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Amnorarisa. BUB9aioThes BIACTHBOCTI BOAHEBOTO 3B’ A3KY Ha TMPHUKJIAJII
HafimpocTimoro o6’eKTy, 0 MICTHTh BOJTHEBHI 3B A30K, - 10HHOTO KOM-
mwirekcy O — H — 0. OTpuMaHo eJIEKTPOHHUI eHepreTHIHUH CITEKTP KOM-
mwirekca O — H — 0. Hocminxyerbea popMyBaHHA ABOMIHIMYMHOTO ala-
6ATUIHOTO TMOTEHITIAY [IJIs TIPOTOHA B 3AJIEXKHOCT] BiJl TOBXKUHY BOIHE-
Boro 3B’a3ky Roo, BlacTanl Rop, uncia eqekKTpoHiB N Ha KOMILJIEKCI.
OrpuMaHO KapTl eJeKTPOHHOI TYCTUHE 1 PO3IOIIITY EeKTPOHHOTO 3a-
DALY B3AOBXK OCi KoMILTekca. JToCiIzKeHo TaKOXK 3MiHY TYCTHHHU eJIeK-
TPOHHOTO 3apALy 1 3acejleHoCTell aTOMHUX opbiTasiell BUX1IHOTO Gasucy
B 3a/Ie’KHOCTI Bl 3MIIIEHHA MPOTOHA B3IOBK BOIHEBOTO 3B A3KY.

Electron states and adiabatic potential of the hydrogen bond
[.V.Stasyuk, Yu.V.Sizonenko, R.Ya.Stetsiv

Abstract. The properties of the hydrogen bond are investigated on
the basis of the simplest object with hydrogen bond, the ionic complex
O — H — O. The electron energy spectrum of the O — H — O complex is
obtained. The formation of the two-minima adiabatic proton potential
as a function of the hydrogen bond length Roo, Rog distance, electron
number N in complex 1s investigated. The electron density graphs and
distribution of the electron charge along the complex axis are obtained.
Also we investigate the change of the electron charge density and the oc-
cupancy of the atomic orbitals of the initial basis connected with proton
shifts along the hydrogen bond.
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1. Introduction

There are many papers devoted to the investigation of the hydrogen bond
systems including review papers sheding some light on the nature of the
hydrogen bond [1-5]. The main subjects are the study of the electron
structure, optimum geometry, investigation of the adiabatic potentials
for the proton, vibrational spectra, proton transfer. Nevertheless, the
problem of the formation of adiabatic potential for the proton needs
a more detailed study. For example the role of the Coulomb compo-
nents of the interaction between excessive charges, which appear during
the displacement of ions and electron redistribution, are not sufficient-
ly studied. In the paper [6] the authors propose new model in which
a strong coupling between the protons and distorsion of the structural
units, connected by the hydrogen bonds (for example, PO, tetrahedrons
in KH3PO, crystal) is assumed and the interaction between protons
is disregarded. It is supposed there that the distorsion of tetrahedron is
proportional to its electric dipole moment. One should try to extend such
models, as not only dipole moment on the edge structure units changes
with the proton motions along hydrogen bond, but the charge value is
changed also.

The problem of the formation of the locally anharmonic lattice po-
tentials using model approach was considered in [7]. In the present paper
this problem 1s solved on the basis of quantum chemical calculations.

We consider ionic complex O — H — O (in further reffered to A— B —
A’). The Hamiltonian of such complex has a following form:

h? e? _
H(F,R) = ——A; —_ U(7; — Ry
r ) =2 %z)+gbﬁ—m+§;(r )+
K2 / o =
+Z(_WA")+Z W(Rm — Rn), (1)
where 7;, ]%m - electron and ion coordinates.

The first three terms form the electron part of the Hamiltonian; the
last two describe the ionic subsystem;
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here Z. and Zj,, are the effective ion charges (excluding valence elec-
trons) used for the description of the interaction between them and other
electrons or ions respectively.

In the present paper we calculate the electron spectrum of the O—H —
O cluster. The formation of the adiabatic proton potential as a function
of the hydrogen bond length Roo, Rog distance, electron number in
cluster N is investigated. The electron density pictures and distribution
of electron charge along complex axis is obtained. We investigate also the
change of the electron charge density with proton shift along the bond.

2. Initial basis of electon wavefunctions and its or-
thogonalization.

In our model approach we take into consideration the minimum basis of
electron wavefunctions consisting of the three valence atomic orbitals.
The 2p-functions of oxygen ions ({¢q (7 — ﬁa)}, {pa (F— ﬁa/)}), directed
along the hydrogen bond and 1s-function of the hydrogen atom ({¢3(7—

éb)}) are taken into account.
They are the solutions of the corresponding Schrodinger equations

S (g A) UG = B | () = Bon), ()

(here s = a, b, d’).
At first the orthogonalization of functions ¢, and 4 is performed:

Vo= Niatda) M= e W
- S W
Var = No(a = thr) No = —pmees

Here Sqqr = [ 4% (7)tha (F)dF - overlap integral of initial atomic func-
tion.

The transformation of vector 45° rotation type is used for sym-
metrization of the new basis.

1 q q

Sﬁa(f) = \/5(1/;(14‘1/;(1’) :51/)(77—Ra)+771/)(7?—3a') (5)
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Orthogonizing the third function to the first and the second ones
gives:

ob = py(F — Ro) + Eapa + Earpar = (7)
pl/)(F— éb) + (€a€ + fa'UW(F— éa) + (ga’g + faﬁ)ﬂ)(??— éa')

Here the following notations are introduced:

_ 1 - Sga’
PN 1= 82, = 52, — 5%, + SvaSbar Saa
ga = _(Sba€ + Sba'ﬁ)ﬂ; (8)
ga’ == _(Sban + Sba’g)pa

The functions { ¢4,06,9", } form a orthogonalized and normalized
basis of states.

3. Electron spectra and electron density distribution
for O — H — O cluster.

Electron part of the Hamiltonian (1) in secondary quantization repre-
sentation on {; ()} basis has the following form:

el =€ Z CaoCac T €3 Z »Calo T €2 chgcba +
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Here the notations are used
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Let us go to the basis of electron states in occupation number repre-
sentation |nq4nqynptip Neitfery >, which includes 64 states:

ICMP-97-29E 6

lp > lp > lp >
000000 > | |T> || [111000 > | [23 > || [111001 > | |45 >
100000 > | [2> || [110100 > | [24> || [110110 > | |46 >
010000 > | 3> |[ [110010 > | [25 > || [110101 > | |47 >
001000 > | |4 > || |110001 > | [26 > || [110011 > | |48 >
[000100 > | |5 > || [101100 > | |27 > || [101110 > | |49 >
[000010 > | |6 > || [101010 > | [28 > || [101101 > | |50 >
[000001 > | |7 > || [101001 > | |29 > || [101011 > | |51 >
[110000 > | |8 > || [100110> | [30 > || [100111 > | |52 >
[101000 > | |9 > || [100101 > | |31 > || [011110 > | |53 >
100100 > | [10 > || [100011 > | [32> || [011101 > | 54 >
100010 > | |11 > |[ [011100 > | [33> |[ [011011> | [55 > | (11)
100001 > | [12 > || [011010 > | [34 > || [010111 > | |56 >
011000 > | |13 > |[ [011001 > | [35 > || [001111 > | |57 >
010100 > | |14 > |[ [010110 > | [36 > || [111110 > | |58 >
010010 > | |15 > || |010101 > | [37 > || [111101 > | |59 >
010001 > | |16 > || [010011 > | [38 > || [111011 > | |60 >
001100 > | |17 > || |001110 > | [39 > || [110111 > | |61 >
001010 > | |18 > || |001101 > | [40 > || [101111 > | |62 >
001001 > | |19 > |[ [001011 > | [41 > || [011111 > | |63 >
000110 > | |20 > || |000111 > | [42> || 111111 > | |64 >
000101 > | |21 > || [111100 > | |43 >
[000011 > | [22> || [111010 > | [44 >

Hamiltonian (9) matrix on this basis is easier presentable using Hub-
bard operators X?? acting as XP?|r >= d,|p >. The transition to X-
representation may be performed using the formulae for electron creation
operators written on this basis:

CLT — X214 X127 4 16 4 32,22 4 x105 4 yB121 4 30,20
45242 4 94 | 29,09 4 28,18 | yBLAL | 2T 1T | 50,40
44939 4 6257 | 83 | 26,16 L 25,15 4 y48,38 | 2414
L XXATAT | 46,36 4 6156 | w2313 | 45,35 4 4434 | 60,55
44333 4 59,54 | (58,53 | y64,63

C:rzi — X314 X167 4 156 4 38,22 4 y145 4 3721 L 36,20
45642 4 134 4 35,19 4 3418 | 5541 | 3317 4 54,40 |
45339 4 63,57 L ¢82  x2612 _ w2511 y4832 _ 24,10 _
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_XATBL _ x46,30 _ 61,52 4 y23,9 4529 4498 x60,51
48,27 _ 59,50 _ 58,40 _ 64,62

CZ,T — x4 X197 4 186 4 4122 4 yIT5 4 w4021 | 39,20
45742 Y183 _ 35,16 _ 3415 5538 _ 33,14 _ 5437 _
_X53,36 _ 6356 _ x9.2 _ y29,12 _ y2811 _ 51,32 _ y27,10 _
X0l _ y49,30 _ 6252 4 23,8 4 yv45,26 | 4425 | (60,48 |
L4324 4 5947 | (5846 | y64,61 (12)
CZ,¢ — XL x2L7 4 X206 4 y42.22 174 x40,19  xB39,18
_XPTAL _ y143 _ w3716 _ 36,15 _ y56,38 | 33,13 4 54,35 |
L X334 4 63,55 _ 102 3112 3011 _ 5232 | 279 4
45029 4 49,28 | (62,51 | w248 | y4AT26 | 46,25 | y6148
_ 48,28 _ 59,45 _ 58,44 _ 64,60

CL’,T — X614 X227 _ 205 _ 4221 _ x84 x4l19 4 3917
45740 _ 153 _ 38,16 | 36,14 | 56,37 | 34,13 4 5535 _
X333 _ y6354 _ 112 3212 4 30,10 | 5231 4 y28,9
LX(PL29 49,27 62,50 4 w258 | w4826 46,24 w6147 _
X423 _ y60,45 | (58,43 | 64,59

CL',¢ — X7 226 _ 215 L 42,20 x194 4 4118 L 4017
_XBTB9 _ y163 4 y38,15 | \BT14 _ 56,36 | \35,13 _ 55,34
X433 63,53 _ 122 | 3201 4 3110 _ 5230 L 29,9
XL _ 50,27 | 6249 L 26,8 48,25 4724 L (61,46
_X45.23 4 60,44 | 5943 _ 64,58

As a result, Hamiltonian will possess the following form: H(R) =
qu Hpq(R)qu~

In present paper cases N = 3N =4 N =5 are analyzed.

Matrix H;;(R) on this basis consists of independed blocks each of
them corresponding to different number of electrons N. Using adopted
conceptions of valency, the most probable number of electrons on such
cluster O — H — O (in its three valent states that compose initial basis
and organise hydrogen bond) is four (N=4, see examples in fig. 1).

The realization of other values of N also is possible when elec-
tron transfer between ions participating in forming of different hydrogen
bonds takes place.

For N = 4 case the corresponding basis of states includes 15 states.
Matrix H;;(R) of (15x15) size consists of three blocks: (3x3) - summary

ICMP-97-29E 8

HO," H.O, HO,*
Figure 1. Chemical bonds in H,O; clusters

spin projection S* = +1; (3x3) - summary spin projection 5% = —1;
(9x9) - summary spin projection S* = 0. The most energetically advan-
tageous case S = 0 is realised on states

43 >=[111100 > |48 >=|110011 > |53 >=[011110 >
145 >= [111001 > |50 >=|101101 > |55 >=[011011 >  (13)
146 >= 110110 > [52 >= 100111 > |57 >= [001111 >

For N = 3 case matrix H;;(R) of (15x15) size consists of four blocks:

(1x1) - summary spin projection S* = —3/2; (1x1) - summary spin
projection S* = 43/2; (9x9) - summary spin projection S* = +1/2;
(9x9) - summary spin projection S* = —1/2. Cases with opposite spin

are equivalent. S* = 1/2 case is realised on the states

23 >=[111000 > |29 >=|101100 > |34 >=[011010 >
25 >=[110010 > |30 >=|100110 > |39 >=[001110 >  (14)
27 >=[110110 > |32 >=|100011 > |41 >= |001011 >

For N =5 case matrix H;;(R) of (15x15) size consists of two blocks:
(3x3) - summary spin projection S* = +1/2; (3x3) - summary spin
projection S% = —1/2. 5% = 1/2 case is realised on the states

58 >= 111110 >
60 >= [111011 > (15)
62 >= [101111 >

The components of matrix H;;(R) blocks corresponding to the states
(13), (14), (15) are given in Appendix 1.
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Matrix elements H;;(R) are formed by the matrix elements (10) on
the orthogonalized basis of functions ¢;(7), which in turn are liniar com-
binations of corresponding matrix elements built on the initial basis of
atomic functions ¢, (7). Analytical expressions obtained for some of
them are given in Appendix 2. General scheme of calculations is de-
scribed and formulae for evaluation of exchange integrals are also pre-
sented there. For the rest of the matrix elements numerical evaluation
was performed (including evaluation of 3-center integrals) on the basis
of atomic functions ¢, (7).

For the numerical calculations the methods of Monte-Carlo type for
multi-dimensional integrals are used. Error of evaluation was no more
then 4%.

Matrix of the Hamiltonian, obtained as a result of orthogonalization,
was diagonalized, its eigenvalues A; and eigenvectors were found.

Eigenvalues of Hamiltonian of electron subsystem (where ion-electron
and electron-electron interactions were considered) were added by the
enegry of ion-ion interaction (excluding oxygen-oxygen interaction), the
result spectrum for the given values of distance Ropo is presented as a
dependence on the Rop distance (see fig. 2).

A

-15
_2008 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
® 9 9o ¢ ¢ o ¢ ¢ ¢ o o o o o o

=25+

35+
40 + o —90— 0 0 0 90 0 0 0 0 0 90 9o o o ©
45 L *—0 90 0 0 0 o 0 0 0 o o 0o o o o
-50 +

260 - e\’\.ﬁH—.——Q—.—.“.—F.‘Q—.—.——.#.

Figure 2. Dependence of the energy spectrum of system (eV) on Rop
distance (A) at the following values of parameters: N =4, Roo = 2.44,
Zet = 1.5, Zipn = 2.5.

The lowest level from this spectrum is presented on fig. 3. It is shown,
that at bond length smaller then some critical value, we have a potential
with one central minimum, which at the increasing of the complex length
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A A
61,2 4 } } } | -59.8 + } } t |
.61.4 .59,90:8 !
.61.6 .60
.61.8 .60.1
.62 .60.2
.62.2 .60.3

a)

-58.5 4 t + + l
-58.6 I
.58.7
.58.8
.58.9

.59

c) d)
Figure 3. Lowest level of energy spectrum of system (proton adiabatic
potential) as a function of Rog distance at N =4 (Z = 1.5, Zjon = 2.5)
a) ROO = 2.384 C) ROO =244A

at different values of bond lenght: b) Roo = 2424 d) Roo = 2464

transforms into double-well potential. This fact show us the existance of
two equlibrium states of system, different in the shift of the central ion
in opposite directions along complex axis. At some values of effective
charges 7. and Z;,, we can obtain parameters of proton potential on
hydrogen bond known from experiments. Optimum Z values are different
for different number of electrons on cluster O — H — O’. The results of
calculations are especially sensitive to the difference AZ = Z;,,, — Z;.
Optimum values for model parameters are 2.0 < o < 2.1; AZ = 1.0
(N =4); AZ =03 (N = 3); AZ = 2.0 (N = 5), howewer Z, > 1.
For the given values of effective parameters critical value of hydrogen
bond length is RF, = 2.384 which is in accordance with known from
literature data (see [5]). As one can see from fig. 3-5 values of effective
parameters optimal for the case N = 4 are insufficient for the cases
N =3 and N =5 as R, value does not correspond to the known data
and are 2.68A and 2.14A correspondingly. At increasing of the hydrogen
bond length the height of the potential barrier increases also as well as
d value - distance between positions of minima of the proton potential
on bond.
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density distribution is presented at fig. 6a and 6b (for the proton located
in one of the pots and in the middle of the bond correspondingly).

) d)

Figure 4. Lowest level of energy spectrum of system (proton adiabatic
potential) as a function of Rog distance at N = 3 (7 = 1.5, Zjon = 2.5)
a) ROO = 2.65A C) ROO = 2.85A

at different values of bond lenght: b) Roo =2.75A  d) Roo = 2.94

Using eigenvectors of Hamiltonian, corresponding, in particular, to
the lowest eigenvalue Apin, the distribution of the electron density was
obtained. The states of basis of diagonalized Hamiltonian are linearly
expressed by the states of previos basis

i >= Z aijli > (16)
J
then electron density of states should be
5i(7) = 3 0l () (17)
J

The density of the initial state p;(), built on the basis of atomic
wavefunctions {¢1(7), ¢2(7), ¢3(F)} can be expressed as

pi(7) = Zm(j)lsoz'(fﬁlz (18)

here n;(j) - number of electrons at ion ¢ in state j. For the N = 4 case

) d)

Figure 5. Lowest level of energy spectrum of system (proton adiabatic
potential) as a function of Rog distance at N =5 (Z = 1.5, Zjon = 2.5)
. . a) ROO =2.17A C) ROO = 2.22A
at different values of bond lenght: b) Roo = 2.194  d) Roo = 2.23A

Howewer, more informational is the distribution of electron density
along the complex axis as the result of integration of the space distri-
bution over the planes, perpendicular to the complex axis. (see fig. 7a
and 7b). The difference between curves showes us redistribution of the
electron density with proton shifts from the central position.

On the basis of the electron density distribution in space the atom-
ic orbitals occupations were calculated using the method of mini-
mal squares. If f(x) - obtained earlier electron distribution; F(z) =
>~ niy? (x) - some helper function (coefficients n; are occupations), then
n; are found from the condition of minimum of the ¢ = [(f(z) —
F(z))¥Z(z). Solving the equation g;:: = 0 we obtain orbital occupations
(see fig. 8) as dependences on the Rop distance.

A lot of papers were devoted to the calculation of electron spectrum
and adiabatic potential of the proton on bond (see [1-5]) for different
structures with hydrogen bonds. Our goal was to concentrate more on
the investigation of the electron density change caused by the ion shifts,
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Figure 6. Electron density distribution in the plane parallel to complex
axis at different positions of proton: a) in the left pot of the effective
potential; b) in the middle of the bond. N =4, 7, = 1.5, Z;,, = 2.5,
R=244A

in particular, hydrogen motion on bond. Similar calculations for the clus-
ter with few hydrogen bonds allow us to investigate correlations between
electron density change and proton-proton short-range interactions. De-
scribing system with hydrogen bonds using different models one should
take into account short-range proton-proton interactions. Until now such
short-range correlations were postulated and their nature was not stud-
ied. The role of electron subsystem there is evidently especial as it can
determine the actual proton-proton interaction. Thats why the study of
electron density change with proton shifts is important. We obtained
that proton shifts on bond is accompanied by increasing of the summary
electron density at the regions where the proton is moved to (see fig. 6-7);
howewer, the occupancy of the 2p-orbitals of the corresponding oxygen
ion is decreased. Occupancy of 1s-orbitals of hydrogen ion changes weak-
ly and possesses maximum at the location of proton in the middle of the
bond (see fig.8).

More detailed study of the electron density change in system with
hydrogen bonds connected with ion shifts will give an oppotunity to
formulate more real models for description of such objects.
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16, Al
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067 A
0.4 ./I I\

0.2 /./I/
S L A
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0.4 N
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c)

Figure 7. Linear electron density distribution along complex axis at dif-
ferent positions of proton: a) in the left pot of the effective potential;
b) in the middle of the bond; ¢) change of electron density with proton
shifts from the central position (over value of Ropg distance). N = 4,
Zeg = 1.5, Zipn = 2.5, R=2.44A
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Figure 8. Orbital occupation versa Rop distance (N = 4, Zg = 1.5,
Zion = 2.5, R = 2.44A)
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ppendix 1. Matrix blocks corresponding to the ex-

amined cases.

Case N=3:

H(23,23) =2+ e+ 2K -Q+U
H(23,25) =2Ly — Ly + ¢’
H(23,27) = —® — &y — 1
H(23,29) = —Ly — ®4 — law
H(23,30) = Ly
H(23,32) = — L,
H(23,34) = Ly — Ly + By + Law
H(23,39) = —Ls
H(23,41) = Qa
H(25,23) =2L; — Ly + ¢’
H(25,25) = 2¢1 + €3 — Qq + U + 2V
H(25,27) = — L4
H(25,29) = — L

(25,30)

(25,32)

(25,34)
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H(25,39) = Q H(32,30)= —L; —®' — '

H(25,41) = H(32,32) =61+ 23— Qo+ U +2V
H(27,23) = —<1> O —t H(32,34) = L3

H(27,25) = H(32,39) =

H(27,2T) = ¢ —1—262—1—2A -Q+U H(32,41) = L’ Ly +1
H(27,29) = Ly + @) +¢ H(34,23) = Ly — Ly + ®y + g
H(27,30) = =Ly + Ly — &} — 1 H(34,25) = Ly + Ly —® —t
H(27,32) = Q’ H(34,27) = —L3

H(27,34) = H(34,29) = Q.

H(27,39) = 2L2 Li+tew H(34,30) = —Q

H(27,41) = —L} H(34,32) = L3

H(29,23) = —Ly — @4 — taq HB34,3) =1+ s+ e+ K+ K —Q +V
H(29,25) = —L} H(34,39) = —L}) —®, —t
H(29,27) = L1 + @) +¢ H(34,41) = Ly + O + t g
H(29,29)_el+62+63+h+I”—Q+V H(39,23) = —Ls

H(29,30) = H(39,25) =

H(29,32) = L1 Ls+® +t H(39,27) = — Ly +tgw
H(29,34) = H(39,29) = Lg

H(29,39) = L H(39,30) = L) — Ly + &, +1
H(29,41) = —Lo 4+ Ly — ®y — tau H(39,32) = —L4

H(30,23) = Ly H(39,34)= —L}) —®, — ¢
H(30,25) =L} +®+1¢ H(39,39) = 2e0 +e3 + 2K’ — Q'+ U’
H(30,27) = —L1 + Ly — @) -t H(39,41) = —®' — @) — ¢

H(30,29) = H(41,23) = Qa
H(30,30)_61+62+63+A + K —Q.+V H(41,25) =

H(30,32) = —L1 g H(41,27) = —L’

H(30,34) = H(41,29) = =Ly + Ly — ®y — g
H(30,39) = L’1 Ly +® +1 H(41,30) = —L4

H(30,41) = —L4 H(41,32) =2L) — L +1
H(32,23) = —L} H(41,34) = L2 + D, + taa
H(32,25) = —2®, — tou H(41,39) = - -t
H(32,27) = Q' H(41,41) = 2+263+21”—Q +U
H(32,29) =Ly — Ly + @ +t'
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(43,43) =

(43,45) =
H(43 46) = —2L1 + Ly — @} — 1
H(43,48) = Q'
H(43,50) = 2Ly — Ly + ®4 + tgar
H(43,52) = — L}
H(43,53) = —2Ls + Ly — @4 — tgqr
H(43,55) = L}
H(43,57) = Qq
H(45,43) = 2L1 — L3 + ®| + ¢’
H(45,45) =261 + s+ e3 + 2K + K' — Q — Qo + U + 2V
H(45,46) = —Q’
H(45,48) = 2L; — Lz + ®' + 1
H(45,50) = —L{ + L5 —® — &y — ¢
H(45,52) = Ly
H(45,53) = — L}
H(45,55) = Lo — Ly + 2®4 + tgar
H(45,57) = — L3
H(46,43) = —2L; + L3 — ®] — ¢/
H(46,45) = —Q’
H(46,46) = 2e1 + €2+ e3 + 2K + K' — Q — Qo+ U +2V
H(46,48) = —2L; + L3 — ®' — ¢/
H(46,50) = — L}
H(46,52) = Lo — La + 2@, + tgar
H(46,53) = —L{ + L5 —® — &y — ¢
H(46,55) = Ly
H(46,57) = L3
H(48,43) = Q'
H(48,45) = 2L; — Lz + ®' + 1
H(48,46) = —2L; + L3 — ®' — ¢/

(48,48) =

(48,50)

ICMP-97-29E
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H(48,52) = 2L} — Ly + ® + ¢

(
H(48,53) = Ly
H(48,55) = —2L} + Ly — & — 1
H(48,57)=Q
H(50,43) = 2Ly — Ly + &, + taa
H(50,45) = =L}, + L —® — &) — ¢
H(50,46) = — L}
H(50,48) =
H (50, 50)_el+262+63+21x 12K Q- Q +U' +V
H(50,52) = —L1 +L3—d — @) —¢
H(50,53) =
H(50,55) =
H(50,57) = 2L2 Ly+ @4 + toa
H(52,43) = — L}
H(52,45) = Ly
H(52,46) = Ly — Ly + 28, + taq
H(52,48) = 2L} — Ly + & + ¢
H(52,50) = =Ly 4+ L3 — @' — &) — ¢/
H(52, 52)—61—|—€2+263+A 42K - Q. —Q +U +2V
H(52,53) =
H(52,55) =
H(52,57) = 2L’ Ly + @1+t
H(53,43) = =2Ls + Ly — By — toa
H(53,45) = — L}
H(53,46) = =L, + L —® — &) — ¢
H(53,48) = L4
H(53,50) =
H(53,52) =
H (53, 53)_el+262+63+2h 12K Q- Q +U' +V
H(53,55) = =Ly 4 Lz — &' — &, —¢'
H(53,57) = —2L2 4+ Ly — Py —tay
H(55,43) =
H(55,45) = L2 Lo+ 20, 4 toy
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H(55,46) = Ly
H(55,48) = —2L 4+ L — ® — t
H(55,50) =
H(55,52) =
H(55,53) = —L1 + Ly — & — ) —1'
H(55,55) =€ +e2+23+ K+2K' —Qu—Q +U +2V
H(55,57) = —2L) 4 Ly — &, — t
H(57,43) = Qa
H(57,45) =
H(57,46) = L3
H(57,48) = Q
H(57,50) = 2Ly — Ly + @4 + taa
H(57,52) = 2L} — L+ &y +1
H(57,53) = —2Lo + Ly — @y — Lgqr
H(57,55) = —2L} 4 Ly — &, —t
H(57,57) = 265 + 2e3 + 4K’ —2Q' + U + U’

Case N=5:

H(58,58) = 261 + 2e5 + €3 + 4K + 2K’ —

—2Q-Q.—Q +U+U" +2V
H(58,60) = 2L, + Ly — ® — &) — 1
H(58,62) = —=2Lo 4 L4 — 28, — tau
H(60,58) = 2L, + Ly — & — &) — 1
H(60,60) = 2€1 + €5 + 265 + 2K + 2K’ —

—Q—-2Q,— Q' +2U +4V
H(60,62) = —2L1 + L5 — & — Py — ¢
H(62,58) = —2Lo 4 Ly — 28, — tau
H(62,60) = 2L} + L — & — & — ¢
H(62,62) = €1 + 265 4 263 4+ 2K + 4K’ —

—Q - Qa—2Q'+U+ U +2V
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Appendix 2. Some integrals used in the electron spec-
tra of O — H — O’ cluster calculations.

1. We have obtained analytical expressions for some integrals used for
the calculations of the O — H — O’ cluster electron spectra. The atomic
orbitals were chosen in the form of Slater functions:

Radial part of the function has the following form:
Rnl(m = An,l(a) 7" -t _Q_D (20)

where the normalized factor A, ;(«) is equal:

oQ

*
[Anyl(a)]z = /drr‘zn*e_za%’a = % (21)

0
n* — effective quantum number (for 1s,2p — functions n* = n), z* -

effective nuclear charge, ap — the first Bohr orbital radius. Generally the
values & (or z*) are the variational parameters but one can use the values
for them obtained for this atom in another compounds (see Appendix

We have calculated the two centre integrals using spheroidal coordi-

nates [8,9]

rq +7Tp Ta —Tp
A= = =Y, = 29
T TP T e = (22)
Element of volume in this coordinates is:
R3
dV = ?(/\2 — p?)dAdpdyp

there are the boundris of integration:
I1<A<oo,-1<u<1,0<p <27

Here r, 1 7, means the electron distance from two center a and b, R
is the distance between centers.

We present the analytical expressions obtained for some molecular
integrals, which are not mentioned in literature, for example in [8,9]:

e? L1 € 5 /1 R\?
/1/)A(7;)a1/)3(7:jdr_z.a—oaHao gOzHOzo (a—) X

0

1 4 (1 1 1 1
x—e P .- {— (1—1— —) sinhy + — (cosh'y— —sinh'y)} (23)
p TP p v v
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2 3
/1/)A 7:) 1/)B(fjd7°— - _QHQQ\I%QHQO (:;) X
X {ev + (1 - l) sinh'y} (24)
rp 7

Here 14 (7) — 2p — oxygen orbital, directed along the line connected the
centres (2F;), ¥p(¥) — 1s hydrogen orbital.
Here:

_taa R

_m—ay R
2 Clo’Py_ 2 ap

(25)

The following expression is obtained for the Coulomb integral
2 e 2 (2N g g
/’l/)A(?”l)m . 1/)B(T2)d7°1d7°2 =
6 12 6
{2+ — - <2g3—|—6g2—|— 1lg+ 14 + ?Jr g_z) 6—29} -
1

1, . 1 e 2 _, 5 6 6
ot F o (e s)

2 2 sinh
~<sinh5——cosh5—|— S 8)—
s

52

4 4 1 1
—(3—1——-1——2) (—coshs—l——sinhs)+<1+—)Siﬂh5— (26)
U U s u

2 4
— (1—1———1——2) (—cosh5—|—§sinh5 %coshs—i—%smhs)}—l—
U U s s s
1 2 2
+=—-p- 1+ —+ — | sinhs—
2 v u?
1
-2 (14—%—1—%—1—%) (—coshs—l——sinhs) +
U u u s

4 12 24 24 . 2 2 .
tl-+=+=5+3]" 81nh5——cosh5—|——2$1nh5 +
u s s

U U U

1
+2(14+ — —cosh5—|—§sinh5—Ecoshs—l—gsinhs —
U 52 53

s
2 2
—(1—1——‘1'—2)'
uoou

4 12 24 24
. (sinhs— —cosh s + —Zsinhs— —3cosh5—|— —4$inh5) }) .
s s s s
R R
u=2p,s=2y,g =00 —,p=ag—
ap ap
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We have obtained the energy of the Coulomb repulsion between two
electrons in 1s-state of the hydrogen atom:

2

2 /o e? 2 o o o 5 e
/ (7)o () dFrdFs = = - g, (27)
12 8 ap

which concide with the known in the literature expression for the Helium
atom [8]. In the case of the Coulomb repulsion between two electrons in
2p-state of the oxygen atom we have:

2 2

2,24 € 2 /o o 3o 501 €
— drdry = —— « — 28
/1/)A(7°1)r121/),4(7°2) Fidiy = oo —Ho, (28)

Here |7?1 — 7?2| =Ti2.
Below we present the formula, obtained for one of the hybrid inte-
grals:

2
.y € - - o o
/1/’123(7°1),~_1/)A(rz)l/)B(rz)drldrz =
12
_le? 3/2 s/2 [ 1 P4 -p
=T — (pa )™ (po) a0 M
1 1 1
{(1 + —) . (sinh’y — —coshy + —Zsinh'y) -
p Y Y
1 1 1 .
1+ —+— —coshy; + —sinhyy — (29)
P1 p1 Y1
4 1 1 h inh
7 pl P 71 71
1 1 inh
<1+—+ )(—cosh'yl-l-sm 71)}—
P1 p1 Y1
4 1 1 1 1 1
HH E__ e—P1 {(_ + ) noy ( + _2) sinh v, —
2 aomp P1om i
1 1 1
_3 ( —3) (— coshvy; + — Slnh’h)
p
13 (145 (oo + i ) )
——cosh v + —smh Y1 )
V3

_ Spgtpe R dug—po R
L= = e —
2 ag 2 ag

where
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2. One can obtain the analytical expression for the exchange integral

62

Q= [ A - (R AR (0
only in the case of hydrogen molecula, or in the case where 4 (7)) and
¢ p(72) are the same nS functions, which are centered at A i B points. In
the other cases one can obtain the analytical expression for the exchange
integral only in the form of the infinite series. The authors propose the
general scheme of the calculation and formula in the form of infinity
series, obtained for the exchange integrals in the case, when electron
functions ¢ (7) are S-type functions ny.S and P-type functions directed
along the line connecting atoms (nsPy); n1, ng - the principal quantum
numbers.

We have used the expansion into a series in the spheroidal coordinates
of the +Fz| function [9]:

71

k — |m|)? m
|7°1—7°2| Z Z T2+ ) [Ek-l—:m:;'] P’l l[/\(a)]*

k Om=—k
Lm|[/\(b)]Pllm|(ﬂ1)Pllm|(ﬂz)eim(%—wz) (31)
Here A1, 11,91 1 Ag, pt2, 2 — spheroidal coordinates of the two electrons,

A(a) — is the minimum and A(b) — is the maximum from A; and A, Lml

— Legendre functions of the second type.

m o It I
V)= (-2 T T Qu(a)

1 r+1 1.3..02k-1)
@n(z) = 5 P(e)In T = A '

=

e [1 1 k(k=1)  k(k—1)(k—2)(k—3)
e '[3_32(2k—1) TGk DRE—3) ]+}

A series continues to the last positive power of x

Quantum numbers m; and ms are equal zero for n1.S and nyPo —
functions therefore only components m = 0 from the sum over m in (31)
give contribution to Q (30), which will be:

2

EZ (2 + 1) Pu[M @) Qi [N P (111) P (122)
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Then we go to the spheroidal coordinats in integrand for Q (30). Let
us consider the part of the integrand (without T) depending on one
variable ¢4 (71)¢p (71)dF;. After transition to spheroidal coordinates we
obtain:

ba(m)vp(F1)di = BMy (A, pa, ) (33)
where My (A1, 1) is a polinomial in spheroidal coordinates.

Coeflicient # does not involve the variable of integration and is
equal to the product of normalized factors of functions ¥4 and ¢pg;
also i1t includes multiplyer 271'(%)”1"'”2"'1. The coefficient § is equal
8= 2(2—?)3/2(2‘—5)5/2(§)4 in the case when ¢4 = 2p,(0), ¥p = 1S(H).
Let us consider the underintegral expression in A1, py variables for k-term
of series. The expression (33) is multiplied by the Legendre polinomial
Pi(p1):

BMi(Ar, 1) % Pelpn) = M3 (A, 1) (34)

Now, the variable y; is involved in the M¥ polynomial. The integration
of the M§(A1, #1) polinom over the p; variable is not complicated:

[ e s = P, 1) = Flnoy,-1) (35)
e
where
_ n_—ar n! —ar . (ar)s
F(n,a,r):/r e~ dr = e Z o (36)
s=0
Denote

1

5 / ME, )y = BME(A) (37)
21

Obtained polinomial in the variable A; (37) is multiplied further by the
Legendre function of A; variable, from (31) series. Denote

BME(N) - Pe(M) Z Ak \mi (38)

In the integrand for Q the following components also are presented:

BME (A1) * fir (A1) ch AT (39)

We write (see 32)

L hi@) (40)
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We have obtained the general formula for the exchange integral (30)

2 (o]
Q=8 2k+1) 3 > (afAf
k=0 i g

{F(mi,p,1)- F(m;,p,1)[c+Inp] —
—[F(mi, p,—1)F(mj, p, 1) + F(ms,p, 1) F(m;, p, —=1)] x
x Ei(=2p) + F(mz’,p, —1)F(mj,p, —1) * Ii(—4p) +

ey .z H
s=1 k'=0

1 —k'—
X l—w— Z:

my ss 1
: mj+1 PZS' ST (-)FCE F(s— K —1,2p,2) +

+F(ms, p, 1

F(mi,p,—1)- (41)

s=1 k'=0
m; s—1
p? " s—k—l)
m+IZSIZC sk’
s=1 " k'=0
—k -1
x Z Z'ZG’I (mj +1= 1,20, 1) - [(=1)" = (=] § +
11=0

p
+2A?Cf{ m+1Z ! F(nj+s,2p,1)—

!
—F(mi,p,1)- F(nj,p, 1) + P p(mi+1,2p,1) (12)

pnj-l—l
F;(x) is the exponential integral
ot
Ei(—z)=— / Tdt’ where > 0.
¢ 1s the Eyler constant
1
0

CF = — 2 _ coefficient from the Newton binomial

: k!(s—k)!

—t
dt-/‘%dt:o.mmm
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Let us consider the example of the described scheme realization in
the calculation of the exchange integrals for the hydrogen molecula. We
have

1(a—)?’,a =1 (43)

M=) -2 8=
1 1 /'Llaﬁ 4 a0

The integration over the variable p; is produces only two nonzero

terms of a series (31) k = 0 and k = 2. We have for k = 0:

M (O, 1) = My (A, ) (44)

In accordance with (37) M. ML )(/\1) =2X?-2/3 and A(lo) =2,m =2
AP = —2/3, my = 0.
We have for k = 2:

M (A1, ) = Pa(pn) (A — 1d) (45)
M (M) = —4/5
(2 yms _ 4 _ 2
;Ai AT = —p () = - (20 ),
therefore A( —2/5 my = 2; A =2/15, my = 0.
Also 33, €PN = My >(A1)f2(A1) = —(2/5)A\; and C\¥ = —2/5,

ny = 1.

One can obtain the known formula for the exchange integral of the
hydrogen molecule [9] using the expression (41) and using the obtained
above nonzero coefficients A;, €.

Appendix 3. Effective parameters of the Slater type
atomic orbitals.

It was obtained on the basis of the great amount of results of the electron
structure calculations of the molecules and clusters, that the behaviour
of the certain atom in the some class of compounds 1s the similar, and
the calculations of the spectra of these compounds or moleculas in them
give us the similar values of the effective parameters (which were taken
as a variational parameters). There are determined the rules of the cal-
culations of the effective parameters of the Slater type atomic orbitals
on the basis of this results [10,11,12]. We used the modified Slater-Engus
rules int the calculations of the effective parameters Z* and n* [12]. In
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30

accordance to them we have for n < 3, n* = n and for the hydrogen and
oxygen atom:

P 7 =1 =1, a(18y) = 1.0

W) 27 = 455, n* = 2, a(2Po) = 2.275

One can take into account the ionic state of the oxygen atomin the
compounds, for example for O~ and O~'® we have

WO 70 =42, 0" = 2, a(2Pp-) = 2.1

WO 7% = 4.025, n* = 2, a(2Pp-1.s) = 2.012
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