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I.V.Stasyuk,Yu.HavrylyukPHASE TRANSITIONS IN PSEUDOSPIN-ELECTRON MODELWITH DIRECT INTERACTION BETWEEN PSEUDOSPINS
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1 ðÒÅÐÒÉÎÔ1. IntroductionPseudospin-electron model (so called Muller model [1]) is the one of the-oretical models which were proposed in connection with the investiga-tion of characteristic features of electron spectrum and lattice dynamicsin high temperature superconductors. In this model strong Hubbard-type electron correlations are taken into account. Pseudospin formalismis used for the description of locally anharmonic lattice vibrations (incase of Y Ba2Cu3O7 - crystals it corresponds to the vibrational statesof apex oxygen ions O4, which move in the double-minimum potentialwells). The analogous pseudospin-electron model has been applied re-cently to the crystals (MA2X)Y2 (M = Pt, Pd; X = Cl, Br, I ; A =ligand molecule; Y counter anion) with A-H-Y hydrogen bonds with thepurpose to describe the e�ects caused by proton-electron interaction [2].Hamiltonian of the model has the following formH =Xi Hi +Xij� tija+i�ai� � 12Xij JijSzi Szj (1)Hi = Uni"ni# � �X� ni� + gX� ni�Szi + 
Sxi � hSzi ; (2)where in the single site part in addition to Hubbard correlation U thereare terms that describe tunneling splitting and asymmetry of local an-harmonic potential (longitudinal �eld h). Hamiltonian (1) also containsterms, which describe electron transfer tij and direct interaction betweenpseudospins Jij . The energy is accounted from the level of chemical po-tential .Using the model for the description of anharmonic subsystem ofoxygen ions in crystals Y Ba2Cu3O7 (or similar systems) the follow-ing values of parameters can be taken as characteristic for the system:U = 4 : : : 11eV ; g = 2 : : : 6eV ; t = 0:1 : : :0:06eV ; 
 = 0 : : : 0:05eV [3]. Inthis case the perturbation theory can not be applied for the interactiongnSz as well as Hubbard correlation Unn. It is reasonable to includethese interactions in zero order Hamiltonian. In this role the single siteHamiltonian (2) can be taken. Its eigenfunctions are built of the vectorsjni"; ni#; Szi i, which form the full basis of states of the unit cell:j1i = ��0; 0; 12� ��~1� = ��0; 0;� 12�j2i = ��1; 1; 12� ��~2� = ��1; 1;� 12�j3i = ��0; 1; 12� ��~3� = ��0; 1;� 12�j4i = ��1; 0; 12� ��~4� = ��1; 0;� 12� (3)
ICMP{98{18E 2The tunneling mixes states jri and j~ri. Because of this �nal eigen-functions are linear combinations of corresponding pairs of vectors (3)[4]. The main attention at the investigation of this model has been paidto examination of electron states, e�ective electron-electron interaction,to the elucidation of additional possibilities of occurrence of supercon-ducting pair correlations. A series of works has been carried out in whichthe pseudospin hSSi and charge hnni correlation functions as well as so-called transverse dielectric susceptibility were calculated. It has beenshown with the use of the generalized random phase approximation(GRPA) [5,6], that there exists a possibility of divergences of these func-tions at some values of temperature. This e�ect was interpreted as amanifestation of dielectric instability or ferroelectric type anomaly. Thetendency to the spatially modulated charge and pseudospin ordering atcertain model parameter values was found out.This work is devoted to the study of thermodynamics of the pseudo-spin-electron model. The case of zero electron transfer (tij = 0) and zerofrequency of tunneling splitting (
 = 0) is considered. The direct inter-action between pseudospins is taken into account. It is supposed to be along-ranged (Jij � J=N) that allows to use the mean �eld approxima-tion. The similar problem was studied earlier for two-sublattice model[7], but the obtained results were only partial and didn't cover all thepossibilities.In this approximation, the Hamiltonian of the model has the followingform H = Pi ~Hi + N2 J�2;~Hi = ��P� ni� + Uni"ni# + gP� ni�Szi � (h+ J�)Szi (4)The interaction Jij is taken as the ferroelectric type one (J (~q) hasmaximum value at ~q = 0; J(0) � J > 0); the order parameter � = hSzi idoes not depend on the unit cell index.We investigate the possible states and phases of the system as well asthe transitions between them at the change of temperature and modelparameters values.2. Mean �eld approximation; 
 = 0.If the tunneling splitting is not taken into account (
 = 0) single siteHamiltonian ~Hi on the basis (3) is diagonal. Its eigenvalues for this case



3 ðÒÅÐÒÉÎÔare: �1;~1 = �H ;�2;~2 = �2�+ U � g �H ;�3;~3 = �4;~4 = ��� g2 �H; (5)where H = h2 + J�2 : (6)Thermodynamic potential of the model, calculated per one latticesite is equal to
N = �� lnZi + 12J�2Zi = 2 hch�H+e��(U�2�)ch�(H � g)+2e��ch� �H�g2�i (7)For investigation of equilibrium conditions we will separate two re-gimes: � = const and n = const. The equilibrium for the �rst regime isde�ned by the minimum of thermodynamical potential:�@
@� �T;�;h = 0 (8)The equation for the order parameter is obtained from is condition:� = 12Zi 24 4Xp=1 e���p � ~4Xp=~1 e���p35 ; (9)or in an explicit form� = 12 sh�H + e��(U�2�)sh�(H � g) + 2e��sh�(H � g2 )ch�H + e��(U�2�)ch�(H � g) + 2e��ch� �H � g2� (10)The same equation can be derived using thermodynamical relation:�@
@h�T;� = �� (11)The average number of electrons for this regime is determined asfollows: � 1N �@
@��T;h = * 1N Xi ni+ � n; (12)
ICMP{98{18E 4namely n = 4Zi he��(U�2�)ch�(H � g) + e��ch�(H � g2)i (13)The equilibrium condition for the regime n=const is determined bythe minimum of free energy F = 
+ �N . The equation�@F@� �T;n;h = 0 (14)and expression (13) form a set of equations for the parameter and chem-ical potential. Using (13) it is easy to show that the equation which goesfrom (14) is the same as the given above using condition (8).The equation (13) is solvable for the chemical potential. When thenotations y = e��; a = ch�(H � g2 )ch�(H � g) ; b = ch�Hch�(H � g) ; (15)are introduced the following equation for the variable y is obtained:(2� n)e��Uy2 + 2a(1� n)y � nb = 0 (16)The solution of this equation isy = �a(1� n) +pa2(1� n) + (2� n)e��Unb(2� n)e��U (17)(the physical meaning has the root y > 0).After the eliminating of the chemical potential, the equation for theorder parameter transforms to the following form:� = 12 �n2 � �2� th�(H � g) + 12�th� �H � g2�++ 12 �2� n2 � �2� th�H; (18)where � = (2� n)ayb+ ay = q(1� n)2 + n(2� n)e��U ba2 � 1e��U ba2 � 1 ; (19)and the ba2 ratio, is given by the expressionba2 = ch�g + ch�(2H � g)1 + ch�(2H � g) (20)



5 ðÒÅÐÒÉÎÔThe equations (10) and (18) determine the values of � parameter,which correspond to the extremuma of thermodynamical potential 
and free energy F respectively. From the set of all possible roots ofit is necessary to take into consideration only those which provide theminimum values of 
 or F .The equation (18) possesses the symmetry as to the transformationsn! 2� n;H ! g �H ; � ! ��(h! 2g � h) (21)This transformation leads to replacements:b! 1b ; a! ab ; ba2 ! ba2 ; � ! �: (22)With a substitution y ! e�Uy�1(� ! U � �), the equation (13) forthe chemical potential remains the same as well as the equation (10).The symmetry (21)-(22) allows to study the problem for the n=constwithin the interval 0 � n � 1. The extension to the interval 1 � n � 2is performed by means of the above-mentioned transformations.3. The equation of state � = �(h) and phase diagramsat T = 0 (regime n = const).The equation for the parameter �, obtained in regime of �xed numberof electrons, can be solved analytically in the limit T = 0. The quantitye��U ba2 � '; (23)which is presented in the expression for the parameter, has a form of aratio of an algebraic sums of exponents like exp[(� : : :)]. At T ! 0'! � 1; �� < � < ��� (a)0; � < ��; � > ��� (b) (24)where �� = U � hJ ; ��� = 2g � U � hJ (25)(it is clear that if U > g, the case (a) can't be realized). Respectively,� ! 8><>: pn(2�n)p� ! 01�p(1� n)2 = � n; 0 � n � 12� n; 1 � n � 2 (26)
ICMP{98{18E 6In a consequence, the equation (18) can be written in the followingform�=� n�(h�g+J�)+(1�n)�(h+J�)� 12 '=0; 0�n�1(n�1)�(h�2g+J�)+(2�n)�(h�g+J�)� 12 ; '=0; 1�n�2 (27)�=n2 �(h�2g+J�)+�1�n2� �(h+J�)�12 ; ' =1 (28)The solution of this equation is determined by the intersection off(�) = � line with a stairs-like function that corresponds to the rightpart of the equation.Typical example of �(h) dependence is shown in Fig. 1, which cor-responds to the n value in the interval 0 � n � 1. At some regionsof values of h, where �(h) function possesses S-like behaviour and hasthree or more values, the �rst order phase transitions with the jumpsof parameter take place at the change of h. Phases � = � 12 (phase 1),� = 12 � n (phase 2), � = 12 � n2 (phase 3), � = 12 (phase 4) exist betweenphase transition points and outside of them. At the change of parame-ter values the regions, where metastable phases exist, can overlap, thedisappearing of some phase transitions takes place and therefore someintermediate phases can not be realized. In case 1 � n � 2 the depen-dence of �(h) is generally similar. The phase 3 and phase 2' at � = 32�n,which now appears instead of phase 2, may play the role of intermediatephases.

η

Figure 1. The dependence of � parameter on h �eld at T = 0 (in thecase g > J2 ; J2 � nJ4 < U < g � nJ4 ; 0 < n < 1)In order to clarify the conditions of appearing of any phases, wewill study the the localization of a minimum values of the free energy



7 ðÒÅÐÒÉÎÔfunction. Using the relation�@F@h�T;n = ��; (29)we have F = hZh0 (��)dh: (30)That de�nes the function F up to a constant.In correspondence with notations presented in Fig.1,F1(h) = 12 (h� h0); (h � z2)F�1(h) = F1(z2) + 12J (h2 � z22); (z1 � h � z2)F2(h) = F�1(z1) + �� 12 + n� (h� z1); (z1 � h � z4)F�2(h) = F2(z4) + 12J (h2 � z24)� UJ (h� z4); (z3 � h � z4)F3(h) = F20(z3) + �� 12 + n2 � (h� z3); (z3 � h � z6)F�3(h) = F3(z6) + 12J (h2 � z26) + U�2gJ (h� z6); (z5 � h � z6)F4(h) = F�2(z5)� 12 (h� z5); (z5 � h) (31)Here z1 = �J2 + nJ z4 = U � J2 + nJz2 = J2 z5 = 2g � U � J2z3 = U � J2 + nJ2 z6 = 2g � U � J2 + nJ2 (32)The states with the lowest value of free energy are thermodynamicallystable. The states described by �1; �2; �3-curves are unstable. The intersec-tions of F1; F2; F3; F4 - lines determine the points of the �rst order phasetransition between relevant phases. Some of these phase transitions willnot be realize, if the relevant points of crossing lie above some otherFk-line.Similar analysis one can do for the case 1 � n � 2. In fact this canbe done through the substitution n! 2� n; � ! ��; h! 2g � h withrespect of the mentioned above symmetry of the model.The values of �eld h = hik, at which the mentioned above phasetransitions i$ k occur, are the following:h12 = nJ2 ; h23 = U � J2 + 3n4 J ;h34 = 2g � U � J2 + Jn4 ; h13 = nJ4 + n2�nU ;h24 = g � 1�n2 J ; h14 = ng (33)
ICMP{98{18E 8at 0 � n � 1, andh12 = g � 1�n2 J ; h23 = 2g � U � J + 3n4 J ;h13 = U + Jn4 ; h12 = 2g � J2 + Jn4 � 2�nn U ;h204 = 2g � J + Jn2 J ; h14 = ng (34)at 1 � n � 2.Phase diagrams (U; h) that correspond to some values of n are pre-sented on Fig.2. The areas of existence of phases 1 : : : 4 at T = 0 areshown. They have qualitatively di�erent appearance in the cases g > J2 ,J4 < g < J2 and g < J4 . For the limit U ! 1( i.e. when the state withtwo electrons at a single site is prohibited) the transitions 1! 2! 4 (ifg > J2 , n < 1) or 1 ! 20 ! 4 (if g > J2 , n > 1), or 1 ! 4 (if g < J2 )take place. If U ! 0, the transitions 1! 3! 4 (if g > J4 ), or 1! 4 (ifg < J4 ) take place.Phase diagrams (n; h) can be built on the basis of diagrams (U; h)and formulas (33), (34). These diagrams are presented in Fig.3. Theirappearance depends on the values of U and g constants. In addition theyshow the possibility of transformation of phases at the change of electronconcentration n. More detailly this issue will be discussed below.4. Instability with respect to phase separation.It is known that the dependence of concentration of particles on chemicalpotential is one of the factors that determine thermodynamical equilibri-um of the system. The state with homogenous distribution of particles isunstable at �@n@��T < 0, and the phase separation into the regions withdi�erent concentrations takes place. To investigate this possibility in ourcase, we will study the dependence �(n), described by the equation (13),more attentively. In the limit T ! 0 there is a possibility to do thisanalytically.According to formula (17) in this case we have:y = 8>><>>: a'e��U pn(2�n)2�n 1p' ; '!1a'e��U n2(1�n) ; '! 0; n < 1a'e��U 1p' ; '! 0; n = 1 (35)(at 0 � n � 1). This expression allows to get the limit value of � = � ln yfor the each of mentioned above phases, taking into account conditions
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13 ðÒÅÐÒÉÎÔand � = J2 � g2 + h; n = 0� g2 � J2 + h < � < U � g2 ; n = 1 (39)One can see that within this phase there is a possibility of descendingdependence of � on n. �@�@n�h;T < 0 (40)That means the instability of homogenous state of the system. Moreconvenient and stable thermodynamically is the state with phase separa-tion, which is a mixture of states with di�erent electron concentrationsand di�erent values of order parameter. In the case illustrated on Fig.4a the phase 2 splits at T=0 into phase 4 ( n = 0; � = 12 ) and phase 1 (n = 1; � = � 12 ) with weight coe�cients 1� n and n respectively.
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Figure 4. The dependence of chemical potential on the electron concen-tration n (T=0). a) U > g; g > J=2; 0 < h < J=2; b) J=2 < U < g�J=4;g > J=2; U < h < U + J=4On Fig. 4b another example is shown. In this case the descendingcharacter of �(n) dependence takes place in the phase 3,� = J4 + U2 � g2 � nJ4 + h2 ; (41)The separation into phase 4 and phase 1, with concentrations n = 0and n = 2 respectively, occurs.Negative sign of derivative �@�@n� is typical for phase 2' as well. Here� = U + 3J2 � 3g2 � nJ + h (42)
ICMP{98{18E 14Phase separated states are bordered by binodal lines. At T = 0 theyare: n = 0; (0 < h < g)n = 1; (0 < h < 2g)n = 2; (g < h < 2g) (43)at U > g, andn = 0; (0 < h < 2g � U)n = 1; (0 < h < U; 2g � U < h < 2g )n = 2; (U < h < 2g) (44)at U < g (Fig.3). These boundaries surround the regions of existence ofintermediate phases 2, 2', and 3. Mentioned phases might be stable onlyif there were some factors that will maintain the space homogeneity ofelectron concentration.5. Phase transition at �=const.The dependence of order parameter on �eld h and temperature �, at theconstant value of chemical potential, is determined according to equation(10). To investigate its possible solutions we will start with the case ofzero temperature. The comparison of eigenvalues �r , ��r allows us to�nd out the ground state of the system at �xed value of �, and study itspossible changes depending on the parameters g, U , J and �eld h values.The obtained results are presented in the form of (H;�) { diagrams.The areas where the ground of the system is realized in the form of oneor other state (3) are shown on these diagrams. The form of mentioneddiagrams depends on the relation between parameters U and g values(Fig. 5a U > g; Fig. 5b U < g). Transitions between regions jri $ jpi,j~ri $ j~pi lead to the change of average number of electrons only. Attransitions jri $ j~ri the ipping of pseudospin takes place, and at jri $j~pi ( r 6= p) both processes occur.The process of ipping of pseudospin at the crossing of H*-line thatde�nes the boundary of jri $ j~ri, is a phase transition. For the �xedvalue of � the state jri with � = 12 exists at h > 2H� � J2 , and state j~riwith � = � 12 - at h > 2H �+J2 . Jump-like change of � between these twovalues, which corresponds to the �rst order phase transition, takes placeat h = 2H�. That's why, making substitution H ! h2 one can considerthe Fig. 5a and 5b as (h; �) - phase diagrams at T = 0, where H� is aline of phase transitions.We will consider now the case of non-zero temperature. Among allpossible solutions � = f(�; h; �) of equation (10), let us separate the
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ICMP{98{18E 16zero ones. In (�; h)-plane they de�ne the curves which are described byan equation f(�; h;�) = 0; (45)where � plays the role of some parameter. Function f has the followingform f = sh��h2 �+ e��(U�2�)sh��h2 � g�++ 2e��sh��h2 � g2� (46)From equation (45) one can geth = � ln �1�2 ; (47)where �1 = 1 + e��(U�g�2�) + 2e�( g2+�)�2 = �1jg!�g (48)After a substitution of an expression for �eld h from (5.3) into equa-tion (10) we will get an equation� = 12th�J�2 ; (49)that de�nes the order parameter along the line h = � ln �1�2 . Formula (49)has the standard form of molecular �eld equation. In addition to zerosolution non-zero ones exist at � < �c = J4 . One can make a conclusionthat at the temperatures � < �c the relation (47) has a meaning ofequation that describes the curve of phase equilibrium (�rst order phasetransition curve), and temperature �c corresponds to the critical point.Critical value of hc is given by expressionhc = J4 ln 1 + e� 4J (U�g�2�) + 2e 4J ( g2+�)1 + e� 4J (U+g�2�) + 2e� 4J ( g2��) (50)The feature of the phase transition is that the curve of phase equi-librium generally is not parallel to the temperature axis. Particularly, atg >> J; U >> J hc = 2�e�( g2+�) � < � g2hc = � ln 3 � = � g2hc = 2g � � ln 3 � = U + g2hc = 2g � 2�e�(U+ g2��) � > U + g2 (51)



17 ðÒÅÐÒÉÎÔThe value � = �U2 is an exception, at which hc = g. At � < U2 and� > U2 the bents of coexistence curves are opposite.The existence of a bent of the coexistence curve testi�es the possi-bility of the �rst order phase transition at the change of temperaturewith a jump of order parameter � if the value of �eld h is within intervalplaced between 2H� and hc values.With the help of expression (13), it is possible to �nd out the averageelectron concentration, which corresponds to the critical point at givenvalue of chemical potential. Making substitution � = 0 and using theexpression (50) for the critical �eld one can obtainnc = �(g) + �(�g); (52)where �(g) = e� 4J (U+g�2�) + e� 4J ( g2��)1 + e� 4J (U+g�2�) + 2e� 4J ( g2��) (53)Substitution U2 � �! �� U2 corresponds to the electron-hole trans-formation nc ! 2 � nc, which is in agreement with mentioned abovesymmetry of the model. At � = U2 the critical concentration nc is equalto unity.At the temperatures below the critical value crossing the phase coex-istence curve leads to the jump of electron concentration between valuesthat correspond to phases, which are involved in phase separation (thiscorresponds to the break point on the dependence 
(�)). At the sametime these values are points of binodal lines, which are determined ac-cording to the Maxwell rule from the plot of function �(n). Illustratingsamples of this are presented in Fig.6 and Fig.7. The plots presented areobtained using numerical calculations based on formulas (7), (10) and(13).6. Conclusions.The investigation performed shows that pseudospin-electron model withlong-range interaction possesses some features, which di�er it from theordinary Ising model. They are:- The possibility of the �rst order phase transition at the change oftemperature and �xed value of �eld (regime � = const)- Instability with respect to phase separation in the wide range ofparameter h (regime n = const) with an appearance of regions withdi�erent electron concentration and di�erent orientation of pseudospins.
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