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Abstract. Within the massive field theoretical renormalization group
approach the expressions for the - and - functions of the anisotropic
mn-vector model are obtained for general space dimension d in three-loop
approximation. Resumming corresponding asymptotic series, critical ex-
ponents for the case of the weakly diluted quenched Ising model (m = 1,
n = 0), as well as estimates for the marginal order parameter component
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lated as functions of d in the region 2 < d < 4. Conclusions concerning
the effectiveness of different resummation techniques are drawn.
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Introduction

Study of the critical behaviour of the Ising model has several attractions.
On the one hand, the Ising-like models are simple enough, which is of a
special advantage in the statistical physics. On the other hand, in spite
of their simplicity, such models show rich and interesting behaviour at
the critical point. Also, the existence of the exact solution for the two-
dimensional Ising model often makes it an object for verifying different
approximation schemes. All the stated above yielded the high interest
devoted to the problem. In particular a great deal of generalization of the
model appeared. Among different ways of generalization, much attention
has been devoted to the affect of the impurities on the critical behaviour
of the Ising-like models as well as to the investigation of critical regimes
of the models on the lattices of a non-integer dimension (d). There have
been devised different realizations of the last stated generalization. For
example, one can approach the concept of non-integer dimensionality
either by explicit construction of the non-integer dimensional object,
which leads to the concept of a fractal [1], or by formal carrying out an
analytic continuation of the function, which by definition depends on a
natural value of dimension.

Within the theory of critical phenomena the latter ambiguity was
reflected in examining the critical behaviour of the many-particle systems
on fractal [2,3] or on abstract hypercubic lattices of the non-integer (d).
There arosed a question whether a model on a fractal lattice (being scale
invariant) possesses universality as well as a system on a hypercubic
lattice (having translation invariance). The problem has been widely
studied but still remains open [4-7]. Today’s point of view states that
the usual demand for ”strong universality” (in sense of critical properties
depending only on symmetry of the order parameter, interaction range
and space dimension) seems not to be obeyed by fractal lattice systems,
and for them the concept of universality itself should be revised [8,9].
However, some kinds of spin systems on fractal lattices may interpolate
hypercubic lattices results [10].

Speaking about the study of Ising-like models on analytically con-
tinued hypercubic lattices of non-integer d, one should note a great
variety of theoretical approaches devised for these problems. These in-
clude: the Wilson-Fisher e-expansion [11] improved by the summation
method [12]; Kadanoff lower-bound renormalization applied to some spe-
cial non-integer dimensions [13]; high-temperature expansion improved
by a variation technique [14]; finite-size scaling method applied to nu-
merical transfer-matrices data [15,16]; new perturbation theory based on
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the physical branch of the solution of the renormalization group equation
[17-20]; fixed dimension renormalization group technique [21,22] applied
directly to arbitrary non-integer d [23,24].

Perhaps the first paper devoted to the study of the Ising model in dif-
ferent, however not non-integer dimension, was [25] where non-universal
properties of the model were discussed.

All these approaches, as well as the computer simulations, confirm
the correctness of the universality hypothesis also for non-integer d hy-
percubic lattices and allow to obtain the critical exponents as functions
of d with high accuracy.

Returning to the study of the critical behaviour at integer d, one
should note that the problem becomes more complicated when studying
spin systems with a structural disorder. Whereas the case of the an-
nealed disorder is of less interest from the point of view of determining
asymptotical values of critical exponents [26], the weak quenched dis-
order has been a subject of intensive study. Here the Harris criterion [28]
has been devised. It states that if the heat capacity exponent ;. of
a pure model is negative, that is the heat capacity has no divergence at
the critical point, impurities do not affect the critical behaviour of the
model in the sense that critical exponents remain unchanged under dilu-
tion. Only in the case ayyre > 0, the critical behaviour of the disordered
model is governed by a new set of critical exponents. As far as for a 3d
m-vector spin model only the 3d Ising model (m = 1) is characterized
by apure > 0, it is the Ising model which is of special interest. And be-
cause of the triviality of the annealed disorder in the sense mentioned
above, the most interesting object for study is just the quenched Ising
model. The appearance of a set of new critical exponents for that model
at d = 3 is confirmed by the experiments [29-31], renormalization group
(RG) calculations [32—41], Monte-Carlo (M C) [42-46] and M CRG [47]
simulations.

The situation is not so simple for the 2d Ising model. Onsager exact
solution of the pure model proves the logarithmic divergence of heat ca-
pacity, which yields apyre = 0, and allows one, in accordance with the
Harris criterion, to clasify this case as a marginal one. Most of the theo-
retical works suggest that the 2d Ising model with a quenched disorder
has the same critical behaviour as the 2d pure Ising model (except for
logarithmic corrections) [48-53,39,40] (see also review [54]). This result
is corroborated by M C-simulations on two-dimensional lattices [55-59]
and experiments [60,61].

Deviations from the expected critical exponents, which sometimes are
observed during such computations, are explained by a system being not
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in the asymptotic region (see [59] for recent study). Nevertheless, some
authors assert that for the 2d Ising model with a quenched disorder a
new critical behaviour appears [62,63]

While the undiluted Ising model at non-integer d was a subject of
intensive study [11-20], it is not the case for the diluted Ising model.
Only the work [36] can be mentioned here, where the model was studied
within the Golner-Riedel scaling field [64] approach. It is worthwhile
to note that the e-expansion technique applied to this model, due to
the fact that RG-equations appear to be degenerated on the one loop
level, results in y/g-expansion for the critical exponents [34]. The latter is
known up to the three-loop order [65,66]. The equations of the massive
field theory at fixed integer d [21,22] first applied to the diluted Ising
model at d = 2,3 in [35,37] were found to be the most effective method
for investigating this problem. In order to consider an arbitrary non-
integer d the Parisi approach [21,22] was generalized in [67] where critical
behaviour of the model was studied in a two-loop approximation. The
aim of the present work, based on the massive field theoretical approach,
is to make a more detailed investigation of the critical behaviour of the
diluted O(m)-vector model at arbitrary d. Though it is the case m =1
in which we are interested most of all, we consider the RG-equations for
any m, which also allow us to study the crossover in the model at any d.
We will obtain the RG-equations within the 3-loop approximation and
apply to their analysis different resummation procedures in order to find
the most reliable one.

The set-up of the article is as follows. In the next Section we intro-
duce the model and the notation. Then we describe the RG-procedure
adopted here and give the series for the RG-functions of the weakly di-
luted quenched m-vector model in the three-loop approximation. Being
asymptotic, these series are to be resummed. This is done in Section 2
where different ways of resummation are used. Section 3 concludes our
study giving results for the quantitative characteristics of the critical
behaviour and discussing them. In the Conclusions we give some general
comments to the present work. In the Appendix we list some lengthy
expressions for the coefficients of the RG-functions in the three-loop ap-
proximation.

1. The Model and the RG - procedure

As it is well known, the critical behaviour of the quenched weakly-diluted
m - vector model is governed by a Lagrangian with two coupling con-
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stants [34]:

L(¢) = /ddR{%Z: [|v$a|2+mg|$a|2} n

(j{j|¢“|2> - (19°F)" ). (1)

a=1

in replica limit n — 0. Here any 5”‘ is a m-component vector
¢* = (¢, ™2, ..., ¢%™); ug > 0,v9 < 0 are bare coupling constants;
myg is bare mass.

As it was already stated above, we adopt here the massive field theory
renormalization scheme [21,22] in order to extract the critical behaviour
governed by (1). We start from the defined by (1) unrenormalized one-
particle irreducible vertex functions

F(L’N)(qla"7qL;p17"7pN;m07u07v0;A0;d) (2)

depending on the wave vectors {q}, {p}, bare parameters mg, up, vo and
the ultraviolet momentum cutoff Ag. The vertex functions’ dependence
on the space dimension d is explicitly noted here as well. We impose
the renormalization conditions at zero external momenta and non-zero
mass (see [68,69] for instance) at the limit Ag — oo for the renormalized

functions [70] T, T, T, 142

(0 Z)(pa —p;m,u,v; d)|P 0o = m27 (3)

d
T B v Dl = 1, 4
L (pidsm,u,v;d) o = m* (5)
L (piksm,u,v;d) o = m* (6)
(1 Z)(q p,—p;m,u,v; d)|q p=0 = 17 (7)

with m, u, v being the renormalized mass
m = Zsmy = ZsT®? (0; mo, uo, vo)
and couplings u = m4=*Z3 Z; \uo,v = m?=*Z3 Z; vo. From these con-

ditions there follow expans10ns for the renormalized constants for field
(Zs3), vertices u (Z1,4), v (Z1,,) and ¢? insertion (Z2). Subsequently, these
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define the coefficients 3, ~ entering the corresponding Callan-Symanzik
equation:

Bult) = sl ®
Bulw0) = Sl ©
Vo =73 = %Iuo,vo, (10)
= = el (1)

In the stable fixed point {u*,v*} to be defined by simultaneous zero
of both p-functions:

Bu(u*,v*) = 0,

Bo(u™,0") = 0, (12)
the 74-function gives the critical exponent 7 of the pair correlation func-
tion:

Yo (u™,v") = 1. (13)
The correlation length critical exponent v is defined in the stable
fixed point by:

Fgru*,v*) =2 = vt — yg(u,v%). (14)
Using familiar scaling relations, one can easily calculate any other
critical exponents on the base of 7 and v.
Applying the described above procedure, one obtains in the three-
loop approximation [71] 3- and v-functions in the form [72]:

12 8

Bulu,v) = —(4— d)u{l —u—

[(5m +22)(iy — %) + (m+ 2)¢g]u2 +

96 . 1
(m + 8)(mn + 8) [(m +9)(in = 5) +
m;— QiQ]UU + ﬁ [(mn +14)(i; — %) +
mn3+2 ]v +/63LA } (15)
. 2(m + 2) 8
Bo(u,v) = —(4—d)v{1—v— I8 u+(mn+8)2 x  (16)
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[(5mn +22) (i1 — %) + (mn + 2)i2]v2 +

96(m + 2) [ 1

2
m+)mnig) 't 27 6]““

w[il—%+i—2]u2+6§3“)+...}

(m +8)2 3
2(m +2) 4(m +2)
Yoluv) = —2(4- d){[( 5 s T
o e )
o = oty et

m+ 2 2, 2(m +2)
m+8)2" " (m+8)(mn+8)

mn+2 1 (3LA)
e R R

12| wv +

Here d is the space dimension, m is the order parameter component
number, n is the replica index, ¢; and i2 are dimensionally dependent
two-loop integrals. The corresponding coefficients for three-loop parts are
listed in the Appendix. The values for the three-loop integrals is...ig
which appear in three-loop coefficients for integer d = 2,3 are listed in
[73]. In particular, substituting loop integrals i1,i as well as is,...,1g
n (15)-(18) by their values at d = 3 we get at n = 0,m = 1 the cor-
responding functions of the 3d weakly diluted Ising model, which in
the 3-loop approximation were obtained in [35]. At d = 3, m,n- arbi-
trary corresponding expressions coincide with those, obtained for the 3d
anisotropic mn-vector model in [74]. Our idea is to keep the dimensional
dependence of the loop integrals and, being based on their numerical
values for arbitrary d [24], to study the O(mn)-model at arbitrary (non-
integer) d as well. But for the reason explained above, the point of main
interest here will be the replica limit n = 0 of the anisotropic mn-vector
model, especially the case m = 1.

Expressions for 8- and y-functions will be the starting point for the
qualitative study of the main features of the critical behaviour which
will be done in the next section.
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2. The Resummation

As we have already mentioned, the values of the vy-functions in a fixed
point (u*,v*) lead to the values of the critical exponents 1 and v. Howev-
er, it is well known now that the series for RG-functions are of asymptotic
nature [75-77] and imply the corresponding resummation procedure to
extract reliable data on their basis. Let us note, however, that as to our
knowledge the asymptotic nature of the series for RG-functions have
been proved only for the case of the model with one coupling [78], and
the application of a resummation procedure to the case of several cou-
pling constants is based rather on general belief than on a proved fact.
One of the resummation procedures, which in different modifications is
most commonly used in the studies of asymptotic series, is known as
the integral Borel transformation [79]. However, this technique implies
explicit knowledge of the general term of a series and thus cannot be
applied here, where only truncated sums of the series are known. To get
over this obstacle one represents the so-called Borel-Leroy image of the
initial sum in the form of a rational approximant and in such a way re-
constitutes the general term of the series. The technique which involves a
rational approximation and the Borel transformation together, is known
as the Padé-Borel resummation technique (in the field-theoretical RG
content see [81,82] as an example of its application).

Note here that the resummation technique, based on the conformal
mapping, which is widely used in the theory of critical phenomena [83],
cannot be applied in our case because its application postulates infor-
mation on the high order behaviour of the series for - and «-functions.
The latter is still unknown for the theory with the Lagrangian (1).

To summarize up the stated let us write that the Padé-Borel resum-
mation is performed as follows:

o constructing the Borel-Leroy image of the initial sum S of n terms:

S = Zalm = Z T Za:_a;lc)t+ (18)

where I'(z) is the Euler’s gamma function and p is an arbitrary non-
negative number. The special cases p = 0 and p = 1 correspond
to resumming [J-functions without or with prefactors v and v in
accordance with the structure of the functions (15)-(16);

e the Borel-Leroy image (18) is extrapolated by a rational approxi-
mant [M/N] (zt), where by [M/N] one means the quotient of two
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polynomials; M is the order of the numerator and NN is that of the
denominator;

e the resummed function S"¢*® is obtained in the form:
gres = / dt exp(—t)" [M/N] (xt). (19)
0

In the two variables case only the first step is changed; namely, here
we define the Borel-Leroy image as

Z 4 j y] = Z az J Z’t (yt) (20)

0<i+j<n 0<i+j<n L+j+p+1)

Generalization to the many-variable case is trivial.

Now one can take into account that the second step of the stated
scheme can be done in different ways. One can write down various Padé
approximants in the variable ¢ to obtain within the three-loop approxi-
mation the expressions of the structure [2/1], [1/2] and [0/3]. It is also
possible to use Chisholm approximants [84] in the variables u and v,
which, generally speaking, in the same number of loops can be of type
[3/1], [2/2], [1/3] and [0/4], but the explicit definition of any approxi-
mant needs some additional equations now [84]. The technique, which
involves Chisholm approximation together with the integral Borel trans-
formation is referred to as the Chisholm-Borel resummation technique.
To be consistent, one would have to apply the all different resummation
frameworks in order to obtain reliable results on their basis and find
which of the methods is the most effective. However, strong restriction
on the number of choices can be imposed.

First of all, an approximant should be chosen in the form reconsti-
tuting the sign-alternating high-order behaviour of the general term of
(- and ~-functions, which was confirmed in the particular case m = 1,
n = 2 and n = 3 [85]. The approximant generating a sign-alternating
series might be chosen in a form [M/1] with the positive coefficients
at the variable ¢ (or u and v). Choosing an approximant with a non-
linear denominator, generally speaking, one does not ensure the desired
properties. Direct calculations affirm the argumentation: S-functions, re-
summed with the Padé-Borel and the Chisholm-Borel methods with ap-
proximants [M/N], N > 1, for u < 0,v > 0 give the roots which lie far
from the expected values which for d = 3 are known up to the order
of four loops [39] and for general d were calculated from the two-loop
B-functions [67]. This is true for any p. The stated results permit us to
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eliminate from the consideration approximants with a non-linear denom-
inator.

Note as well that choosing representation of the RG-functions (15)-
(18) in the form of Padé or Chisholm approximant of type [M /1] might
result in the appearance of a pole in the expression. Here we use an
analytical continuation of the resulting expressions by evaluating the
principal value of the integral. Treating the task in this way one notes
that the topological structure of the lines of zeros for the resummed
by the Padé-Borel technique [-functions is very different in the region
near the solution for the mixed fixed point and strongly irregular when
passing through the number of loops. In particular this yields that in the
three-loop approximation there exist two solutions close to the expected
value of the mixed fixed point. To compare, the results obtained within
the frames of the Chisholm-Borel method do not have these faults and
are more stable from the point of view of proceeding in number of loops.

So, the results given below are obtained by the Chisholm-Borel me-
thod applied to the approximant of type [3/1]. In order to determine
the form of this approximant completely one must define two additional
conditions. The approximants are expected to be symmetric in variables
u and v, otherwise the properties of the symmetry related to these vari-
ables would depend, except for the properties of the Lagrangian, on the
method of calculation. By the substitution v = 0 all the equations which
describe the critical behaviour of the diluted model are converted in-
to appropriate equations of the pure model. However, if pure model is
solved independently, the resummation technique with the application of
Padé approximant is used. Thus, Chisholm approximant is to be chosen
in such a way that, by putting any of u or v equal to zero, one obtains
Padé approximant for a one-variable case. This also implies a special
choice of additional conditions. In the present study amidst all the pos-
sible expressions which satisfy the stated demand we choose Chisholm
approximant [3/1] by putting coefficients at «® and v* to be equal to
ZEro.

3. Results

Now we are going to apply the mathematical framework which was dis-
cussed in previous sections in order to obtain numerical characteristics
of the critical behaviour of the weakly-diluted Ising model in general
dimensions. It was noted in the Section 1 that the critical behaviour of
the quenched weakly-diluted Ising model is described by the effective
Lagrangian (1) in the case m = 1 and zero replica limit n = 0. Namely,
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the task in the end comes to obtaining fixed points which are defined
by simultaneous zero of the both g-functions. Among all the possible
fixed points one is interested only in those in the ranges u* > 0,v* <0
and only in stable ones where the stability means that two eigenvalues
b, b2 of the stability matrix B = 08y, /0ujlu:, ui = {u,v} are positive
or possess positive real parts. The structure of the [-functions (15)-
(16) yields the possibility of four solutions for the fixed points. The first
two {u* = 0,v* = 0} and {u* = 0,v* > 0} in our case at d < 4 are
out of physical interest, while the second pair which consists of pure
{u* > 0,v* = 0} and mixed {u* > 0,v* < 0} points, are responsible for
two possible critical regimes. The critical behaviour of the diluted model
coincides with that of the pure model when the pure fixed point appears
to be stable. If the mixed point is stable, the new (diluted) critical be-
haviour of the system takes place. The type of the critical behaviour
depends on the number m of the order parameter components and on
the dimensionality d: at any d,2 < d < 4 a system with large enough m is
not sensitive to the weak dilution in the sense that asymptotic values of
critical exponents do not change; only starting from some marginal value
me, at m < m. a mixed fixed point becomes stable and the crossover to
the random critical behaviour occurs. The problem of determining m, as
a function of d will be discussed later. Now we would like to state that
m. > 1 for any d,2 < d < 4, and thus just the mixed fixed point governs
the asymptotic critical behaviour of the diluted Ising model.

If one attempts to find the fixed points from the S-functions (15)-(16)
without resummation, there always appears only the Gaussian {u* =
0,v* = 0} trivial solution; the existence of the rest possible three fixed
points depends on the concrete details of the S-functions portions in the
braces in expressions (15)-(16). In a 3d case it appears that without a
resummation the non-trivial mixed fixed point does not exist in one-
, two- and four-loop approximations [39,40]. It is only the three-loop
approximation where all the four solutions of the set of equations (12)
exist [35]. In figure 1 we show the behaviour of the non-resummed (-
functions of the three-dimensional weakly diluted Ising model in the
three-loop approximation. Resummed functions are shown in the same
approximation in figure 2. Note that in this approximation the shape
of the functions remains alike in the region of small couplings u and v.
Fixed points correspond to the crossing of the lines 8, = 0,8, = 0 as it is
demonstrated in figures 3, 4. The left-hand column in figures 3, 4 shows
the lines of zeros of non-resummed S-functions in three-dimensions in
one-, two-, three- and four-loop (results of [39,40]) approximations. One
can see in the figures that without resummation all non-trivial solutions
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are obtained only within the three-loop level of the perturbation theory.
In the next order all fixed points disappear which is a strong evidence
of their accidental origin. At any arbitrary d, 2 < d < 4 the qualitative
behaviour of the functions is very similar to that shown in figures 3 and
4.

As it has already been mentioned, in order to reestablish the lost pure
and mixed points one applies the resummation procedure to S-functions.
In the three-dimensional space the result of resummation is illustrated
by the right-hand column in figures 3 and 4. Here we have used the
Chisholm-Borel resummation technique choosing Chisholm approximant
in the form discussed in the previous Section with p = 1 in successive
approximation in the number of loops. The icons in the figures which
correspond to a one-loop level are the visual proof of the degeneracy
of the [-functions in this order of the perturbation theory: the plots
of root-lines are parallel independently of resummation. The rest three
images in the right-hand columns are a good graphic demonstration of
the reliability of the Chisholm-Borel resummational method: two-, three-
and four-loop pictures are quantitatively similar, the coordinates of the
pure and mixed point are close.

The numerical results of our study are given in table 1. Here, the
coordinates of the stable mixed fixed point and the values of the criti-
cal exponents of the quenched weakly diluted Ising model are listed as
functions of d between d = 2 and d = 3.8. The eigenvalues b; and by of
the stability matrix are given as well.

It was already noted that the values of y-functions in a stable point
yield the numerical characteristics of the critical behaviour of the model.
For example, given the resummed functions 'yfes and '_yf;s, the pair of
equations

YEC (W vt = o, (21)
SBesur o) = 2-vl oy (22)

allows us to find the exponents 1 and v. All other exponents can be
obtained from the familiar scaling laws.

However, one can proceed in a different way. That is, by means of
the scaling laws it is possible to reconstitute the expansion in coupling
constants of any exponent of interest or of any combination of exponents,
and only after that to apply the resummation procedure. If exact cal-
culation were performed the answer would not depend on the sequence
of operations. However, this is not the case for the present approximate
calculations. We have chosen the scheme of computing where the resum-
mation procedure was applied to the combination v=! =1 =1— Vo2 — Vo
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and vt = (2 =42 — 74)/(2 = 74). The exponents «, § and 1 have been
calculated on the basis of numerical values of the exponents v and v.
The resummation scheme appears to be quite insensitive to the choice
of the parameter p given by (18), (19). However note, that computations
have been performed here, as well as in [67], with p = 1.

Comparing our data from table 1 for the critical exponents at d = 2
with the results for the pure Ising model one can see that the exponent
~ differs from the exact value 7/4 by the order of 5%, the exponent v
is smaller from the exact value v = 1 less than by 4%. This confirm the
conjecture that the critical behaviour of the weakly diluted quenched
Ising model at d = 2 within logarithmic correction coincide with that
of the pure model (see [54] for review). It is also interesting to compare
numbers given in table 1 with those obtained for general d within the
2-loop approximation [67]: all the exponents of the three-loop level lie
slightly farther from the expected exact values of Onsager than those
of the two-loop approximation. This may be explained by the oscilla-
tory nature of approaching to the exact values depending on the order
of the perturbation theory. It is also interesting to note that the two-
loop approximation yields better estimates for the heat capacity critical
exponent « for all d in the range under consideration. Namely, in ac-
cordance with the Harris criterion, the exponent « for the diluted Ising
system should remain negative. This picture is confirmed much better
by the two-loop approximation where « is negative in the whole range
of d, unlike the three-loop level of the perturbation theory, the results of
which yield a > 0 for 2 < d < 2.8.

However, table 1 shows that the next (third) order does improve our
understanding of the critical behaviour of the model in general dimen-
sions. The results of the two-loop calculations [67] show that starting
from some marginal space dimension the approach to the stable point
becomes oscillatory: the eigenvalues b; and b2 turn to be complex pos-
sessing positive real parts. This is an artifact of the calculation scheme
and therefore it was expected [67] that by increasing the accuracy of
calculations one decreases the region of d which corresponds to the com-
plex eigenvalues. It is really the case. In the three-loop approximation
the region of complex by, b2 is bounded from below by d = 3.3, whereas
in the two-loop approximation [67] the corresponding value is lower and
is equal to d = 2.9. Thus, the region of d characterized by the oscillatory
approach to the stable fixed point shrinks with the increase of the order
of the perturbation theory.

The comparison of the three-dimensional value of v with the four-loop
result [40] v = 0.6701 gives the accuracy of 0.05% for our computations
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(compare with 1% for two-loops, where the value v(d = 3) = 0.678 was
obtained). Thus, it may be stated that the general accuracy of calcula-
tions decreases when passing from d = 4 to d = 2 which, in particular,
results from the fact that our approach is asymptotically exact at upper
critical dimension d = 4.

The comparison of the present results with the other data available
is provided by figure 5. Here, the behaviour of the correlation length
critical exponent v obtained by different methods is demonstrated in
general dimensions. The results of the massive field-theoretical scheme
are plotted by solid (three-loop approximation; the present paper) and
dashed (two-loop approximation; ref. [67]) lines. One can see that the
two lines practically coincide far enough from d = 2, in particular, both
lie very close to the most accurate result for d = 3 [40] which is shown by
the box. The application of the scaling-field method [36] yields numbers
shown in figure 5 by stars. The limit from below (d = 2.8) of the method
applicability is caused by the truncation of the set of scaling-field equa-
tions, which was considered in [36]. One can also attempt to obtain some
results by resumming the /g-expansion which is known for the diluted
Ising model up to three-loop order [65,66] and for the exponents v and
7 reads:

1 176 \Y/2  535—756((3)
v = 3+i(&) e o -
/
1= () e

where ((3) = 1.202 is Rieman’s zeta function. The corresponding results
are shown by open diamonds. They were obtained by applying the Padé-
Borel resummation scheme to the series of y/e- expansion (23) [65,66].
The value of v obtained in such a way is of physical interest only very
close to d = 4. Even in the next orders of the expansions the values
of critical exponents are not improved [86]; this is an evidence of the
V/e-expansion unreliability in tasks like the one under consideration. To
compare, one can state that the situation with the applied in the present
paper theoretical scheme is contrary to the 1/e-expansion. While the two-
loop approximation is valid in ranges 2 < d < 3.4, the next order of the
perturbation theory enlarges the upper bound up to d = 3.8. One can
expect that the next steps within the perturbation theory will allow one
to obtain the description of the critical behaviour of the model with
enough accuracy for any d, 2 < d < 4.

Let us recall now that expressions (15)-(18) for the RG-functions, as
well as their three-loop parts listed in the Appendix, allow us to study
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asymptotic critical properties of the mn-vector model with arbitrary m
and n in arbitrary d not only for the case m = 1, n = 0. In particu-
lar, by keeping m as an arbitrary number and putting n = 0 one can
obtain the numerical estimates for the marginal order parameter com-
ponent number m, which divides the diluted (governed by the mixed
fixed point) asymptotic critical behaviour from the pure one, when the
O(m)-symmetric fixed point remains stable. In accordance with the Har-
ris criterion the case m = m, corresponds to zero of the heat capacity
critical exponent « of the model. One may extract the value of m. from
this condition. However, the above discussed results of the three-loop
approximation do not yield enough accuracy for a. Alternatively, the
fixed mixed point should coincide with the pure fixed point at m = m,
which in particular means that v*(m = m.)|mizea = 0. The last condi-
tion was chosen as a basis of our calculation. The appropriate numbers
of the present three-loop approximation (thick solid line) together with
the data of the two-loop approximation (dashed line) [67] are shown in
figure 6. The result of e-expansion m. = 4 — 4¢ is depicted by the thin
solid line. In the three-loop approximation we obtain m, = 1.40,d = 2
and m. = 2.12,d = 3. These values are to be compared with the exact
results of Onsager which yield m, = 1 at d = 2, and the theoretical
estimate m, = 1.945 &+ 0.002 [87]. One can see that the two-loop re-
sults are closer to the expected values for both d = 2 and d = 3. For a
two-dimensional case the two-loop value m, = 1.19 [67] differs from the
exact one by 20%, while the three-loop number decreases the accuracy
to 40%. The case d = 3, m. > 2 contradicts the suggestion that the zy-
model asymptotic critical behaviour should not change under dilution
in three-dimensions. The reason for decreasing the calculation accuracy
with increasing the order of the perturbation theory may lie in oscillatory
approach to the exact result. One can expect that already the four-loop
case will improve the estimates for m, for all 2 < d < 4. Let us also
note that the determination of m. may serve as a test for improving the
resummation scheme.

4. Conclusions

The goal of this paper is to study the critical behaviour of the weakly
diluted quenched Ising model in the case when the space dimension d
continuously changes from d =2 to d = 4.

As it was mentioned in the Introduction, the study of the pure Ising
model at arbitrary d, which corresponds to a scalar field-theoretical mod-
el with one coupling constant, is the subject of a great deal of papers.
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It is not the case for the model with a more complicated symmetry. In
particular, here we study a model with two couplings corresponding to
terms of different symmetry in the Lagrangian (1). Such a problem was
studied previously on the basis of the scaling-field method [36], and field-
theoretical fixed dimension renormalization group calculations within a
two-loop level of the perturbation theory are available [67].

Our calculations hold within the theoretical scheme of [24,67]. This
approach appears to be one amidst other possible calculation schemes
for many tasks; however, in our case it seems to have no alternatives
within the field-theoretical approach.

Being asymptotic, the resulting series for the RG-functions are to be
resummed. In the present study we have chosen the Padé-Borel and the
Chisholm-Borel resummation techniques. Restricting ourselves to ana-
lytic expressions for the resummed functions, we present numerical data
mainly obtained on the basis of the Chisholm-Borel resummation tech-
nique. Note that the absence of any information on the high-order be-
haviour of the obtained series for the RG-functions does not allow one
to apply other resummation schemes, e.g. those based on the conformal
mapping technique [83].

The quantitative description of the critical behaviour of the model
is steady from the point of view of passing from the two- to the three-
loop approximation. Smaller agreement between the two- and the three-
loop approximations at d far away from d = 4 may be explained in a
way that the precision of computing falls down with the increase of the
expansion parameter which takes place at decrease of d. The real parts of
eigenvalues corresponding to the mixed point seem to remain positive up
to d = 4, which testifies that at arbitrary d the weakly diluted quenched
Ising model is described by the mixed fixed point.

The work was supported in part by the Ukrainian Foundation of
Fundamental Studies (grant No 24/173).
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Appendix

Here we have collected the most lengthy expressions for the three-loop
contributions to the RG-functions. The three-loop part of the (,-fun-
ction reads:

Bt (u,0) = B30 + B3 uPo + BrPuv® + B0, (25)
where
1
30— _ . 2 .
3 TR [ 4(31m? + 430m + 1240)i; +
(m + 8)(m +2) ( — (3d + 8)iz + 12(i5 + ig)) +
48(m? + 20m + 60)i4 + 24(2m? + 21m + 58)i5 +
6(3m? + 22m + 56)ig + 24(5m + 22)iy +
8(4m? + 61m + 178)];
2
21— — 12(17m? + 256 780)i
2 (m+8)2(mn+8)[ (17m2 + 256m + 780)i; +
(m +2) ( — (3dm + 42d + 16m + 80)iy +
12(m + 14)i5 + 18(m + 8)2’8) +
24(3m? + 70m + 224)i4 + 6(15m? + 158m + 448)i5 +
6(3m? + 32m + 100)ig + 48(5m + 22)ir +
6(9m2 + 146m + 448)} ;
L2 1 «
v (m + 8)(mn + 8)2

— 12(19m*n + 80mn + 470m + 2032)i; —

8(mn + 8)(3d+4) +

I

m(3dmn + 40mn + 78d + 176))2'2 +
12(m*n + 8mn + 26m + 64)iz +
48(m*n + 8mn + 68m + 292)i4 +

12(11m?n + 34mn + 136m + 584)is +

6(m?n + 8mn + 50m + 256)ig + 576(m + 5)ir +
36(m + 2)(mn + 8)is +
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0,3
u

12(5mn + 22mn + 136m + 584) |;
4
(mn + 8)3

(mn + 2) ( — (4mn + 9d + 8)iy + 36i5 +

[G(mn +10)(—=2(mn + 23)i1 + 3ig) +

3(mn + S)ig) +72(3mn + 22)ig +
9(m>n? + 14mn + 88)is + 24(mn + 14)i; +
3(m*n® + 38mn + 264)] .

The three-loop part of the 3,-function reads:

where

0,3
v

1,2
v

2,1
v

BEA (u, v)

= ﬂ2’3v3 + ,6’11,’21“)2 + ﬂg’lugv + /337%3,

1
B [ — 4(31m2n? + 430mn + 1240)i; +

(mn + 8)(mn + 2) ( — (3d + 8)is + 12(i3 + @8)) n

48(m*n? + 20mn + 60)i4 +

24(2m*n® + 21mn + 58)is +

6(3m>n? + 22mn + 56)ig + 24(5mn + 22)ir +

8(4m?n? + 61mn + 178)] ;

B 4(m + 2)
(mn + 8)2(m + 8)

(3dmn + 4mn + 15d + 56)iz + 12(mn + 5)iz +

24(2mn + 27)iq + 3(13mn + 100)is +

6(3mn + 13)ig + 96i7 + 9(mn + 8)is +

(29mn + 316)];

m+ 2
~(mn+8)(m +8
(3dmn + 12dm — 8mn + 48d + 16m + 256)is +
12(mn + 4m + 16)i3 + 48(5m + 34)iy +
12(13m + 56)is + 6(3mn + 14m + 40)ig +

144i7 + 36(m + 8)ig + 12(11m + 64) |;

[ — 4(28mn + 275)i; —

E [ —12(mn + 42m + 224)i; —

_2(m+2)
(m +8)?
(m + 2)(213 + 316) +

2(m + 8)(12i4 + 3is + 3is + 5)] .

B = —4(11m + 70)i; — 3(dm + 2d + 16)i2 +

The three-loop part of the yg-function reads:

3LA m+2 4 3(m+2) )
_ 27
% (uv) [(m+8)2u )8 T 27)
3(m+2) 9 mn+2 .7, .
3ig — 4ia).
(m+8)(mn+8) "~ " (mn+8)2" ]( is = diz)
(26) The three-loop part of the y42-function reads:
Vo2 (u,v) = 7¢2 ud + vd)g u?v + 7¢2 w? + 72231)3 (28)
where
30 m+ 2 . )
12i5 + 18i6) + 2(m + 8)(12i4 + 3is + 5)] ;
_2.1 m+ 2 .
y = —12 10 70
Vo2 (m+8)2(mn+8)[ (mn 4 10m +70)iy +

(mn + 2m +6) (= (3d — 8)iz + 12i5 + 187 ) +

6(m + 8)(12i4 + 35 + 5)] ;
1,2 3(m +2)

[ — 4(1lmn + 70y +

Tor T (m + 8)(mn + 8)2
(mn + 2)( — (3d — 8)is + 12i5 + 18%) +
2(mn + 8)(12i4 + 3is + 5)] :

_0,3 mn + 2 _ .

R [ 4(11mn + 70)i; +

(mn + 2)( — (3d — 8)is + 12i5 + 18%) +

2(mn + 8)(12i4 + 3is + 5)] :
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FIGURE CAPTIONS.
Figure 1 The non-resummed [-functions in the three-loop approxima-
tion; d = 3,m = 1,n = 0. The dark surface corresponds to the f,-
function.

Figure 2 The Chisholm-Borel resummed S-functions in the three-loop
approximation; d = 3,m = 1,n = 0. The dark surface corresponds to
the B,-function.

Figure 3 The lines of zeros of non-resummed (left-hand column) and re-
summed by the Chisholm-Borel method (right-hand column) S-functions
for m = 1,n = 0 in different orders of the perturbation theory: one- and
two-loop approximations. Circles correspond to 3, = 0, thick lines depict
By = 0. Thin solid and dashed lines show the roots of the analytically
continued functions 3, and 3, respectively. One can see the appearance
of the mixed fixed point u > 0,v < 0 in the two-loop approximation for
the resummed B-functions.

Figure 4 The lines of zeros of non-resummed (left-hand column) and re-
summed by the Chisholm-Borel method (right-hand column) S-functions
for m = 1,n = 0 in three- and four-loop approximations. The notations
are the same as in figure 3. Close to the mixed fixed point the behaviour
of the resummed functions remains alike with the increase of the order
of approximation. This is not the case for non-resummed functions.

Figure 5. The correlation length critical exponent v of the weakly diluted
Ising model as a function of the space dimension d. The results of two-
[67] and three-loop (the present paper) approximations are shown by the
dashed and the solid lines respectively, the square reflects the number of
the four-loop approximation [40] at d = 3, stars correspond to work [36]
and open diamonds refer to the resummed +/e-expansion.

Figure 6. The dependence of the marginal order parameter component
number m,. on the space dimension d. Two- and three-loop results are
shown by the dashed and thick solid lines respectively, the e-expansion
data m, = 4 — 4¢ are depicted by the thin solid line.
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Table 1. The stable point coordinates, critical exponents and the eigen-
values of the stability matrix of the weakly diluted Ising model at arbi-
trary d. The three-loop approximation (the superscript ”¢” denotes that

real parts of the corresponding eigenvalues are given).

d

u*

,U*

v

v

(07

n

by

by

2.0
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

2.0268
2.0327
2.0412
2.0525
2.0671
2.0854
2.1081
2.1359
2.1698
2.2113
2.2621
2.3250
2.4039
2.5044
2.6359
2.8140
3.0678
3.4570
4.0852

-0.2802
-0.3156
-0.3523
-0.3908
-0.4312
-0.4740
-0.5196
-0.5687
-0.6219
-0.6803
-0.7454
-0.8190
-0.9038
-1.0040
-1.1259
-1.2804
-1.4869
-1.7849
-2.2303

1.840
1.768
1.703
1.643
1.588
1.536
1.489
1.445
1.404
1.365
1.328
1.294
1.261
1.230
1.200
1.171
1.144
1.116
1.087

0.966
0.923
0.884
0.848
0.816
0.787
0.760
0.735
0.712
0.691
0.671
0.652
0.634
0.618
0.602
0.587
0.572
0.558
0.544

0.067
0.062
0.056
0.049
0.041
0.033
0.025
0.016
0.007
-0.002
-0.016
-0.021
-0.030
-0.038
-0.046
-0.054
-0.061
-0.066
-0.066

0.097
0.084
0.073
0.064
0.055
0.047
0.040
0.034
0.028
0.023
0.019
0.015
0.012
0.009
0.006
0.004
0.002
0.001
0.000

0.2176
0.2373
0.2562
0.2742
0.2913
0.3074
0.3226
0.3370
0.3505
0.3635
0.3764
0.3905
0.4095
0.4653
0.4436°
0.3946¢
0.3411¢
0.2822¢
0.2136¢

1.5189
1.4608
1.4011
1.3395
1.2759
1.2100
1.1418
1.0709
0.9971
0.9197
0.8380
0.7504
0.6528
0.5127
0.4436°
0.3946¢
0.3411¢
0.2822¢
0.2136¢
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