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Amnoramisi. B naniii pobori Hab/iMKEeHHs JIOKAJIbHOI'O [I0JIsd, AKE I'PYH-
TYETHCA HA BUKOPUCTaHHI TOoTOXKHOCTI Kasena, 3acTocoBaHO 10 MOIE T
Isinra 3 moBinbHEM THHOM B3aemomii. Ha ocHOBI orpumaHux pesyiib-
TaTiB MPOAHAJI30BAHO, AK XapaKTep B3a€MOMil BIJIUBAE HA TEPMOIU-
HamivHi BractuBocTi Mmomesti. s dyakmii posnonisy JoKaIbHUX MOJIIB,
KA TIOB’f33HA 3 MOMEPEYHUM MEepPEepi30M HENpPYKHOrO PO3CIAHH Heli-
TPOHIB, OTPUMAaHA CKiHYE€HA HIMPUHA JIiHINA, 0 3yMOBJIEHO [1AJI€KOCHK-
HICTIO B3a€MOMII.

Local field method for Ising model with arbitrary interaction
S.I.Sorokov, R.R.Levitskii, T.M.Verkholyak

Abstract. In present work local field approximation, based on Callen
identities, is applied to the Ising model with arbitrary interaction. On
the bases of obtained results it was analysed how the type of interac-
tion changed the thermodynamic properties of the model. For the local
field distribution function connected to inelastic-neutron-scattering cross
section ” Gaussian”-width of peaks has been observed.
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1. Introduction

Callen identity, derived in 1963 [1], proved to be very fruitful for the
investigation of Ising model with the nearest neighbour interaction [2-
5].The main equation for magnetization, which follows from Callen iden-
tity, contains spin correlation functions up to (z — 1) order, where z is
the number of the nearest neighbours (see, for example, [4]). The sim-
plest approximation, which had been done by Honmura and Kaneyoshi,
consists in neglecting of correlation between spin operators on different
sites [2]. In paper [3] authors omitted in equation for magnetization all
correlations higher than the triplet correlations and decoupled the last.
Another way was chosen in [4,5]. Correlation of magnetization fluctua-
tions were taken into account by introduction of correlation parameter
A. A was determined from Callen identity for correlation function in [5],
and from inverse Callen identity in [4]. It can be noted that results for
magnetization obtained by Honmura [5] coincide with Bethe approxima-
tion. In general, phase transition temperature for Ising model with the
nearest neighbour interaction calculated in methods [5,4] is very close
(up to 10%) to the exact result for square lattice and the result of high
temperature expansions for cubic lattice.

It is also to the advantage of all these methods that they do not have
any non-physical solutions in the region 7' < T, such as for example first
order phase transition, which appear in diagrammatic technique [6].

It should be stressed that in last years some versions of this correlat-
ed effective theory are widely used for investigation of disordered Ising
systems [7,8]

Mentioned above methods allow to calculate not only all thermo-
dynamical properties but also some dynamical quantities. Thomsen et
al obtained exactly inelastic-neutron-scattering cross section for honey-
comb and square lattice [9].

In present work local field method is used to investigate Ising model
with arbitrary form of interaction. We aim to analyse the influence of
the interaction range on the local field distribution function and ther-
modynamic properties of the model.
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2. A local field method for the model with arbitrary
interaction

In order to develop the method we shall follow [9]. Let us consider the
Hamiltonian of Ising model with arbitrary interaction

1
H=— Z J(Rij)S8;:S; — Z I;S;, (2.1)
i#] i
where I'; is external field (up = 1), J(R;;) is exchange interaction, S; =
+1 is z-component of spin operator.
One can single out the part in the Hamiltonian, which contains all
the terms with the operator on site k:
H = —hSy + H',
hy = Z J(Rk;)S; + T (2.3)
i#h
Here H' does not include operators on site k. Then average of operator
AS). (A— does not contain any operator on site k) can be easily calculated

(ASk) = (Atanh(Bhy)) = (Atanh[8() " J(Ri;)S; +Tw)]).  (24)

J

If A =1, we shall get a selfconsistent equation for the magnetization

(St) = (tanh[B(Y _ J(Re;)S; + Tu)l), (2.5)
J
obtained by Callen [1].

One can introduce a distribution function Py (h) for local magnetic
field on site k:

Pu(h) = (5(h - h)). (2.6)

The equation (2.5) can be rewritten in an integral form:

(Sk) = / tanh(Bh) Py (h)dh (2.7)
When we take A = % (hy + I'x), we shall obtain internal energy from
the identity (2.4)

o0

B, = —%«hk + %) Sk) = —%/ htanh(3h) Py (h)dh — %Fk<5k> (2.8)

— 00
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Further we shall consider only ferromagnetic case J(R;;) > 0 and uni-
form external field I'; = I'. Thus the local field distribution function will
be uniform too (P(h) = Py(h)). Therefore, magnetization m and inter-
nal energy E averaged over the whole lattice can be determined by (2.7)
and (2.8).

Formulae (2.6) - (2.8) show that P(h) determines completely all the
thermodynamic functions of the model. Moreover, some dynamic prop-
erties can be obtained with the help of P(h), for example, inelastic-
neutron-scattering cross section [9]:

1 T . . o
Sk w) = 5- / et S explik Ry} (S7S2 (1)
. iy

_NPw/2)+ P(—w/?)‘

2 1+exp(—fw) (29)

3. Calculation of the local field distribution function

Although we have obtained exact expressions (2.7)-(2.8), the function
P(h) is unknown. It may be calculated by using Fourier representation
of §-function:

P(h) = Py(h) = (8(h — hy)) = (% /jo dceisth—h)y

_ 1 iCh
= 5 dge Mp(Q). (3.1)

where
Mr ()= (e <" )=~ M (()=e <" exp He*““ﬁ” . (3.2)

The simplest approximation ([]; e i (Bi3) S5y oy HJ.(e*"CJ(Rw)Si) gives
the following result for M (():

M(¢) = exp{ZIH[COS(CJ(Rm)) — i(Sy) sin(CJ (Byj))]} (3-3)

= [Jlcos(¢T(Re;)) —i(S;) sin(CT(Rij))]-

J
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For the numerical investigation in case of isotropic interaction it is worth
doing sum over coordination spheres:

M (<) —eXp{ZznlnCOSCJ( n)) — i(S;) sin(CJ(Rn))]} (3-4)

= []lcos(¢T(Rk;)) — i(S;) sin(CT(Rn))]*

where z, is a number of sites in n-th coordination sphere and R,, is its
radius.

The analytical result for the local field distribution function is known
only for one-dimensional model with interaction 27" and T' — oo (when
m = 0, and < S;S; >= 0) [10]. In this case we can use the famous
formula for product

sin((J).

Tf[lcos(CJ2”) = 7]

Then, if we take into account that each coordination sphere has two sites,

. 2
we shall get the following result for M({) = [%] . After inverse
Fourier transformation the expression for local field distribution density
is

[ 20—h , B <2J
P(h)_{o L n > 2

For the approximate calculation M ({) we single out the terms in
(3.4), which correspond to the nearest-neighbour interaction and other
expand in the vicinity of ¢ up to second order of (. After inverse Fourier
transformation one obtains the following result:

1 [t 1
P(h)= o= [ d¢e"TM(() =
2m /—oo 22, /27J72(0)(1-m?)
X Z CZ?(1-m)™(1+m)*~ " exp { 2J’(2}E(;)}(l;2m2) } ) (3.5)
where h,' = T+ Ji(z — 2n) + mJ'(0), Yo psp, . J(R) = J'(0),

Y rzn,.,. J2(R) = J7(0).
Formula (3.9) shows that P(h) has (z+1) peaks in the points h = h,,’

with the width J'>(0)(1 — m?2). In case of the large dispersion peaks at




5 IIpenpunT

the h,” # 0 become invisible. The increase of magnetization leads to
the shift of peaks on the magnitude mJ'(0) as well as decreasing of the
dispersion in (1 — m?) times, as it can be seen from (3.9). For m — 1
local field distribution function leads to the d(h — J(0)).

The numerical investigations were performed for the system with
several interactions:

(R—1)

1) J(R) = Je 552 (3.6)
2) J(R) = %, (3.7)
3) J(R) = %. (3.8)

On the Figs.1-3 local field distribution function P(h) is depicted for
the interaction (3.6). It is known that P(h) is the set of J-like peaks in
points J(z — 2n) (z is the number of the nearest neighbours, n=0,...z)
for the Ising model with the nearest neighbour interaction, and has
Gaussian-like form for the long-range interaction. Figs.1-3 show that
the change of the interaction type with the help of rg in (3.6) influence
the local field distribution function P(h) strongly. In Fig.4 the results of
the estimation (3.5) are compared to the numerical computation (3.4)
for the interaction (3.6). One can see that for the cubic lattice approx-
imation (3.5) is almost good for all r¢, but it does not reflect the fine
structure near very small ro. Local field distribution function P(h) for
the interaction (3.7) and (3.8) is depicted in Fig.5. We tried to choose
such values of r¢ that the function P(h) for the interactions % and
exp RT—EI, % and exp Rr—zl were as close as possible to each other. As
the result the local field distribution function for interaction #z turns
round the same function for the interaction exp 01_%6114. However, devia-
tion between thermodynamic functions for these interactions will not be
noticeable, because expressions for thermodynamics contain P(h) only
in integrals. In Fig.6 the results for P(h) at T' < T, (when m # 0) are
depicted.

4. Calculation of the thermodynamic functions with-
in local field approximation

As it is emphasized in paragraph 2, the local field distribution function
determines completely thermodynamics properties of the system. The
magnetization and the internal energy can be calculated with the help
of (2.8)-(2.9).
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Figure 1: Local field distribution function P(h) for one-dimensional lat-
tice and the interaction I(R) = exp £=L for different ro.

Figure 2: Local field distribution function P(h) for a square lattice and

the interaction I(R) = exp &= for different ro.
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Figure 3: Local field distribution function P(h) for a cubic lattice and
the interaction I(R) = exp £=1 for different rq.
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Figure 4: Local field distribution function P(h) for a cubic lattice and
the interaction I(R) = exp RT—;l for ro = 0.2, 0.5 obtained by (3.4) (thin
line) and by formula (3.5) (thick line).
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Figure 5: Local field distribution function P(h) for a cubic lattice and
the interactions: 1 - I(R) = —, 2 - I(R) = exp 011—2715, 3-I(R) = 4,4 -

I(R) = exp ¢35y
P(h)
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Figure 6: Local field distribution function P(h) for a cubic lattice and the

exchange interaction I(R) = exp £=1 for different temperatures: T > T,

(m =0), T = 0.781(0) (m = 0.4797), T = 0.641(0) (m = 0.8175).
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For the numerical investigation it is more convenient to use Mp(()
instead of P(h) in expressions (2.8)-(2.9). After some transformations
one can get the following formula for magnetization:

+o0
m= [ a0, (1)
where ¢(() is Fourier representation of tanh(8h):
1 e won T

Similarly, the expression (2.8) for internal energy can be rewritten as
follows:

i [T,
R RSGIE RO (43)

When we take the derivative of (4.1) over external field I', we shall get
the equation for static susceptibility that has the following solution:

Com [T d(=iQ)(QOM(C)
oM

=— = . 4.4
T T T dcoo) o
Due to the definition (3.5), one can show that
OM(Q) _ sin(CJ (Ryj))

am M) zj: c0s(CJ(Riy)) — imsin(CJ (Rey)) (45)

We see from (4.4) that static susceptibility diverges, when

e OM(¢) _

| o5t =1 (46)

It is equation for the phase transition temperature. Specific heat of the

. . . _ dU_
system is defined by thermodynamic relation ¢ = 97:

=3/ T { [diTw'(c)] M - M(O)]}

— 0o .

> om_ < aT (4.7)

— 00
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Unknown function ‘g—’j’f can be obtained similarly to static susceptibility,

when we take derivative of (4.1) over T

am _ [ dC [ 6(Q)] M(Q)
OT — 1— [T d¢e(¢) 24O

(4.8)

Since denominator of (4.8) turns into zero, when T' — T, specific heat
diverges at the critical temperature as well as static susceptibility.

In Figs.7-9 the temperature dependence of magnetization in local
field approximation is depicted for one-dimensional, square and cubic
lattices. Fig.10 shows phase transition temperature 7,./I(0) as a function
of interaction range r for hypercubic lattices of different dimensions. In
case of D = 1 the phase transition temperature leads to zero when ryo —
0. Temperature dependence of inverse static susceptibility for square and
cubic lattice one can see on Figs.11,12.

5. Conclusions

In this work local field method for the Ising model with arbitrary in-
teraction has been developed and the local field distribution function,
the magnetization and static susceptibility have been calculated for the
linear, square and cubic lattices.

For interaction exp % it has been found out how ry and lattice
dimensionality influence forming of fine structure. It was shown that
changing of interaction type from % to exp RT—El lead to appearance of
satellite peaks.

It should be emphasized that the approximation (3.3) neglects the
dependence of local field distribution function on temperature (for T >
T.) and get exact results only at T' — oco. In forthcoming works we intend
to take into account higher correlation effects similar to how it was done
in [5] for the model with the nearest neighbour interaction.
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Figure 7: The magnetization m of one-dimensional lattice vs. tempera-
ture 7'/1(0) for the exchange interaction I(R) = exp £=L.
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Figure 9: The magnetization m of a cubic lattice vs. temperature 7'/1(0)

for the exchange interaction I(R) = exp Rr—zl (n.n.i means model with

the nearest neighbour interaction).

Figure 8: The magnetization m of the square lattice vs. temperature
T/I1(0) for exchange interaction I(R) = exp RT—;l (n.n.i means model
with the nearest neighbour interaction).
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Figure 10: Phase transition temperature of Ising model vs. interaction
range 1o for I(R) = exp RT—El and hypercubic lattices of different dimen-

sions.
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Figure 11: The inverse static susceptibility I(0)/x.. of a square lattice

vs. temperature T'/I1(0) for the exchange interaction I(R) = exp erl.
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Figure 12: The inverse static susceptibility 7(0)/x.. of a cubic lattice vs.
temperature 7'/1(0) for the exchange interaction I(R) = exp £
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