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Phase transitions in pseudospin-electron model with direct in-
teraction between pseudospins

1.V.Stasyuk, Yu.Havrylyuk

Abstract. The analysis of thermodynamic properties of the pseudospin-
electron model in the case of zero electron transfer with the inclusion
of the direct pseudospin-pseudospin interaction of ferroelectric type is
performed. The equilibrium conditions in the regimes pu = const and
n = const are investigated in the mean field approximation. It is shown
that the interaction with electrons leads at the fixed p value to the
possibility of the first order phase transition at the change of temperature
with a jump-like behaviour of (S*). In the regime n = const there takes
place an instability with respect to phase separation in the wide range
of asymmetry parameter h values.
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1. Introduction

Pseudospin-electron model (so called Muller model [1]) is the one of the-
oretical models which were proposed in connection with the investiga-
tion of characteristic features of electron spectrum and lattice dynamics
in high temperature superconductors. In this model strong Hubbard-
type electron correlations are taken into account. Pseudospin formalism
is used for the description of locally anharmonic lattice vibrations (in
case of Y BayCu3zO7 - crystals it corresponds to the vibrational states
of apex oxygen ions O4, which move in the double-minimum potential
wells). The analogous pseudospin-electron model has been applied re-
cently to the crystals (M A, X)Y> (M = Pt, Pd; X = Cl, Br, I; A =
ligand molecule; Y counter amon) with A-H-Y hydrogen bonds with the
purpose to describe the effects caused by proton-electron interaction [2].
Hamiltonian of the model has the following form

H=3 i+ Stgala, = 5 3 IS8 ®
ij

ijo
Hy=Ungni — Y nig +9 Y nigS; + QS — hS;, (2)

where in the single site part in addition to Hubbard correlation U there
are terms that describe tunneling splitting and asymmetry of local an-
harmonic potential (longitudinal field k). Hamiltonian (1) also contains
terms, which describe electron transfer ¢;; and direct interaction between
pseudospins J;;. The energy is accounted from the level of chemical po-
tential .

Using the model for the description of anharmonic subsystem of
oxygen ions in crystals Y BasCusO7 (or similar systems) the follow-
ing values of parameters can be taken as characteristic for the system:
U=4...11eV;g=2...6eV;t=0.1...0.06eV; 2 =0...0.05¢V [3]. In
this case the perturbation theory can not be applied for the interaction
gnS* as well as Hubbard correlation Unn. It is reasonable to include
these interactions in zero order Hamiltonian. In this role the single site
Hamiltonian (2) can be taken. Its eigenfunctions are built of the vectors
|nit, niy, S7), which form the full basis of states of the unit cell:

|1> 0707%> i> = 0707_%>
2)=[1L11) 2y =1,1,-1) -
|3> 0717%> §>: 0717_%>
|4) =|1,0,1) [4) =]1,0,—3)
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The tunneling mixes states |r) and |F). Because of this final eigen-
functions are linear combinations of corresponding pairs of vectors (3)
[4].

The main attention at the investigation of this model has been paid
to examination of electron states, effective electron-electron interaction,
to the elucidation of additional possibilities of occurrence of supercon-
ducting pair correlations. A series of works has been carried out in which
the pseudospin (SS) and charge (nn) correlation functions as well as so-
called transverse dielectric susceptibility were calculated. It has been
shown with the use of the generalized random phase approximation
(GRPA) [5,6], that there exists a possibility of divergences of these func-
tions at some values of temperature. This effect was interpreted as a
manifestation of dielectric instability or ferroelectric type anomaly. The
tendency to the spatially modulated charge and pseudospin ordering at
certain model parameter values was found out.

This work is devoted to the study of thermodynamics of the pseudo-
spin-electron model. The case of zero electron transfer (¢;; = 0) and zero
frequency of tunneling splitting (2 = 0) is considered. The direct inter-
action between pseudospins is taken into account. It is supposed to be a
long-ranged (J;; ~ J/N) that allows to use the mean field approxima-
tion. The similar problem was studied earlier for two-sublattice model
[7], but the obtained results were only partial and didn’t cover all the
possibilities.

In this approximation, the Hamiltonian of the model has the following
form

H = Zﬂ'i-l-%(]nz;
i

B 4
H; —p Y Nig + Unipni + g3 nieS; — (h+ Jn)SF @

The interaction J;; is taken as the ferroelectric type one (J (¢) has
maximum value at ¢ = 0; J(0) = J > 0); the order parameter n = (S?)
does not depend on the unit cell index.

We investigate the possible states and phases of the system as well as
the transitions between them at the change of temperature and model
parameters values.

2. Mean field approximation; 2 = 0.

If the tunneling splitting is not taken into account (2 = 0) single site
Hamiltonian H; on the basis (3) is diagonal. Its eigenvalues for this case
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are:
/\171 = ¢H;
Az =-2u+U+gFH; (5)
Asz=MNa=—n*tiFH,
where hoJ
Ui
H=—-+—.

Thermodynamic potential of the model, calculated per one lattice
site is equal to

1
—0IlnZ; + 5,]172

SEER
[

(3

P [ch5H+e*ﬁ(U*2~>ch5(H — g)+2eBHchp (H—g)] (7)
For investigation of equilibrium conditions we will separate two re-

gimes: u = const and n = const. The equilibrium for the first regime is
defined by the minimum of thermodynamical potential:

(305" ©

The equation for the order parameter is obtained from is condition:

1 { 1 i -I
=g [Se oY ©)
27; [ ‘ J
p=1 p=1
or in an explicit form

_ 1shpH + e PU2MshB(H — g) + 2eP#shB(H —
 2chBH + e FU=2n)chfB(H — g) + 2ePrch (H —

)
)

The same equation can be derived using thermodynamical relation:

(%)T - (1)

The average number of electrons for this regime is determined as

follows:
1 /909 1
- — | = ={( = i) =n, 12
N(Q“)T,h <NZ;”> ! (2

(10)

Ui

ol (e
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namely

4 .
n= [e*'B(U’Z“)chﬂ(H — g) + ePrchB(H — g) (13)
i
The equilibrium condition for the regime n=const is determined by
the minimum of free energy F' = 2 + uN. The equation

(8_F> ~0 (14)
on T,n,h

and expression (13) form a set of equations for the parameter and chem-
ical potential. Using (13) it is easy to show that the equation which goes
from (14) is the same as the given above using condition (8).

The equation (13) is solvable for the chemical potential. When the
notations

hB(H — 2 hBH
ymemo= SOHZY) , _ chBH (15)
chB(H — g) chB(H — g)
are introduced the following equation for the variable y is obtained:
(2 —n)e PVy? +2a(1 —n)y —nb =0 (16)
The solution of this equation is
—a(l —n)+/a2(1 —n) + (2 —n)e FUnb (17)

v= (2 —mn)eBU
(the physical meaning has the root y > 0).

After the eliminating of the chemical potential, the equation for the
order parameter transforms to the following form:

_1(n ¢ 1 g
1/2—-n 6§
+ 5( - —§>th,8H, (18)

where

(2—n)ay \/(1 —n)2+n(2—n)e UL —1

= , 19
b+ ay e*BU% -1 ( )
and the a% ratio, is given by the expression
b h hB(2H —

a? 1+ chB(2H — g)
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The equations (10) and (18) determine the values of 1 parameter,
which correspond to the extremuma of thermodynamical potential 2
and free energy F' respectively. From the set of all possible roots of
it is necessary to take into consideration only those which provide the
minimum values of {2 or F.

The equation (18) possesses the symmetry as to the transformations

n—-2-nH—=g9g—-—H;n——n

(h— 29— h) (21)
This transformation leads to replacements:
1 a b b
b= —,a—= -, — — —,0 = 4. 22
b ) a b ) a2 a2 ) ( )

With a substitution y — e®Yy~'(u — U — p), the equation (13) for
the chemical potential remains the same as well as the equation (10).

The symmetry (21)-(22) allows to study the problem for the n=const
within the interval 0 < n < 1. The extension to the interval 1 < n < 2
is performed by means of the above-mentioned transformations.

3. The equation of state = n(h) and phase diagrams
at T =0 (regime n = const).

The equation for the parameter 7, obtained in regime of fixed number
of electrons, can be solved analytically in the limit 7" = 0. The quantity

_gu b
e BU? =, (23)

which is presented in the expression for the parameter, has a form of a
ratio of an algebraic sums of exponents like exp[(5...)]. At T — 0

o0, nx <n<Mx (a)
<p—>{ 0, n <mx;m > % (b) 24
where U—h 92— U —h
—h g—U-—
n* 7 7 (25)

(it is clear that if U > g, the case (a) can’t be realized). Respectively,

n(2—n) 50

o — n;0§n§1 (26)
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In a consequence, the equation (18) can be written in the following
form

_f nB(h—g+Jn)+(1-n)f(h+Jn)—% ©=0,0<n<1 27)
T (n=1)8(h—2g+Jn)+(2-n)8(h—g+Jn)—3; ¢=0,1<n<2

n n 1
n=50(h—2g+Jn)+ (1—5) 6(hJm)—5; p=o00 (28)

The solution of this equation is determined by the intersection of
f(n) = n line with a stairs-like function that corresponds to the right
part of the equation.

Typical example of n(h) dependence is shown in Fig. 1, which cor-
responds to the n value in the interval 0 < n < 1. At some regions
of values of h, where n(h) function possesses S-like behaviour and has
three or more values, the first order phase transitions with the jumps
of parameter take place at the change of h. Phases n = —% (phase 1),
n = 3 —n (phase 2), n = 3 — 2(phase 3), n = 1 (phase 4) exist between
phase transition points and outside of them. At the change of parame-
ter values the regions, where metastable phases exist, can overlap, the
disappearing of some phase transitions takes place and therefore some
intermediate phases can not be realized. In case 1 < n < 2 the depen-
dence of n(h) is generally similar. The phase 3 and phase 2’ at n = % —-n,
which now appears instead of phase 2, may play the role of intermediate

phases.
2] N
1/2-n/2 ;
h
0 Zy Zs Ze

1/2-n

71 7y 73

-1/2

Figure 1. The dependence of n parameter on h field at 7' = 0 (in the

caseg>%;%—nTJ<U<g—Z—‘];0<n<1)

In order to clarify the conditions of appearing of any phases, we
will study the the localization of a minimum values of the free energy
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function. Using the relation

we have
h
F= / (—n)dh. (30)
ho

That defines the function F' up to a constant.
In correspondence with notations presented in Fig.1,

Fi(h) = 3(h — ho), (h < z2)
Fr(h) = Fy(22) + 57(h* — 22%), (z1 £ h < 2)
Fg(h):Fi(Zl)'l‘(—%'Fﬂ) (h—Zl), (Zl §h§24)
Fy(h) = Fa(z1) + &5 (h? — 23) = Y (h — z4), (23 <h <z (31)
F3(h) = Far(z3) + (=3 + 2) (h — 23), (23 < h < z)
F5(h) = Fs(z) + %%,(fﬂ —22) + Y2 (h— z5), (25 <h < z)
Fy(h) = F5(z5) — 5(h — 25), (25 < h)
Here
z1:—%+nJ Z4:U—%+n,]
z =2 25=29—-U—2 (32)
= U2 4n =29 U—34nt
3 ) D) 6 g 2 2

The states with the lowest value of free energy are thermodynamically
stable. The states described by 1,2, 3-curves are unstable. The intersec-
tions of F}, F», F3, Fy - lines determine the points of the first order phase
transition between relevant phases. Some of these phase transitions will
not be realize, if the relevant points of crossing lie above some other
Fk—line.

Similar analysis one can do for the case 1 < n < 2. In fact this can
be done through the substitution n -+ 2 —n, n -+ —n, h = 2g — h with
respect of the mentioned above symmetry of the model.

The values of field h = h;, at which the mentioned above phase
transitions ¢ <» k occur, are the following:

hlfz:ng—J; h23=U—%+%J;
hgs =29-U—2+22; py=2l4 1y, (33)
h24=g—1*T”J; h14:ng
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at 0 <n <1, and

h12 :g—anJ;
his =U + 7
h2/4:2g—J+%J; h14:ng

hos =29 —U — J + 22J;
hiy =29 — 4 + 48 — 22U (34)

n

at 1 <n < 2.

Phase diagrams (U, h) that correspond to some values of n are pre-
sented on Fig.2. The areas of existence of phases 1...4 at T' = 0 are
shown. They have qualitatively different appearance in the cases g > %,
% <g< % and g < %. For the limit U — oo( i.e. when the state with
two electrons at a single site is prohibited) the transitions 1 — 2 — 4 (if
g>2,n<lorl =2 >4 g>Z, n>1),0rl—4(fg< %)
take place. If U — 0, the transitions 1 -3 — 4 (if g > %), or 1 —4 (if
g < ) take place.

Phase diagrams (n,h) can be built on the basis of diagrams (U, h)
and formulas (33), (34). These diagrams are presented in Fig.3. Their
appearance depends on the values of U and g constants. In addition they
show the possibility of transformation of phases at the change of electron
concentration n. More detailly this issue will be discussed below.

4. Instability with respect to phase separation.

It is known that the dependence of concentration of particles on chemical
potential is one of the factors that determine thermodynamical equilibri-
um of the system. The state with homogenous distribution of particles is
unstable at (g—Z)T < 0, and the phase separation into the regions with
different concentrations takes place. To investigate this possibility in our
case, we will study the dependence p(n), described by the equation (13),
more attentively. In the limit 7' — 0 there is a possibility to do this
analytically.
According to formula (17) in this case we have:

ap n(2—n)

e—avWﬁE p =0
y= %ﬁ; (,0—>0,7’L<]. (35)
P oy et ¢ —0,n=1

(at 0 < m < 1). This expression allows to get the limit value of p = 6lny
for the each of mentioned above phases, taking into account conditions
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Figure 2. (U h)-phase diagrams at T=0 (regime n=const). a), b) g > £
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Figure 3. (n, h) - phase diagrams at T'=0; a) U > g;
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U+J/2

4013

2-4U/3

U+J/4
Figure 3. ¢) U < £

(24), by separating the main exponents in expressions for a and ¢ at
different relations between the values of parameters of the model. Let’s
take as an example the case U > g; the corresponding phase diagram in
plane (n, h) is shown on Fig.3. For the phase 1, n = —%, which realizes
ath<%f0r0§n§1andath<g—1TT”yf0r1§n§2wehave:

H>U_%7 n=
-4 <pu<U-4, n= (36)
l‘l‘<_%7 n =

For the phase 4,7}:% where h >g—1*T”J for 0 < n < 1; and

h>2g—J+”2—Jf0r1<n<2

% 0<n<l1

= U+4; 1<n<2
p>U+4, n=2
f<p<U+4, n=1 (37)
n<g, n=0

In the case of intermediate phase 2, n = %, at % < h<g- % the

parameter ¢ at T' — 0 is approximated by the exponent
<pzexp{ﬂ[h—l—J(%—n) —U]}
and correspondingly a ~ e=P%. As a result:
J g

,u:§—§—Jn+h,0<n<1, (38)
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and
+ h, n=20

-4

2
J —
f—5+h<p<U-4, n=1

(39)

One can see that within this phase there is a possibility of descending

dependence of p on n.
(6—”> <0 (40)
on T

That means the instability of homogenous state of the system. More
convenient and stable thermodynamically is the state with phase separa-
tion, which is a mixture of states with different electron concentrations
and different values of order parameter. In the case illustrated on Fig.
4a the phase 2 splits at T=0 into phase 4 (n = 0,7 = 1) and phase 1 (
n=1n= —%) with weight coefficients 1 — n and n respectively.

" o u@
0 1@2

L
gl2
a) @ b)

Figure 4. The dependence of chemical potential on the electron concen-
trationn (T=0).a) U > g;9 > J/2;0< h < J/2;b) J/2 < U < g—J/4;
g>J/2;U<h<U+J/4

On Fig. 4b another example is shown. In this case the descending
character of u(n) dependence takes place in the phase 3,
J U g nJ h
=4+ —-—-Z—-—+ = 41
r=gts T Y (41)
The separation into phase 4 and phase 1, with concentrations n = 0
and n = 2 respectively, occurs.

Negative sign of derivative (g—ﬁ) is typical for phase 2’ as well. Here
3J 3
,u:U+———g—nJ+h (42)

2 2
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Phase separated states are bordered by binodal lines. At T' = 0 they
are:
n=0, (0<h<yg)
n=1 (0<h<2g) (43)
n=2, (g<h<2g)

at U > g, and

n=0, (0<h<29-0)
n=1 (0<h<U 29-U<h<2g) (44)
n=2, (U<h<2g)

at U < ¢ (Fig.3). These boundaries surround the regions of existence of
intermediate phases 2, 2’, and 3. Mentioned phases might be stable only
if there were some factors that will maintain the space homogeneity of
electron concentration.

5. Phase transition at y=const.

The dependence of order parameter on field A and temperature 6, at the
constant value of chemical potential, is determined according to equation
(10). To investigate its possible solutions we will start with the case of
zero temperature. The comparison of eigenvalues A, , A\r allows us to
find out the ground state of the system at fixed value of p, and study its
possible changes depending on the parameters g, U, J and field h values.

The obtained results are presented in the form of (H, u) — diagrams.
The areas where the ground of the system is realized in the form of one
or other state (3) are shown on these diagrams. The form of mentioned
diagrams depends on the relation between parameters U and g values
(Fig. 5a U > g; Fig. 5b U < g). Transitions between regions |r) < |p),
|7) <> |p) lead to the change of average number of electrons only. At
transitions |r) < |7) the flipping of pseudospin takes place, and at |r) +
|p) ( r # p) both processes occur.

The process of flipping of pseudospin at the crossing of H*-line that
defines the boundary of |r) <+ |F), is a phase transition. For the fixed
value of p the state |r) with n = 1 exists at h > 2H* — £, and state |F)
with p = —1 - at b > 2H x+2. Jump-like change of 1) between these two
values, which corresponds to the first order phase transition, takes place
at h = 2H*. That’s why, making substitution H — %one can consider
the Fig. 5a and 5b as (h, ) - phase diagrams at T' = 0, where H* is a
line of phase transitions.

We will consider now the case of non-zero temperature. Among all
possible solutions 1 = f(6,h, ) of equation (10), let us separate the
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H
[2)
13),14>
g -
H*
[ 1)
¥ 3)
ﬁy/ | | u
0 g U-gi2  U+g/2
1) 13),]3)
a)
H
13 |2)
g 14) —
| 1)
g-u/2 7 ~
/ 2)
_9/2/ g<2 VI
_0 U-g/2 U‘+g/2
17) 3)
) )

Figure 5. The ground state diagram (regime u = const). a) U > g; b)
U<yg
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zero ones. In (@, h)-plane they define the curves which are described by
an equation

f(8,h; ) =0, (45)
where p plays the role of some parameter. Function f has the following

form
f = sh (%) +e Um0 (g — g) +

h
+ 2e°MshpB (5 — %) (46)
From equation (45) one can get
h=01ln 6—1, (47)
&2

where
& =1+e BFU—9-21) 4 9p6(5+n) (18)
&=Ely
After a substitution of an expression for field i from (5.3) into equa-
tion (10) we will get an equation

n=5th—-, (49)

that defines the order parameter along the line h = ¢1In g—; Formula (49)
has the standard form of molecular field equation. In addition to zero
solution non-zero ones exist at 8 < 8, = %. One can make a conclusion
that at the temperatures 6 < 6. the relation (47) has a meaning of
equation that describes the curve of phase equilibrium (first order phase
transition curve), and temperature . corresponds to the critical point.
Critical value of h. is given by expression

J. 1+4e3WU=9-21) 4 9.5 (F+n)
he= O T (50)

4 ]_ + efJ(UJ"g*ZN) + 267‘1(57”)
The feature of the phase transition is that the curve of phase equi-
librium generally is not parallel to the temperature axis. Particularly, at

g>>J,U>>J

he = 205 +1) p<—4

he =013 =-1

he=29g—0In3 p=U+% (51)
he =29 —20ePUT5—10) ;> U + s
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The value p = —% is an exception, at which h, = g. At p < % and

w> % the bents of coexistence curves are opposite.

The existence of a bent of the coexistence curve testifies the possi-
bility of the first order phase transition at the change of temperature
with a jump of order parameter 7 if the value of field h is within interval
placed between 2H* and h, values.

With the help of expression (13), it is possible to find out the average
electron concentration, which corresponds to the critical point at given
value of chemical potential. Making substitution 7 = 0 and using the
expression (50) for the critical field one can obtain

e :V(g) +V(_g)= (52)
where

6_%(U+g_2/—‘) + 6_%( —1)

(53)

%
v(9) = 14+ e~ 7WU+9=2u) 4 2e—5(5-1)

Substitution % o el % corresponds to the electron-hole trans-
formation n. — 2 — n., which is in agreement with mentioned above
symmetry of the model. At u = % the critical concentration n. is equal
to unity.

At the temperatures below the critical value crossing the phase coex-
istence curve leads to the jump of electron concentration between values
that correspond to phases, which are involved in phase separation (this
corresponds to the break point on the dependence Q(u)). At the same
time these values are points of binodal lines, which are determined ac-
cording to the Maxwell rule from the plot of function p(n). Illustrating
samples of this are presented in Fig.6 and Fig.7. The plots presented are
obtained using numerical calculations based on formulas (7), (10) and
(13).

6. Conclusions.

The investigation performed shows that pseudospin-electron model with
long-range interaction possesses some features, which differ it from the
ordinary Ising model. They are:

- The possibility of the first order phase transition at the change of
temperature and fixed value of field (regime u = const)

- Instability with respect to phase separation in the wide range of
parameter h (regime n = const) with an appearance of regions with
different electron concentration and different orientation of pseudospins.
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Figure 6. a) The p dependence of (S*) = n mean value. The parameter
values: h/J = 0.55; U/J = 1.5; g/J = 1, T/J = 0.1. p is given in
dimensionless units: u — p/J.

b) The u dependence of thermodynamical potential 2. The parameter
values: g/J =1.0,U/J =15, h/J =0.55, T/J =0.1.

c¢) The p dependence of concentration n. The parameter values: h/J =
0.55,U/J =1.5,49/J=1.0,T/J=0.1.
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Figure 7. The n dependence of chemical potential u. The parameter
values: g/J = 1.0; U/J =1; h/J =025, [1-T/J =025,2-T/J =
0.14,3-T7/J =0.03,4-T/J =0.24,5 - T/J = 0.26]. p is given in
dimensionless units: u — p/.J.

The inclusion of electron transfer into consideration does not lead to
any qualitative changes, because the contribution of the electron trans-
fer into thermodynamics of the model is connected mainly with the
formation of an additional interaction (besides the direct J;; one) be-
tween pseudospins. The obtained results give the more substantiated
interpretation of the behaviour of pair correlation function and dielec-
tric susceptibility of the model in the case t # 0, J = 0 investigated
in GRPA [6,8]. It is possible to conclude that the divergence of sus-
ceptibility xss| u=const and other related quantities at certain values of
temperature and h ~ g (at U = oo ) corresponds to the point of the
high-temperature phase instability. The temperature of this instability
is situated below the temperature of the first order phase transition that
leads to the jump of (S#). It is necessary to notice that thermodynam-
ics of pseudospin-electron model in the frames of GRPA is studied not
enough yet. This should be the subject of a separate investigation.

When the model is used for the description of the thermodynamics
of oxygen subsystem in Y Ba:CusO7 - crystals, the results of this work
might be used as a basis for description of bistability phenomena in
apex oxygen sublattices as well as for study of experimentally observed
spatial nonuniformities and phase-separated states in monocrystalline
specimens [9,10].
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