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Amnoramisi. B pobori posriisamaerbCs K/iacudyHa MexXaHika B ajrebpi
I'pacmana. @opmystoersesa meromn amisibrona — fkobi, mpuBemeHo mo-
BemeHHsa Teopemu K001 y BUMIaAKy BUPOMKEHuX Teopiit B aiarebpi I'pac-
MaHa. PosrnanaroTbea mpukaaaum BUKOpUCTAHHA MeTony [aminbrona —
Axob6i. [IpuBeneHo PO3B’A30K KJIACUIHOI CHUCTEMU, IO OMUCYETHCH Cy-
nepcuMeTpudHuM JlarpaHxiaHow.

The Hamilton — Jakobi method for the classical mechanics in
Grassmann algebra .

Tabunshchyk K.V.

Abstract. The classical mechanics in Grassmann algebra is investigated
in the present work. The Hamilton — Jakobi method is formulated and
the Jakobi theorem is proved for the degenerated theories in Grassmann
algebra. Examples of using of the Hamilton — Jakobi method is consid-
ered. The solution of the classical system characterized by the SUSY
Lagrangian is given.
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1. Introduction.

It is well known that in the quantum field theory the elementary parti-
cles are considered as bosons or fermions. However, the quantization of
variables which correspond to bosons and fermions is different. The first
ones are quantized by commutator, whereas the fermion variables are
treating by anticommutator. Early in the development of the quantum
field theory, the variables were treated as the classical variables, so that
they were considered as commutating functions of the coordinates and
the time. In that approach for the Fermi statistic case it was not possible
to establish a correspondence between classical and quantum equations
of motion. That is why it was clear that the quantum theory for fermions
one must build up by quantization of the classical field theory, taking
into account that the variables of this theory anticommutate. In other
words, this variables should be the generators of Grassmann algebra.

In the present work we consider the classical mechanics in Grassmann
algebra. The Hamilton — Jakobi method is formulated and the Jakobi
theorem is proved for the degenerated theory in Grassmann algebra.
Examples of using of the Hamilton — Jakobi method is considered.

We also consider a classical counterpart of Witten’s model.

We assume that the state of mechanical system is described by n or-
dinary bosonic degrees of freedom ¢, g2, - . -, ¢, and m fermionic degrees
of freedom 1, s, ..., 1, which satisfy the following relations

¢iq; — 4;9: =0,
qiv; — g =0, (1.1)
i + Y =0.

Thus the set ¢ are the even Grassmann numbers, 1 are the odd Grass-
mann numbers.

The Lagrange function for the mechanical system depends on the
commuting coordinates ¢, anticommuting coordinates ¢ and on the
derivatives of the coordinates with respect to time ¢

L = L(Q’w’ q‘7¢7t) °

We assume in addition that the Lagrangian is even function of Grass-
mann space and further we use the left derivatives with respect to the
Grassmann numbers.

Lagrangian which characterized the classical mechanics in Grass-
mann algebra is proportional to the first power of odd velocity, therefore
we shall consider this system within degeneration theory.

We would like to remind some main aspects of this theory.
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Theory is degenerated when the matrix of Hessian M, is degenerat-
ed. This means, that the equations of motion (for example let us consider
only even Grassmann variable) which we can write in the form

OL 0%L 0 (0L
b . c Y _ a .
Map§” = 9 oot "o (aqa> K*(q,9),
8%L
Mgy = ———, M| =0,
b= Sgag det [[M]| =0

could not be solved for ¢ and therefore there is a possibility to exist of a
functional arbitrarily for solution.

In the degenerated theory, in addition, constrains arise, i.e. the vari-
ables ¢, P, satisty the system of equations Fy (g, P;) = 0.

The equations of motion can be obtained from the variational prin-
ciple 5 = 0. Here action is defined as

5= /[q’”Pq“ — H(q, Py, t) + AF]dt, (1.2)

oL .
H(qaant):<6_qaqa_L>. )
X=X

where A(t) is a certain Lagrange coefficients for the constrains F' = 0 at
the moment of time .
Here we used the notation

Xi=¢, i=1,...,R, o=¢tR j=1,... n—R,
2 2
det 9L, 0, ank OL_| —
axox| 7 ran ‘aqaaqb
And Py is the canonical momenta conjugate to the variables X.

X (q, Px, &) is the solution of the next equation Px = g—)l(’ relative to

the variables X.
Lagrange coefficients may be found from the equations of motion and
from the time—independence condition

2. The Hamilton — Jakobi equation. Jakobi theorem.

Let us consider the action as a function of the top limits of integration
when the equations of motion is satisfied

65 = 5/ (4P, + ¥ Py — H(q,¥, Px, Py, t) + \Fldt = (2.1)
:6q-Pq+6w-P¢.
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Therefore we obtained that

oS oS

—=P,; ==

dq oy
From the definition of action (in the case of the second—class constrains
theory) we have

=P, (2.2)

%:qpq +¢P’d)_g(qawapqaP’(ﬁaA(Q=wan7P¢)7t) =

:q%§+'¢)g%—I:I(q,w,Pq,Pw,)\(q,Q)D,Pq,qu,),t) = (23)

S _ 9s 9S 95 9s
= —6?——H<q,¢,—aga3@a)\(q,¢a%:3@)vt>'

where we took into account that equation of motion is satisfied and found
the Lagrange coefficients as a function of g, v, Py, Py from the equations
of motion.

Ij[(’]ﬂﬁ;Pq;Pzp;/\(q;%anpw)at):(H(%%PX;P\I/J)_)\F)

Mg ¥, Py, Py)

In the case of the first—class constrains theory we can not find all La-
grange coefficients that is why our equation have the next form

=100 G e G ) ).
q 0y dq 0y
where A% are those coefficients which can not be found.

However we may put a guage for our theory (i.e. transform our de-
generate theory with first—class constrains to the physical equivalent the-
ory which is not degenerated or to the physical equivalent theory with
second—class constrains).

As example we can take the strong minimal guage which does not
shift the equations of motion (the so — called canonical guage G(¢)).

Consider now the action as a function of the top and bottom limits
of integration when the equations of motion is satisfied.

dS=—Hydt® +dq® PP +dy® PP — (— Hydt W +dg ) P +dyp M PL).
Let us take t1) = ¢, t? =t 4 7, 7 = const. Then
dS=—(H(t+1)—H(t))-dt+ (2.4)
+dq(t+7) - Py(t+7) + dip(t+7) - Py(t+1) —
—dq(t) - Py(t) — dip(t) - Py(t) -
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Thus we obtain

~(E(t+7) - H(r)) = 33

ot
P,(t+7) = % ; Py(t+1) = %; (2.5)
Pyt) = 5255 Py(t) =~ 550

These formulae (2.5) we may treat as a canonical transformation between
the old variables at time ¢ and new variables at time ¢ 4+ 7. The action is
the creation function. Therefore the motion for our system we may treat
as a canonical transformation.

Jakobi theorem.

Let us consider a full solution of the Hamilton — Jakobi equation S =
Sr(q, ¥, a, B,t) where « is a set of even Grassmann constant, 3 is a set
of odd Grassmann constant.

Doing the canonical transformation from old variables g, ¥, P, Py
to the new ones and taking S, as creation function.

Let us put a = Py, 8 = P, as new canonical momenta; (), v as new
coordinates. Then

_ 05, .
H'=H+ 5
dS, . _0S, .
Py=34 Py =y (2.6)
_ 05, . _ 08,
Q_ BPQ, V__apu'

Since S, is the solution of Hamiltom — Jakobi equation, we obtain
H=0 >

PQZO, Q=0, Pg =const, @ = const,
= = (2.7)

P,,:O, v=20, P, =const, v =const.

From the last relation we can write

%% = const (which is an even Grassmann number) ;
(2.8)

%% = const (which is an odd Grassmann number) .
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3. Fermi oscillator.

As a simple example, let us consider now the next Lagrangian which
describes the so—called free Fermi oscillator

L=i P — b, (3.1)

where the dot denotes the derivative with respect to ¢. Here 1) and 1) are
odd Grassmann numbers. The overbar denotes the Grassmann variant
of complex conjugation. These classical models may be viewed as the
classical limits of models with one fermionic degree of freedom.

For our system the canonical momenta has the form:

_ 0L _
Py =52=0,
oy
(3.2)
oL .
p,=9L _ _;. 4.
v 00 (8
And thus we have two constrains
Fy =Py,
B (3.3)
FE=Py+i-vy.
The initial Hamiltonian can be written in the form
HA=¢-§—5+$-%—L+A1F1+A2F2 =
v (3.4)
The Lagrange coefficient may be found from the next relation
Fi={H\,Fi}=-9%+id=0= X=—i1,
(3.5)

B={H\, B}=¢+in=0=> \=i1.

These relations mean that the constrains are time-independent.
Therefore we have a system which consists of the second—class con-
strains. Really, the next matrix is not degenerated:

det|[{F, F}|| #0.
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Then the equations of motion in the Hamiltonian representation can be

written as .
wZ{Hfaw}7F1:07
) (3.6)
$={Hs, P}, Fa =0,
where the Hamiltonian
Hy=H=H\| =iPy-1—iP;-1, (3.7)

CRD)

is obtained by the substitution the Lagrange coefficient (3.5) in the initial
Hamiltonian (3.4).

The classical equations of motion (which can be derived also from
the Lagrange equations), reads

b=—i-p = =1, exp(—it),
) (3.8)
b=i-p = =1, explit),

where 1),, 1), are the odd Grassmann constants of integration.
Let us make an ansatz for the action

S(t, 1, ) = So(t) + ¢ - Si(t) + - Sa(t) + ¥ - Ss(t) (3.9)

and after the substitution our ansatz (3.9) in to the Hamilton — Jakobi

equation
5_5 .0S oS

at+l@ —la—qzj‘wzo,

we obtained the next system of equations

(95, _
o =Y

O =is,
(3.10)
Ok = =iss,

95, _
B =0-

The solution of this system can be written as

S(t, 0, 0) =1+ ¢ - 01e + - fae™ +hip o (3.11)
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Here ¢, ¢y are even Grassmann numbers and 6., 6> are odd Grassmann
numbers.
Thus we have the action and now we can use the Jakobi theorem

§:_¢ . eit:_¢0 = const = w = ¢0 . exp(—it) s
06,
6_'5’:_12) . eit:_fJ)O = const = 12) = '(Z)o . exp(—it) y
00,

ﬁz—@/} = const.

602

The canonical momenta we shall find from the relation
oS oS
P = — P* - - .
Y a,l/} ’ P 6,¢)

4. Supersymmetric classical mechanics.

Classical supersymmetric model forms a subclass of pseudoclassical me-

chanics, the notion originally introduced by Casalbuoni. Pseudoclassical

mechanics deals with the classical systems which are described in term
of Grassmann variables rather than the usual Cartesian variables.

The model which we consider now is characterized by the following

Lagrangian
G> - . _
L=% - W =) ~Ul))-dp. (4D

Vo) - 5

N | =

In the above g denotes a bosonic degree of freedom and hence is an even
Grassmann number. In contrast to this 1) and ¢ denote fermionic degrees
of freedom and, therefore, are odd Grassmann numbers, The real-valued
function V is the so—called superpotential then U(q) = V'(q). Starting
from (4.1) we can write the canonical momenta in form

(P =%k =4,
_op_ i
P_&Z 7Y (4.2)
oL _ _i .7
P:—.:— .
Sk 3
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The momenta conjugate to the fermionic variables do not depend on 1/1
and 1. Hence, the system is subject to the second-class constrains,

Fy =Py + % : ’(/_)
_ (4.3)
F = Pqﬁ + % ' w:
which have a non—vanishing Poisson bracket {Fi, F>} # 0.
The initial Hamiltonian can be written in the form
oL . 0L - OL
Hy=¢g—+¢ - —+¢-— —L+MFi + X o2Fr = (4.4)
04 o o
Pl , . i i
=5 t35V (Q)+U(Q)'¢¢+>\1(P¢+§'¢)+>\2(Pzp+5'@-
The Lagrange coefficient may be found from the next relation
F = {HA; Fl} =0=> X =-iU(q) -,
(4.5)

F={H\,FR}=0= X\ =iU(q) 9.

These relations mean that the constrains are time—independent.
Therefore we have a system which consists of the second—class con-
strains.
det [[{F, F}|| #0.

We can, finally, written the Hamiltonian of our system in the form

. P ]
Hy=H=H,| =14 V2q)~iU@P; §+iU(@Py . (46)

g, 0,9)

The classical equations of motion, which can be derived from the Hamil-
tonian (4.6), read

= {H, ¢} =—-iU(q) ¥, FL =0,

G+ V(QV'(q)+U'(q) -y =0,

where the prime and the dot denote the derivative with respect to = and
t, respectively. The first — order differential equation for the fermionic
degree of freedom can be presented in the next form (see.[5])

Q(t) = xqc(t) + QO(t) ’ Q;Eowo > (4'8)
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where g,(t) and z4.(t) are real — valued functions of time. Only for the
special initial condition (¢ = ¢ = 0) we have that q,(t) and z,.(t)
coincide.

The energy conservation law have the form

%Q+%V2(q)+U(q)'iowo:E_f'F"l[Jowo ; (E,FG]R)

The first term from (4.8) can be found in quadratures from the equation

g2, =2E — V>(z4c). (4.9)
The equation for the second term from (4.8)
0(8) = T [P = Ulaie(0) =V eV (e @)ao(®)] . (410
may be solvable by quadratures
dgelt) [ o[ F = Ulrge(r)
0t = 30 [qo<o> g/d e (ch(T))] S @

Let us demonstrate the described above procedure (the Hamilton — Jako-
bi method) for the case of SUSY — system.
Starting from the obtained above Hamiltonian (4.6), the equation of
Hamilton — Jakobi is written in the form
95 | 1/9S\* 1 as as
e ~V*(q) —iU(q Ulg =0 (412
5 +3(50) +3V@- UG U@ v =0 (@12

Let us make an ansatz for the action

S(t;qﬂﬁ;@ = So(taq) +¢1/_} ) Sl(taq) +¢ ) SZ(taq) + 1/_} ' S3(t7q) ) (413)

where S, and S; are even Grassmann functions and S and S3 are odd
Grassmann functions.

After the substitution ansatz (4.13) in the (4.12) and decomposition
on equation this one Grassmann parity we obtained the next system of
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equations
(0SS, as, 1 20\ _
Be+ 3 (Ge) +hrw=o.
% " 855; . 88%3 +iU(q)S; = 0, (4.14)
851 65 aSl —

ot T 8q g =0,

EX R
The first equation can be 1ntegrated by using the method of decomposi-
tion of variable.

Thus we obtain

S, = /\/QE “Vi(q)dg — Et, (4.15)

where E is constant of integration.
Starting form the expression (4.15) for the fourth equation we ob-
tained the following solution

A dq

V2E - V2(q)

Sy = — At, (4.16)

here, (A, E € R).
The solutions for second and third equation may be written as

_ dq ) e [ Ulq) dg ,
52 = ¢1 (/7\/m t> exp <l m) ) (417)

S5 = by /L_t exp [ —i [Y@da )
V2E - V2(q) V2E-V3(q) )’

where ¢; and ¢, is any odd Grassmann functions. For our account it is
sufficiently to take that ¢; = const, ¢= = const.

The last equation is only drive to some conditions on function ¢; and
function ¢, which is satisfies then the functions is constant.
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Thus we can present the action in the next form

S = /\/2E—V2(q)dq — Et+

A dq - _
' dq ) e (4 U(q) dq
N </ B - V(g t)e p<2/ 2E—V2(q)) i

i} dq . U(q) dq
e (/ﬁ ‘t)exp<‘1/m> |

Then we could used the Jakobi theorem

—— = const , — = const . (4.19)

The solution of this equation (4.19) gives

Y =1, - exp(—i [U(q(r)) dr)

o (4.20)
¥ =, - exp(i [U(q(r))dr).
For the bosonic degree of freedom we can take the next series
q(t) = e (t) + qo(t) - ). (4.21)
But, from (4.20) we obtain the relation
QMJ = '(Z)oqﬂo .
Thus we have: B
q(t) = mge(t) + qo(t) - Poro - (4.22)

Then, from the Jakobi theorem we obtain
_oS [ dg
04~ | \RE-V2(y)

From (4.22) and (4.23) we can write

oo — b+ PYorh, = const. (4.23)

dzgc

V2E = V2(zy.)

—t = const. (4.24)

ICMP-98-22E 12

This relation may be rewritten in form (4.9)
o, =2E — V(wq) -

98

Then if we calculate the derivative &% = const; substitution in this
relation our result and taken into account next expansions:

U(Q) = U(xqc) + Ul(xqc)(b ' Q;Eowo )
VZ(q) =V? (Tge) + 2V (24e)V(Tge) o “otho

f(V2(Q)) = f(V2($qC)) + fI(V2(qu))2vl($qC)V(wq6)QO “otho ,

(4.25)
and using relation (4.24) we obtain
dg, .
[ - 420
_ [A = U(wge(r)) = V(wge(r ))Vl(qu(T))qo(T)]
= / 2E —V2(2,(7)) dr + const .
(4.27)

From the last relation we have presented g, (¢) in form

_ Ege(t) F —U(zge(r))
QO(t)—j:qc 0) [ /d SE V3 xqc(T))] : (4.28)

Thus we obtain the result, from the Hamilton — Jakobi method, which
coincides with the result obtained from the Hamilton (or Lagrangian)
equation of motion.
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