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1 ðÒÅÐÒÉÎÔ1. IntroductionThe study of phase transitions and critical phenomena in multicompo-nent 
uid systems is very interesting from the theoretical as well as prac-tical point of view. Whereas in one-component 
uid systems only gas-liquid equilibria exist,three di�erent types of two-phase equilibria have tobe considered in 
uid mixtures: gas-liquid, liquid-liquid and gas-gas equi-libria. Despite the numerous experimental results now available [1]- [5],theoretical achievements in understanding a microscopic mechanism ofphase behaviour and nonuniversal critical properties of multicomponent
uids are limited. Most of the theoretical studies devoted to this prob-lem may be divided into three main groups: phenomenological theories,mean �eld approaches and integral equation methods. The phenomeno-logical approaches [6]- [11] give predictions about critical exponents andscaling functions but no quantitative estimates of nonuniversal criticalamplitudes are possible within this framework. The problem of the phasediagram sensitivity to the microscopic model also remains unsolved. Themean �eld theories [12] and integral equation methods [13]- reproducedi�erent phase diagram types by varying the microscopic parameters butgive qualitative estimates.Of special interest are Refs.[22]- [27] devoted to the study of both theuniversal and nonuniversal properties. They are based on the previouslyproposed approach to the study of the gas-liquid critical point in a one-component 
uid., namely, the hierarchical reference theory (HRT) [28].On the microscopic Hamiltonian grounds, the HRT develops the renor-malization group structure near a critical point. Recently this approachwas also used for studying the 3D Ising model [29].In spite of the doubtless success of the HRT the problem remainsof constructing a theory that allows within a uni�ed approach a com-plete description of the phase behaviour of multicomponent continuoussystems beginning with the Hamiltonian and ending with the thermo-dynamic functions in the neighbourhood of the phase transition point.This program has already been accomplished in both the 3D Ising model[32] and a simple 
uid near the gas-liquid critical point [33]-[35]. Withinthe framework of the �4 model this approach has permitted to obtainthe non-classical critical exponents and analytical expressions for ther-modynamic functions .This theory has its origin in the approach based on the functionalrepresentation of a partition function in the collective variables (CV)space [31]. First the method of CV was proposed for a study of thecharged particles systems[30]-[31] and then it was applied to the second
ICMP{99{03E 2order phase transition theory [32]. The point is that the statistical de-scription of the phase transition is to be performed in the appropriatephase space speci�c for a certain physical model. Among the indepen-dent variables of this space there must be those connected with orderparameters. This phase space forms a set of CV . Each of them is amode of density 
uctuations corresponding to the speci�c feature of themodel under consideration. In particular, for a magnetic system the CVare variables connected with spin density 
uctuation modes, for a one-component 
uid { with particle density 
uctuation modes. What is thecontent of the CV for a multicomponent system? We will answer thisquestion below.Experiments have shown that 
uids and 
uid mixtures near the or-dinary critical points belong to the universality class of Ising-like sys-tems [3]. Thus, a study of critical properties of multicomponent systemsrequires, on the one hand, an extension of the method worked out forone-component 
uids and, on the other hand, their further development.In [36,37] we developed the CV method with a reference system (RS)for the case of a grand canonical ensemble for a multicomponent system.Within the framework of this approach the phase diagram of a symmet-rical mixture was examined in detail [38]-[41]. Our previous study hasbeen mainly restricted to the Gaussian model. In [37] we obtained theexplicit form of the Ginzburg-Landau-Wilson Hamiltonian (�4 model)for a binary symmetrical mixture in the vicinity of the gas-gas demix-ing critical point. In this paper we generalize the approach in the caseof a non-symmetrical binary 
uid system (the system of di�erent sizeparticles interacting via di�erent potentials).The layout of the paper is as follows. We give a functional representa-tion of a grand partition function of a two-component system in Section2. The physical nature of the order parameter in a binary mixture is dis-cussed in Section 3. In Section 4 we construct the basic density measure(Ginzburg-Landau-Wilson Hamiltonian) with respect to the CV whichinclude a variable corresponding to the order parameter.2. Functional representation of the grand partitionfunction of a binary mixtureLet us consider a classical two-component system of interacting particlesconsisting of Na particles of species a and Nb particles of species b. Thesystem is in volume V at temperature T .Let us assume that an interaction in the system has a pairwise addi-tive character. The interaction potential between a 
 particle at ~ri and



3 ðÒÅÐÒÉÎÔa � particle at ~rj may be expressed as a sum of two terms:U
�(rij) =  
�(rij) + �
�(rij );where  
�(r) is a potential of a short-range repulsion that will be chosenas an interaction between two hard spheres �

 and ��� . �
�(r) is anattractive part of the potential which dominates at large distances. Anarbitrary positive function belonging to the L2 class can be chosen asthe potential �
�(r).Further consideration of the problem is done in the extended phasespace: in the phase space of the Cartesian coordinates of the particles andin the CV phase space. An interaction connected with repulsion (poten-tial  
�(r)) is considered in the space of the Cartesian coordinates of theparticles. We call this two-component hard spheres system a referencesystem (RS). The interaction connected with an attraction (potential�
�(r) ) is considered in the CV space. The phase space over
ow is can-celled by introduction of the transition Jacobian. The contribution ofthe short-range forces to the long-range interaction screening is ensuredby averaging this Jacobian over the RS.Then a grand partition function in the CV representation with a RScan be written as (for details see Appendix A):� = �0�1;where �0 is the grand partition function of the RS. The thermodynamicand structural properties of the RS are assumed to be known. Althoughit is known that mixtures with only repulsive interactions might undergoa phase transition [43], we assume that in the region of temperatures,concentrations and densities we are interested in, thermodynamic func-tions of the RS remain analytic. �1 has the following form:�1 = Z (d�) (dc) exp h��+1 �0 + ���1 c0 � �2V X~k [ ~V (k)�~k��~k+ ~W (k)c~kc�~k + ~U(k)�~kc�~k]iJ(�; c): (2.1)Here the following notations are introduced:�~k and c~k are the CV connected with total density 
uctuation modesand relative density (or concentration) 
uctuation modes in the binarysystem.Functions �+1 and ��1 have the form:�+1 = p22 (�a1 + �b1); ��1 = p22 (�a1 � �b1) (2.2)
ICMP{99{03E 4(the expressions for �
1 are given in Appendix A) and are determinedfrom the equations @ ln �1@��+1 = hNi; (2.3)@ ln �1@���1 = hNai � hNbi: (2.4)~V (k) = (~�aa(k) + ~�bb(k) + 2~�ab(k))=2~W (k) = (~�aa(k) + ~�bb(k)� 2~�ab(k))=2~U(k) = (~�aa(k)� ~�bb(k))=2; (2.5)J(�; c) = Z (d!) (d
) exp hi2�X~k (!k�k + 
kck)iJ(!; 
); (2.6)J(!; 
) = exp hXn�1 Xin�0 (�i2�)nn! X~k1:::~knM (in)n (0; : : : ; 0)�
~k1 : : : 
~kin!~kin+1 : : : !~kni: (2.7)Index in is used to indicate the number of variables 
~k in the cumu-lant expansion (2.6). Cumulants M (in)n are expressed as linear combina-tions of the partial cumulants M
1:::
n (see (5.3)) and are presented for
1; : : : ; 
n = a; b and n � 4 in [37] (see Appendix B in [37]).Formulas (2.1)-(2.7) are the initial working formulas in our study ofphase transitions in binary 
uids.3. The order parameter in a binary mixtureA choice of the order parameter in multicomponent 
uid mixtures is aserious problem because the character of the phase transition can bechanging continuously from the pure gas-liquid transition to the mixing-demixing one. The question of the physical nature of the order parameterin binary 
uid mixtures has been considered until recently from the pointof view of both the phenomenological theory [10,11] and the microscopicapproach [20], [23], [37], [42]. Nowadays the commonly accepted ideais that both the gas-liquid and mixing-demixing phase transitions areaccompanied by total density 
uctuations as well as by relative density(or concentration) 
uctuations. This is the only symmetrical mixture



5 ðÒÅÐÒÉÎÔwhich exhibits a complete distinction between these two processes [37].However, most likely such an "ideal" system does not occur in reality. Inreal mixtures the contribution from each type of the 
uctuation processeschanges along the critical curve. The evaluation of such contributionsat each critical curve point is essential to the de�nition of the orderparameter and to the understanding of the phase transition characterin the mixture. It seems to us that in our approach the question ofthe physical nature of the order parameter has a consistent and clearsolution. Here we shall brie
y focus on it.Let us consider the Gaussian approximation of functional integral(2.1)-(2.7). This approximation, also known as the random-phase ap-proximation, yields the correct qualitative picture of the phenomena un-der consideration. As the result of the integration over variables 
k and!k, �1 can be rewritten as�G1 = 12�Y~k 0 1� 1p�(k) Z (d�) (dc) exp h�0(��+1 + @1=�) +c0(���1 + @2=�)� (M (0)1 @1 +M (1)1 @2)�12X~k [�~k��~kA11(k) + c~kc�~kA22(k) +2�~kc�~kA12(k)]i; (3.1)where@1 =M (2)2 M (0)1 �M (1)2 M (1)1 ; @2 =M (0)2 M (0)1 �M (1)2 M (0)1A11(k) = �12� �V ~V (k) + M (2)2� �A22(k) = �12� �V ~W (k) + M (0)2� �A12(k) = �12� �V ~U(k)� M (1)2� � (3.2)� =M (0)2 M (2)2 � (M (1)2 )2:In order to determine the phase space of the CV connected with the orderparameters we introduce independent collective excitations by diagonal-izing the square form in (3.1) by means of the orthogonal transformation:�~k = A(k)�~k +B(k)�~kc~k = C(k)�~k +D(k)�~k : (3.3)
ICMP{99{03E 6The explicit forms for coe�cients A(k), B(k), C(k) and D(k) are givenin Appendix B.As a result, we have�G1 = 12�Y~k 0 1� 1p�(k) Z (d�) (d�) exp h�0(AM1 + CM2) +�0(BM1 +DM2)� (M (0)1 @1 +M (1)1 @2)=(�(0))�12X~k ("11(k)�~k��~k + "22(k)�~k��~k)i; (3.4)where"ii(k) = �(A11(k) +A22(k)�q(A11(k)�A22(k))2 + 4A212(k)): (3.5)One of the quantities (3.5)(or both) tends to zero as the criticaltemperature is approached. On the other hand, we have to �nd sucha CV �~k� (or �~k�) which is connected with the order parameter. Index~k� must correspond to the point of minimum of one of the functions"11(k) or "22(k) ( or both). These functions depend on temperature,attractive potentials ~�
�(k) and characteristics of the RS. The RS entersinto (3.5) by cumulantsM
�(k).M
�(k) can be expressed by the Fouriertransforms of the direct correlation functions C
�(k) by means of theOrnstein-Zernike equations for a mixture. In [44] the analytic solutionof the Percus-Yevick equation for a hard sphere binary mixture wasobtained.Coe�cients "11(k) and "22(k) are studied both as wave vector func-tions at di�erent values of temperature T , density � and concentration xincluding the gas-liquid and mixing-demixing critical points (see Fig. 1)[40] and as temperature functions at ~k = 0 (see Fig. 2) [41]. The re-sults show that branch "11(k) becomes a critical one no matter whetherthe system approaches the gas-liquid or gas-gas demixing critical point.Moreover, "11(k) and "22(k) have the minima at ~k = 0 [40]. Hence wecan draw the following conclusions:1. Branch "11(k) is always critical.2. Because "11(k) has the minimum at ~k = 0, the CV connectedwith the order parameter is �0 in the case of the gas-liquid criticalpoint as well as in the case of the mixing-demixing phase transi-tion. The particular form of �0 for each of these phenomena canbe determined by means of the relations between the microscopic



7 ðÒÅÐÒÉÎÔ

Figure 1. Coe�cients "11(k) and "22(k) as functions of k for theNH3�N2mixture. The solid curves represent the gas-gas demixing critical point(T = 413oK, � = 0:45, x = 0:5) and the dashed curves represent thegas-liquid critical point (T = 373oK, � = 0:12, x = 0:5) [40]
ICMP{99{03E 8parameters, temperature, density and concentration of the system,e.g. by means of coe�cients A, B, C and D.3. In the plane (�0; c0) we have distinguished two directions: the direc-tion of strong 
uctuations �0 and the direction of weak 
uctuations�0. As a result, we can write the conditions for the binary mixturecritical point in the form: h@2
@�20 ic = 0; (3.6)h @2
@�0@�0 ic = 0; (3.7)h@3
@�30 ic = 0; (3.8)where 
 = �kT ln � is a grand canonical potential.Now let us consider equations (3.3) at k = 0. From (3.3) it followsthat �0 = �D(0)�0 �B(0)c0�0 = �C(0)�0 �A(0)c0; (3.9)where the upper sign corresponds to the casejA12j = �A12 (AD �BC = 1) (3.10)and the lower sign corresponds tojA12j = A12 (AD �BC = �1): (3.11)On the other hand, (3.9) can be rewritten as�0 = ��0 cos � � c0 sin ��0 = ��0 sin � + c0 cos �: (3.12)Comparing (3.9) and (3.12) we can determine rotation angle � of axes�0 and �0 in the (�0; c0) plane from the equationtan � = CA (3.13)(in both cases (3.10) and (3.11)). In the case (3.11) transformation (3.12)corresponds to both the mirror image with respect to the c0 axis and the



9 ðÒÅÐÒÉÎÔ

Figure 2. Coe�cients "11(k = 0) and "22(k = 0) as functions of thedimensionless temperature T at q = 1:0, � = 1:0, � = 0:26 and x = 0:7for di�erent values of r ("ii(k = 0) are obtained for a binary hard coreYukawa mixture [41])

ICMP{99{03E 10

Figure 3. Density-concentration projection of the critical line of the mod-el binary mixture at � = 1:0, q = 0:9 and r = 0:6(mean �eld approxi-mation)



11 ðÒÅÐÒÉÎÔrotation in the (�0; c0) plane. Thus, the proposed approach allows us, onmicroscopic grounds, to de�ne the order parameter at each point alonga critical curve and so to understand the phase transition character inthe binary mixture.Figures 3-5 show the (�; x) projections of the (T; �; x) critical surfacesof the model binary mixture for various values of microscopic parameters�, q and r. The arrows show the direction of the strong 
uctuations(order parameter) along the critical curve in accordance with formula(3.13). Here the following notations are introduced: � is the packingdensity (� = �a+�b, �i = ��i�3ii=6, �i = hNi=V is the number density ofspecies i), x is the concentration (x = hNbi=hNi), � = �aa=�bb is the hardsphere ratio, �ii is the hard sphere diameter,q = �~�bb(0)= j ~�aa(0) j is thedimensionless "like" interaction strength and r = �~�ab(0)= j ~�aa(0) j isthe "unlike" interaction strength (the form of �ij(r) is not speci�ed). Thecritical surface is derived from the (fmf ; V; x) surface by the equationsfor a binary mixture critical point (in terms of the Helmholtz free energy[1]). fmf is the Helmholtz free energy of a binary mixture in the mean�eld approximation (see Appendix C).The purpose of our further study is the calculation of the binarymixture properties in the vicinity of its critical points. Based on theGaussian distribution (3.1)-(3.2) we have determined the critical branchand, correspondingly, CV �0 connected with the order parameter. Nowwe shall construct the basic density measure with respect to CV �~k(Ginzburg-Landau-Wilson Hamiltonian). As it is shown in [32], in thevicinity of the phase transition point the basic density measure existswhich includes higher powers of CV than the second power. We shallfollow the program: (1) having passed from CV �~k and c~k to CV �~kand �~k in (2.1), we shall integrate over variables �~k with the Gaussiandensity measure; (2) then we shall construct the basic density measurewith respect to variables �~k. We shall restrict our consideration to the�4 model.4. The microscopic Ginzburg-Landau-Wilson Hamil-tonian of the binary 
uid mixtureWe pass in (2.6) from CV �~k and c~k to CV �~k and �~k:�1 = Z (d�) (d�) exp h�0~�1 + �0~�2 � 12X~k [�~k��~kP (k) +�~k��~kR(k) + 2�~k��~kQ(k)]iJ(�; �); (4.1)
ICMP{99{03E 12

Figure 4. Same as �gure 3 at � = 0:9, q = 0:9 and r = 0:6



13 ðÒÅÐÒÉÎÔ

Figure 5. Same as �gure 3 at � = 0:9, q = 0:9 and r = 0:8
ICMP{99{03E 14where ~�1 = �(A�+1 + C��1 ); ~�2 = �(B�+1 +D��1 ) (4.2)P (k) = �V (A2 ~V (k) + C2 ~W (k) + 2AC ~U(k)) (4.3)R(k) = �V (B2 ~V (k) +D2 ~W (k) + 2BD ~U(k)) (4.4)Q(k) = �V (AB ~V (k) + CD ~W (k) + (AD +BC) ~U (k)) (4.5)J(�; �) = Z (d�) (d#) exp hi2�X~k (�~k�~k + �~k#~k) +Xn�1 �Dn(�; #) (4.6)�Dn(�; #) = (�i2�)nn! X~k1:::~kn �M (in)n (0; : : :)�#~k1#~k2 : : : #~kn�in�~kn�(in+1) : : : �~kn (4.7)�~k = A!~k + C
~k; #~k = B!~k +D
~kand �M (in)n are linear combinations of cumulants M (in)n .The square form in (4.1) is diagonal ifQ � 0: (4.8)Taking into account formulas from Appendix B, equation (4.8) can berewritten in the form:(1� x)Saa � xSbbpx(1� x)Sab � q � 1r = 0; (4.9)where Sij(k) is a two-particle partial structure factor of the RS.On the other hand, the square form in (4.7) is diagonal if�M (1)2 � 0 (4.10)and the last equality holds if (4.8) holds. Equation (4.8) holds in thefollowing cases:� a symmetrical mixture: Saa = Sbb, x = 1=2, q = 1� a non-symmetrical mixture:(1� x)Saa � xSbb = 0, q = 1� a non-symmetrical mixture: q 6= 1.



15 ðÒÅÐÒÉÎÔLet us eliminate the linear term in (4.7) by the shift�~k = �0~k + �M (0)1 �~kand present �Dn(�; #) as a sum of two terms:�Dn(�; #) = �D0n + �D00n;where �D0n = �Dn(#) + �Dn(�; #); �D00n = �Dn(�):Here Dn(#) includes only the products of variables #~k, �Dn(�; #) includesthe mixed products of both variables #~k and �~k, �Dn(�) includes onlythe products of variables �~k. Let us consider the integralI = Z (d�) exp hM+�0 � 12X~k �~k��~kR(k) + i2�X~k �~k#~k +(�i2�)22! X~k �M (0)2 #~k#�~kih1 +A+ 12A2 + : : : i; (4.11)where the following notations are introduced:M+ = ~�2 �R(0) �M (0)1 ; A =Xn�3 �D0n; (4.12)(in (4.11) the prime on �~k is omitted for clarity).If operator @@�~k is substituted for i2�#~k, (4.11) can be rewritten asI = �G� (1 + h ^Ai+ 12h ^A2i+ : : :);whereh: : :i = 1�G� 12Y~k (� �M (0)2 (k))� 12 exp(F) Z (d�) exp hM+�0 �12X~k �~k��~kR(k)i : : : exp h� 12X~k �~k��~k�M (0)2 i�G� = exp(F)Y~k qR(k) �M (0)2 (k) + 1�exp ( �M+)2 �M (0)22(R(0) �M (0)2 + 1)! ; (4.13)
ICMP{99{03E 16F = �M (0)1 (M+ + 12R(0) �M (0)1 ) (4.14)Finally, after the integration in (4.1) over variables �~k we obtain� = �0�G� �� Z (d�) exp h~�1�0 � 12X~k �~k��~kP (k)iJ(�); (4.15)where �� is the result of integrating over �~k which does not include �~k.J(�) has the form:J(�) = Z (d�) exp hi2�X~k �~k�~k � i2�M1(0)X~k �~k�~k +(�i2�)22! M2(0)X~k �~k��~k + (�i2�)33! M3(0; : : :)�X~k1~k2~k3 �~k1�~k2�~k3�~k1+~k2+~k3 + (�i2�)44! �M4(0; : : :) X~k1~k2~k3~k4 �~k1�~k2�~k3�~k4�~k1+~k2+~k3+~k4i: (4.16)Here Mn(0; : : :) = �M (n)n (0; : : :) +4Mn(0; : : :):Setting M+ = 0 we get the following expressions for 4Mn(0; : : :):4M1 = �M (1)32hNiX~k0 ~g(k0) + : : : (4.17)4M2 = �M (2)42!hNiX~k0 ~g(k0) + ( �M (1)3 )22hNi2 X~k0 ~g(k0)~g(j~k � ~k0 j)+( �M (1)4 )23!hNi3 X~k0~k00 ~g(k0)~g(k00)~g(j~k � ~k0 � ~k00 j) + : : : (4.18)4M3 = 32 �M (2)3 �M (1)4 1hNi ~g(k2) 1hNiX~k0 ~g(k0) + 32 �M (1)3 �M (2)4� 1hNi2 X~k0 ~g(k0)~g(j~k2 + ~k3 � ~k0 j) + : : : (4.19)



17 ðÒÅÐÒÉÎÔ4M4 = 3( �M (2)3 )2 1hNi ~g(j~k3 + ~k4j) + 2 �M (1)4 �M (3)4 1hNi2�X~k0 ~g(k0)~g(j~k2 + ~k3 + ~k4j) + 32( �M (2)4 )2 1hNi2�X~k0 ~g(k0)~g(j~k3 + ~k4 � ~k0 j) + : : : ; (4.20)where ~g(k) = � ~R(k)1 + ~R(k) �S(0)2~R(k) = R(k)hNi; �S(0)2 = �M (0)2 =hNi:An estimation of corrections 4Mn was carried out for the symmetricalmixture in [37]. In this caseM1 = 0; M2 = 1 + �1; M3 = 0; M4 = �2 + �2;where �i are small values.Let us consider formula (4.3) for P (k). Substituting into (4.3) coe�-cients A, B,C and D from Appendix B, we getP (k) = �V h12(~�aa(k) + ~�bb(k)) + 1p4A212 + (A11 �A22)2�[ ~�ab(k)(A11 �A22) + (~�aa(k)� ~�bb(k))A12]i; (4.21)where A11, A22 and A12 are functions of temperature. Using condition(4.8), P (k) can be represented asP (k)jQ=0 = �2V h~�aa(k) + ~�bb(k) + 2 A11 �A22jA11 �A22j 1p1 + �2�(~�ab(k) + �(~�aa(k)� ~�bb(k))i; (4.22)where � = q � 1r = (1� x)Saa � xSbb2px(1� x)Sab :P (k) takes both negative ( at small j~kj) and positive ( at large j~kj) values. In the region j~kj > B (see Fig. 6) we can integrate in (4.15) over �~kand �~k with the Gaussian measure density as the basic one. As a result,
ICMP{99{03E 18we get in the approximation of the �4 model� = �0�G� ���� Z d(�)NB d(�)NB exp h~�1�0 � 12X~k P (k)�~k��~k +i2�X~k �~k�~k � i2� �M1(0)X~k �~k�~k + (�i2�)22! �M2(0)�X~k �~k��~k + (�i2�)33! �M3(0; : : :) X~k1~k2~k3 �~k1�~k2�~k3�~k1+~k2+~k3 +(�i2�)44! �M4(0; : : :) X~k1~k2~k3~k4 �~k1�~k2�~k3�~k4 ��~k1+~k2+~k3+~k4i; j~kij<B; (4.23)where in place of Mi(0; : : :) stand renormalized coe�cients �Mi(0; : : :):�Mi(0; : : :) =Mi(0; : : :) +4 �Mi(0; : : :)�� = Yj~kj>BqP (k) �M2 + 1We can consider a set of ~k vectors, j~kj < B, as corresponding to the sitesof a reciprocal lattice conjugated to a certain block lattice rl with NBblock sites in volume V :hNBi = V (B=�)3 = hNi(B�bb)3(x+ �3(1� x))6�2� :One may consider quantity B as the size of the �rst Brillouin zone ofthis block lattice.Next, two shifts are carried out in order to eliminate the cubic termin (4.23) [34]: �~k = �0~k +��~k; �~k = �0~k + ~M1�~k;where � = �i2� �M3and ~M1 = �M1 � �M2 �M3�M4 + 13 ( �M3)3( �M4)2 :



19 ðÒÅÐÒÉÎÔThen, (4.23) has the form:� = �0�G� ���� exp(G) Z d(�0)NB d(�0)NB exp hh�00 �12X~k P (k)�0~k�0�~k + i2�X~k �0~k�0~k +(�i2�)22! ~M2(0)X~k �0~k�0�~k + (�i2�)44! ~M4(0; : : :)�X~k1~k2~k3~k4 �0~k1�0~k2�0~k3�0~k4�~k1+~k2+~k3+~k4i; j~kij<B; (4.24)where ~M2(0) = �M2(0)� 12 ( �M3(0))2�M4(0) ; ~M4(0; : : :) = �M4(0; : : :);G = � �M3�M4 � �M1 � �M2 �M32 �M4 + 18 ( �M3)3( �M3)2�+~M1�~�1 � 12 ~M1�+ ~M1 �M3�M4 ;h = ~�1 � P (0) ~M1 + �M3�M4After the integration over �0~k in (4.24) we get� = C Z exp[E4(�)](d�)NB ; (4.25)where C = �0�G� ���� exp(G + a0NB)p2NB�1; (4.26)E4(�) = h�0 � 12hNBiX~k d2(k)�~k��~k �a44!hNBi3 X~k1:::~k4 �~k1�~k2�~k3�~k4�~k1+~k2+~k3+~k4 ;j~kij < B; (4.27)a0 = ln h 1p��NBN �1=4� 3j ~S4j�1=4 exp�z24 �U(0; z)i (4.28)
ICMP{99{03E 20d2(k) = a2 + P (k) (4.29)a2 =s 12j ~S4j hNBihNi K(z) (4.30)a4 = 36 hNBihNi 1j ~S4jhK2(z) + 23K(z)� 23i (4.31)K(z) = U(1; z)=U(0; z) (4.32)z = ~S2s 3j ~S4j hNihNBi (4.33)~Sn = p2n ~Mn=hNi:Here U(a; z) is the parabolic cylinder function.As it is seen from (4.27), E4(�) has the form analogous to the basicdensity measure of the 3D Ising model in an external �eld [32]. Butthe main di�erence is the dependence of coe�cients a0, a2 and a4 (see(4.28)-(4.33)) on the microscopic parameters of the system.5. ConclusionsWe propose the microscopic approach to the study of phase transitionsand critical phenomena in multicomponent mixtures. It is based on theCV method with RS. This method allows us to take into account theshort-range and long-range interactions simultaneously.We consider the task of the de�nition of the order parameter in abinary mixture and show that it has a consistent and clear solutionwithin the framework of our approach.After integration over CV �~k (which do not include the variable con-nected with the order parameter) the basic density measure with respectto CV �~k (Ginsburg-Landau{Wilson Hamiltonian) is constructed. It isshown that the task can be reduced to the 3D Ising model.Appendix AA grand partition function of a two-component 
uid system in the CVrepresentation with the RS can be written as [36]:� = �0�1;



21 ðÒÅÐÒÉÎÔwhere �0 = 1XNa=0 1XNb=0 bY
=a exp���
0N
N
 ! � Z (d�)�exp24��2X
� Xij  
�(rij )35 :is the grand partition function of the RS; � = 1kT is the reciprocaltemperature; (d�) =Qa;b d�N
 , d�N
 = d~r
1 d~r
2 : : : d~r
N
 is an element ofthe con�gurational space of the 
-th species; �
0 is the chemical potentialof the 
-th species in the RS.The part of the grand partition function which is de�ned in the CVphase space has the form of the functional integral:�1 = Z (d�)exp[�X
 �
1�0;
 � �2V X
� X~k ~�
�(k)��~k;
��~k;�]J(�a; �b): (5.1)Here,1) �
1 is a part of the chemical potential of the 
-th species�
1 = �
 � �
0 + 12V X~k ~�

(k)and is determined from the equation@ ln �1@��
1 = hN
i; (5.2)�
 is the full chemical potential of the 
-th species;2)�~k;
 = �c~k;
 � i�s~k;
 is the collective variable of the 
-th species, theindices c and s denote the real part and the coe�cient at the imaginarypart of �~k;
 ; �c~k;
 and �s~k;
 describe the value of ~k-th 
uctuation mode ofthe number of 
-th species particles. Each of �c~k;
 and �s~k;
 takes all thereal values from �1 to +1. (d�) is a volume element of the CV phasespace: (d�) =Y
 d�0;
Y~k 6=00d�c~k;
d�s~k;
 :The prime means that the product over ~k is performed in the uppersemispace;

ICMP{99{03E 223) J(�a; �b) is the transition Jacobian to the CV averaged on the RS:J(�a; �b) = Z (d�) bY
=a exp24i2�X~k �~k;
�~k;
35 exp24Xn�1�(�i2�)nn! X
1:::
n X~k1:::~knM
1:::
n(~k1; : : : ; ~kn)��~k1;
1 : : : �~kn;
ni ; (5.3)where variable �~k;
 is conjugated to CV �~k;
 . M
1:::
n(~k1; : : : ; ~kn) is then-th cumulant connected with S
1:::
n(k1; : : : ; kn), the n-particle partialstructure factor of the RS, by means of the relationM
1:::
n(~k1; : : : ; ~kn) = npN
1 : : :N
nS
1:::
n(k1; : : : ; kn)�~k1+���+~kn ;where �~k1+���+~kn is the Kroneker symbol.In general, the dependence of M
1:::
n(~k1; : : : ; ~kn) on wave vectors~k1; : : : ; ~kn is complicated. Hereafter we shall replaceM
1:::
n(~k1; : : : ; ~kn)by their values in long-wave length limit M
1:::
n(0; : : : ; 0);4) ~�
�(k) is the Fourier transform of attractive potential �
�(r).Function ~�
�(k) satis�es the following requirements: ~�
�(k) is negativefor small values of ~k and lim~k!1 ~�
�(k) = 0. The behaviour of �
�(r) inthe region of the core r < �
� must be determined from the conditions ofoptimal separation of the interaction. For a very broad class of potentialsthe general form of ~�
�(k) is presented in �gure 6.We pass in (5.1) to CV �~k and c~k (according to !~k and 
~k) by meansof the orthogonal linear transformation:�~k = p22 (�~k;a + �~k;b) (5.4)c~k = p22 (�~k;a � �~k;b): (5.5)As a result, for �1 we obtain formulas (2.1)-(2.7).Appendix BThe coe�cients A(k), B(k), C(k) and D(k) have the forms:A = p2jA12j[4A212 + (A11 �A22)2 � (A11 �A22)�
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Figure 6. The Fourier transform of the attractive potential �
�(r)
ICMP{99{03E 24q(A11 �A22)2 + 4A212]�1;B = p2jA12j[4A212 + (A11 �A22)2 + (A11 �A22)�q(A11 �A22)2 + 4A212]�1;C = �p22 jA12j(A12) [A11 �A22 �q(A11 �A22)2 + 4A212]�[4A212 + (A11 � A22)2 � (A11 �A22)�q(A11 �A22)2 + 4A212]�1;D = �p22 jA12j(A12) [A11 �A22 +q(A11 �A22)2 + 4A212]�[4A212 + (A11 � A22)2 + (A11 �A22)�q(A11 �A22)2 + 4A212]�1:Appendix CThe Helmholtz free energy of a binary mixture in the mean �eld approx-imation can be written asfmf = fid + fref + fattr;where fid is the free energy of a binary mixture of ideal gases, fref isthe free energy of a binary mixture of hard spheres [45]:fref = Fref=hNikBT = �1:5(1� y1 + y2 + y3) + (3y2 + 2y3)(1� �)�1+1:5(1� y1 � y2 � y3=3)(1� �)�2 + (y3 � 1) ln(1� �);y1 = �12 1 + �p� ; y2 = �12 �a�+ �bp�� ;�12 = p�a�b� (�� 1)2� px(1� x);�a = (1� x)�3�x+ (1� x)�3 ; �b = x�x+ (1� x)�3 :fattr = Fattr=hNikBT is the contribution due to attraction between theparticles:fattr = �12 �T �(x+ (1� x)�3) ((1� x)2 + 2x(1� x)r + x2q);where T � = kBT�3 j ~�aa(0) j�1 �=6 is the dimensionless temperature.
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