G acw)
(8 (k). (k)
RN La1(k), (A.11)
(@ORICY
where
(' wi-0) = 2 0 () = {cl - 71%“)):5((_‘:))) } |

= D ()AR) . (b ()inm) "
P T GmACE) T (k)
(6" k). (k)
- Laz2(k), (A.12)
h(k),h(—k)
(5 k), (k)
Les (k) = — , (A.13)

Lr3(k) = Lra(k) = -5 = ——=

In its turn,

>

(ﬁl(k),ﬁl(—k)) = (i(k),n(~k)) -
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