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TepMmomunaMika 1 peJslakcaliiHa OUHAMIKa HEBIIOPSLIKOBAHUX
CEeBIOOTHOBAMIPDHHX CErHETOeJeKTPHKIB 3 BOOHEBHMH 3B’ A3-
KaMu
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Aporamisa. TepMmoguHaMmiKa 1 AMHaAMIKa KBa3lOOHOBUMIDHHUX HEBIIO-
PAIKOBAHUX CECHETOEIEKTPHKIB 3 BOJAHEBUME 3B’ A3KaMU OIUCYEThCA Ha
OCHOBI HEBIIOPAIKOBaHOl MoAesl Isiura. B HabamxkeHH] IBOYaCTHHKO-
BOIO KJIACTepa IO KOPOTKOCAKHUX B3aEMOJIAX PO3PAXOBAHO TEPMOIM-
HaMIYHI TOTEHIIA]H, TOJMAPU3aIiio, CTATHIHY 1 AUHAMIYHY (-3a/I€KHI
cupuiinarauBocTi. TeopeTnuHl pesyJibTaTi HOPIBHAHO 3 PE3yJbTaTaMU
JleJEeKTPUYHAX BUMIDIOBaHb y YHCTHX 1 YaCTKOBO JelTepoBaHUX CerHe-
roenektpukax C's(Hi_yDy)2 POy ta PbH(D)PO,. Mogens mporHO3ye
HAABHICTH COpTOBOTO BHOpAnKyBauHa y Kpuctami Cs(Hi_;Dy)2P0y:
IPOTOHK 1 AefiTepOoHN MaloTh TEHIEHINIO CEJINTUCh Ha CYCIIHIX BOIHE-
BUX 3B A3Kax.

Thermodynamics and relaxational dynamics of disordered qu-
asi-one-dimensional ferroelectrics with hydrogen bonds

R.R.Levitskii, R.O.Sokolovskii, S.1.Sorokov

Abstract. Thermodynamics and dynamics of the quasi-one-dimensi-
onal disordered ferroelectrics with hydrogen bonds are studied within
the framework of disordered Ising model. We obtain thermodynamic
potentials, polarization, static and dynamic g-dependent susceptibilities
within the two-site cluster approximation for short-range interactions.
Theoretical results are compared to dielectric meusurements in pure and
partially deuterated ferroelectrics C's(Hy_yDy)2 POy and PbH(D)PO,.
The model predicts the sort ordering in the former crystal: protons and
deuterons tend to occupy the nearest neighbour H-bonds.
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1. Introduction

Ferroelectrics of K DP family compels much attention due to their sim-
ple structure and interesting properties. Many investigations have been
devoted to low-symmetric ferroelectrics, i.e. Cs Ha PO, (CDP), PbH PO,
(LHP) and their deuterated isomorphs.

The structure of the cesium dihydrogen phosphate crystal is shown in
figure 1. In the high-temperature paraelectric phase CDP crystal and its
deuterated isomorph C'sDs PO, (DCDP) are monoclinic and belong to
space group P2;/m [1-3]. The elementary cell has parameters a=7.906A,
b=6.372A, c=4.883A, 3 = 107.73° and contains two formula units. There
are hydrogen bonds O — H ---O of two types in this crystals [4-6]. The
shorter bonds O3 — H1---03 (Ro..0 = 2.48&) connect POy groups
in zig-zag chains along the b-axis. The longer bonds O2 — H2---02
(Ro..o = 2.56&) are almost parallel to the c-axis and connect b-chains
of POy groups in the (b, ¢)-plane. Between (b, ¢)-planes of PO, groups
the C'sT ions are situated.

In the paraelectric phase the protons of the shorter H-bonds occupy
one of two equilibrium positions with equal probability. The cooling to
T. = 156K brings CDP crystal in the ferroelectric phase [5,6] with the
P2, symmetry. In this phase the H1 protons localize in the acentric or-
dered positions in H-bonds and the PO, tetrahedra slightly turn around
the P — O2 bonds [7]. Such ordering of the shorter H-bonds also takes
place in the antiferroelectric phase of the CDP crystal, that replaces the
ferroelectric one under hydrostatic pressure (P > 330M Pa). The protons
H?2 of the longer H-bonds are ordered at any temperature and hydro-
static pressure. An important role of protons in the phase transition is
justified by the i1sotopic effect: Curie temperature in the deuterated CDP
raises to 268K [3,4].

It is possible to prepare the perfect (b, c)-plane chips of this crys-
tal and it shows a weakness of the interplane forces. Since during the
phase transition into the ferroelectric phase the ordering of protons takes
place only on the shorter H-bonds with the appearence of the polariza-
tion along chains, the CDP-type crystals are described as the quasi-one-
dimensional in contrast to the three-dimensional tetragonal crystals of
the K Ho POy group.

PbHPO, (LHP) and PbDPO,4 (DLHP) are also monoclinic crystals,
which posess the ferroelectic phase transition of the second kind at tem-
peratures 310K and 452K, respectively [8]. At room temperature they
belong to the space group Pec, whereas in the paraelectric phase their
symmetry is P2/c. Both LHP and DLHP contain two formula units
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Figure 1: The structure of the C'sHs PO, crystal.

in the elementary cell. These crystals have only short hydrogen bonds
O—H---0 (Ro.o= 2.52&), which connect PO, groups in the chains
along the c-axis. The hydrogen bonds direction in this crystals is almost
parallel to the direction of the spontaneous polarization [8]. The pa-
pers [9-12] show that protons (deuterons) in the LHP (DLHP) hydrogen
bonds move in the double-well potential and their behaviour is similar
to that of the protons in the shorter H-bonds of CDP. The large change
of T. with deuteration shows that the phase transitions in these crystals
are also closely related to the proton or deuteron ordering.

Thus at this moment the notion has been established about the quasi-
one-dimensional character of proton (deuteron) ordering in CDP and
LHP crystals with strong intrachain and weak interchain interactions. It
brings the idea to desribe the phase transition in these crystals on the
basis of the quasi-one-dimensional Ising model. This idea was realized
in the papers [5,9,13-23] (CDP) and [9,24,25] (LHP) where the phase

transition, static and dynamic properties of the mentioned ferroelectrics
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Figure 2: The structure of the PbH PO, crystal in projection on
the (a,c¢) plane. Two formula units in the primitive cell
are related by the symmetry with respect to c-glide plane
perpendicular to b-axis. Parameters of the elementary cell
are a = 4.688A, b = 6.649A, ¢ = 5.781A, B = 97.11°.
In PbDPO, a = 4.6855A, b = 6.6911A, ¢ = 5.7867A,
G =197.10°.

was discussed in the framework of the microscopic theories [13,23,24,26,
27]) based on the quasi-one-dimensional Ising model. Tt has been shown
that this model provide a good description of polarization, dielectric
permittivity, specific heat and dynamic susceptibility of CDP and LHP
crystals as well as of their deuterated analogs.

Some authors [15,16,28,29] came to the conclusion that Ising model
can not describe the isotopic effect in CDP. They experienced the fol-
lowing problems.

According to Ising model, the dielectric permittivity in paraelectric
phase 1s

A

+ Gexp(—2K/0) — J’ (1.1)

e=1

where 8 = kg7, kp is a Boltzman constant, K and J are the nearest
neighbour coupling and q = 0 Fourier-transform of long-range inter-
action, respectively. Authors of the papers [9,15] found values of the
parameters A, K and J that gave the best fit of the permittivity (1.1) to
their experimental data. They got that the Curie constant A = 47nu? (n
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Table 1: Parameters of Ising model that describe the experimental
data on CDP/DCDP. CDP parameter is in the nominator,
denominator contains DCDP parameter.

[9] [25] [15] [30]
K/ks, K || 305/682.5 | 350/540 | 265.5/611 | 300/491
J/ks, K || 3.6/08 | 1.76/4.79 | 6/2.1 6/6
A K 4650/2361 | 4825/7326 | 6780/2980 | 6597 /6469
Q/kp, K 0/0 0/0 0/0 105/83.5

i1s a number of quasispins in the unit volume, p being a dipole moment
of the quasispin along the ferroelectric axis) is less in the deuterated
crystal than in the ordinary CDP (see table 1.). Then Ising model sug-
gests that saturated value of the spontaneous polarization P* = pn low-
ers with deuteration. The experiment instead shows that P® increases.
Weakening of the long-range interaction J also contradicts to the P°
rise, because the main contribution to J is given by the dipole-dipole
interaction, which is proportional to 2.

These inconsistencies are weakened within the transverse field Ising
model. The papers [30,31] attribute the isotopic effect to changes in a
tunnelling parameter €2 instead of changes in K and J. Nevertheless
inconsistency related to Curie constant remains.

The authors of the papers [30,31] have also shown that if the tun-
nelling frequency is small (2Q < K) then the dynamic susceptibility of
the transverse field Ising model is of the relaxational type and model
describes the dynamic dielectric permittivity of CDP and DCDP. But
recently Sorokov and Levitskii [32] have displayed the incorrectness of
the approximations used in [30,31] for the temperatures 6 > €. On the
basis of an improved approximation they show that this model does not
describe the high-frequency behaviour of ¢(w) in CDP and can not de-
scribe Debye-type relaxation at all.

In order to remove the Curie constant inconsistency Kojyo and On-
odera [28,29] suggested quasispin model which attaches dipole moment
to the PO, groups. In this model H-bonds, since they are oriented almost
perpendicularly to the ferroelectric axis, induce polarization indirectly,
influencing deformation of the PO, tetrahedra. Parameters of this model
suggested by the authors are free of the mentioned above inconsisten-
cies, but the advantages of the model remain doubtful, because the Curie
constant found from the permittivity data is one and half times larger
than that obtained from P°.

The authors of the papers [22,23] insist on the applicability of the
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Ising model to the description of thermodynamic and dynamic properties
of CDP and DCDP. They have found the model parameters which are
free of the mentioned above inconsistencies and provide a satisfactory
description for a large set of experimental data within the wide range of
temperatures and frequencies. In the same papers a good description of
the partially deuterated crystals C's(Hy_;D;)2P04 is achieved on the
basis of an assumption that the parameters of Ising model are linear func-
tions of the deuterium concentration z (mean crystal approximation).
This latter result is quite strange because in the systems with strong
short-range correlations a disorder brought with deuteration should pro-
duce more pronounced effects.

In this paper we aim to describe both the thermodynamics and the
dynamic properties of disordered Ising model on the basis of the same
consistent approach. This approach alows us to study the effect of dis-
order in quasi-one-dimensional ferroelectrics with hydrogen bonds.

2. The Hamiltonian. Formulation of the problem

Following the ideas of the papers [22,23,25] we try to describe the prop-
erties of the quasi-one-dimensional ferroelectrics on the basis of Ising
model with strong nearest neighbour interaction in chains K;; and weak
long-range interaction J;;

H = —Z[(ijSiSj - %ZJijSiSj - ZHZSZ (2'1)
(i) i i

Here S; = %1 is an operator of the z-component of quasispin, that corre-
sponds to the two possible equilibrium positions of proton (deuteron) in
H-bond; K;; is a coupling between the nearest neighbours in chains; J;;
denotes an effective long-range interaction between quasispins that con-
tains indirect interaction of protons (deuterons) via lattice vibrations;
k; = Ed;, where E is an external electric field, and dj is an effective
dipole moment that accounts also a contribution of the other elements
of the lattice. Partial deuteration brings chaos into the system and re-
quires to consider the disordered Ising model. We assume the interaction
parameters to be locally dependent on the sort configuration

Kij =) KiajpXiaXjpi Jij = Y JiajoXiaXjsi
ap

af
Ki = Zlmeim (2.2)
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Operators X, describe the sort configuration: X;, = 1 if site ¢ contains
the quasispin of sort «, otherwise X;, = 0. In the partially deuterated
ferroelectric the hydrogen bond may contain proton or deuteron, there-
fore the sort indices (greek letters) take two values: @ = 1(D) or 2(H). A
site index is two-component: ¢ = %, in the nominator we write the index
of elementary cell (I = 1...N), denominator contains sublattice index
(the elementary cells of CDP and LHP contain two quasispins (short
H-bonds): a = A, B).

The model can be considered in the two limiting cases. In the case
of annealed system the equilibrium sort configuration is realized and the
thermodynamic averaging implies going over all spin and sort configura-
tions:

<' ’ '>eq = Z_lsp{S,X} exp(—H/H)( : ')’
7 = Spys xy exp(—H/0). (2.3)
In the case of quenched system the sort configuration is fixed, and

the thermodynamic averaging (- - -);; contains a trace over spin configu-
rations

(-0 = Spysy = ({SH( )] (2.4)
pe({S}) = 77 Lexp(—H/0) (2.5)
Zy = Spysy exp(—H/0)

In order to calculate the observable quantities in quenched system one
has to perform also an averaging over the sort configurations

(-2 = Sppxypp (LX), (2.7)

where distribution p,({S}) is determined by the conditions of the sys-
tem freezing. For example, if the system was prepared at very high tem-
peratures and then quickly cooled then there is no correlations in sort
distribution

(XiaXjp), = (Xia), (Xjp), = cacp, (2.8)

where ¢, 1s a fraction of the sort o quasispins in the mixture.
In the case of the equilibrium disorder the properties of the system
are affected by the “nonexchange” interaction between quasispins
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=D Vig==>_Y ViagsXiaXs,
(i5) (ij) af
1 1
) Zfij =-3 Z Lia,jpXiaXjp, (2.9)
iJ io,j B

that should be included in the Hamiltonian (Vj; denotes the nearest
neighbour interaction, I;; is the long-range interaction). In the case of
deuterated ferroelectrics such terms in the Hamiltonian may describe the
elastic energy of the lattice deformation that appears after the replace-
ment of proton to deuteron.

The annealed model within the grand canonical ensemble is described
by the density matrix

p({S, X}) = Z7 exp(=H/0);H = H = > j1aNaj (2.10)
Z = Spysxy exp(—H/0); No =) Xia (2.11)
. 1
H = _ZhijSiSj — §ZJZ']'SZ'SJ' — ZKZSZ
(i5) i 7
1
—ZVM—§Z%—ZM (2.12)
(U) 17 %
i = Zﬂme (2.13)

(a4

Chemical potentials have to be found from the conditions
(Xia)y = Ca, (2.14)

where

(D =Spgs xy eSS X ()] (2.15)

The sort configuration relaxation time in the considered compounds
is unknown at this time, therefore we do not know what type of disorder
is observed in the dielectric [15,16] and calorimetric [20,21] experiments.
This situation requires both types of disorder to be considered theoreti-
cally and compared with experimental data.
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Ising models with the annealed or quenched disorder compel atten-
tion of theoreticians for many years, because they are simple and non-
trivial microscopic models for the processes of chemical, ferroelectric or
magnetic ordering in alloys of magnets, magnets with nonmagnetic impu-
rities, solid solutions of ferroelectrics, etc. For the one-dimensional model
with the nearest-neighbour interactions some exact results are obtained:
for both annealed and quenched systems the thermodynamic potentials
and correlation functions have been calculated [33] (for quenched sys-
tem only the zero field results have been found), for the ideal (one-sort)
system without field Glauber’s kinetic equation has been solved (dy-
namic pair correlation function has been calculated [34]). Percolation
phenomena and universality problems inspire new Monte-Carlo exper-
iments with the diluted (noninteracting impurities) quenched system.
When the couplings Kj;, ;s can take values of different signs, one faces
the problems of frustration and spin glass, which we do not consider in
this paper, because herein we assume K;q j5 > 0. In the annealed model
the coupling between sort and spin ordering is of great interest [35,36].
The model provides also a test for the approximate approaches of sta-
tistical physics. For example, the mean field approximation (MFA) does
not distinguish between the properties of the annealed and quenched fer-
roelectrics, does not retrieve percolation phenomena, does not describe
the influence of sort ordering on the quasispin alignment [35,37]. The
main reason for this result is that MFA neglect fluctuations of the con-
centration and spin moment. Therefore, the most straightforward way
to improve the theory that is based on an effective field can be reached
by the account of local spin and sort moments fluctuations within the
cluster approach. Different cluster approximations suggested in papers
[36,38,39] give qualitatively correct results, which can be systematically
improved in the higher order approximations. The papers [38] (AS) and
[36] (QS) have presented phase diagrams of the model in some cluster
approximations, which are quite close to Monte-Carlo results. An Ef-
fective Field Approximation of Kaneyoshi et. al. provides good results
for average value of spin, static susceptibility and critical temperature
of the diluted quenched system [40]. In this paper we shall use the pre-
viously developed cluster approach [41-43], that gives us the analytical
expressions for the thermodynamic potentials, q-dependent static and
dynamic correlation functions of the model. We shall briefly mention the
main points of the method and generalize it on the two-sublattice model
appropriate for the CDP-type ferroelectrics.
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3. Thermodynamics and correlation functions of the
model

As well as by the density matrices (2.5) and (2.10) the complete statis-
tical description of a system is provided by the generating functions

QS: F({r})=UnZ),, (3.1)
AS:  F{{k,p})=nZ.

Nonuniform fields &, i allow us to calculate the correlation functions
of the model with the use of the differentiation of the generating functions

¢ . 0 9
QS (Siay - Sian)u)y = 0" g+ 5——F({x}) (3.2)
AS: (Xijar XinanSiipy - Sip) = (3.3)
15, . 15, 15, 15,

9n+l

.. . PN f I{’/,L ;
Opiver  Opiga, OKjp  OKjg, (s, )

were the superscript ¢ denotes the cumulant averaging, and S;,, = S; X
Let us introduce the short notations for these correlation functions

QS milsan = (Sha St i) (3.4)
AS s M) = (S Sy (3.5)
sort index 1n the case of AS takes three values:
Sioca o = 1a 2
Sioc — { X“, o = 3 (36)

In the final expressions one should account the translational invariance
of the system in uniform field (UF) and assume the fields and chemical
potentials to be independent of elementary cell index:

UF UF
Ki—oc = Ko, /’Li—oc = H-a-
Having found the generating functions, one obtains the free energy (QS)
F = —6F({x}) and the grand thermodynamic potential (AS) G =
_gf({"{a /’L})
For long-range interactions the mean filed approximation yield sat-
isfactory results. Therefore we adopt MFA for interactions Vi, 5, fia s
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and the problem reduces to the calculation of the thermodynamic poten-
tials of the model with short-range interactions in some self-consistent
field [41] (the reference system). The static and dynamic correlation func-
tions of the model can be analytically expressed via the corresponding
values for the reference system. For the system with short-range inter-
actions the approach of cluster expansions is natural [43]. Having per-
formed the cluster expansion [44] of the free energy (two-site cluster)
and restricting that expansion to the first therm [41,43] one obtains the
result of the first order cluster approximation. Thus obtained generating
functions contain only one- and two-site contributions

QS F({r}) = =22 (Fi)y + 225 (Fij)s (3.7)
AS f({lf,ﬂ}) =2 ZZ }-i"i'Z(ij)}-ij’ 3.8

where z/ = z — 1, z is the first coordination number, Z(ij) denotes the
sum over pairs of the nearest neighbour sites. The one-site contributions

Fo=Inz;, Z;= SpSle_H’/e, H, = —&;5;, (39)
Ki = K; + Zj@;

J
Fi=InZ, Z = SpSlee_,H’/e, Hi = —rSi — [, (3.10)
Hi = Hs +Zﬂ/;i§

J

and the two-site ones

Fij=InZij, Zij =Sps,s,e /",

H;; = _jRiSi - iRjSi - [(ijSiSj, (311)
jki = Ki+ Zr@;
r#£j

Fij=InZy, Zij = SPS,X,Sije_H”/G,
Hi; = —jR:S; —i8;8; — K599 — ji — s — Viy, (3.12)
JHi = pi + ZM/;Z

r#j

contain effective fields j@,jdji, that describe the influence of the site
j on its nearest neighbour ¢. We assume these fields to be locally sort
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dependent

P = Z PiaXia, jUi= Z iiaXia. (3.13)

(a4

In the uniform field limit they lose their dependence on the elementary
cell index

_ UF _ N UF ~
Plo = Prar Wiy = Vo (3.14)

L
b

ale
ale

The quantities @ and v are variational parameters that must provide
extremum of the generating functions

OF ({~})

C 0FUk ) _y 9FUm b _
AS: =g o =0, = =0, (3.16)

These conditions lead to the following expressions for the first moments

Qs: m =((Su)p). = <<Si >H”,>x, (3.17)
pi= 27 eI iy =zt Tl
AS: ML) = (S, = (Sia)u, (3.18)

— z—1_—-H./6. _ oz=1_—H.;/8
pi=Zj e Hil? pij = Zij e Hiil

The equations (3.17) and (3.18) for the fields @, ¥ give the selfconsistency
conditions, that require equality of the first moments found with the
one-site p; and cluster p;; density matrices. In the case of the simple
lattice and uniform field we obtain the generally known results of the
Bethe approximation and the first-order cluster variation method [37,39].
Nonuniform fields allows us to obtain the correlation functions by the
differentiation of the generating functions, and it is the advantage of our
approach. For example, after differentiation of the equation (3.17) with
respect to #;5 we obtain the Ornstein-Zernike type equation for the pair
correlation function. This equation can be written in the matrix form

ij

where
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Ui = == (B~ = 3D [ B 7 B — B

r re re r )
r

Giy = F('ZO)(F'(ll))—lF'(ZO) _ p(n)} - ’ (3.20)

ri ir ir ri

7 is the nearest neighbour of the site ¢ (and therefore belong to the
other sublattice), matrices F' are the one-site and intracluster correlation
functions

(FS)ap = ((StaSiaVir,)
(FS ) ap = ((SiaSip)5r,.)

(F)ap = ((Sia i), )

In the uniform field the pair correlation function become invariant with
respect to the translation on a lattice vector

Fil
x)

(3.21)

(Ri — Ry), (3.22)

and the equation (3.19) can be solved in the Fourier representation

)

@ (R Ry = o [ @By emiaRi-R;)
m agﬁ(RZ R;) = (271-)3/dq6 a m-
where V¢ 1s a volume of the elementary cell, R; is a cordinate of the ith
elementary cell.

The solution has the form

) (3.23)

B

S - 2 o -1
(mqu) m%@) _ (qAA Yy ) (3.94)
mpa(a) mpg(a) Yy Uss

Vi = —Gape'@®s — (i pemiaRe (3.25)
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R; is a base vector of the elementary cell along the chain. We have
expressed the correlation functions

(@) =mZ @ (3.26)

via the one-site and intacluster correlation functions

( A,Exlé))aﬁ = <<S%QS%0>;%% >x; (3.27)

This “partial” correlation functions contain trace over small number of
spin and sort configurations and can be easily calculated. We can go on
with the differentiation procedure and obtain the three-site and higher
correlation functions [41,43]. The same can be done for the annealed
system. We come to the similar form

M (@) MGM (@Y _ (Uaa Yo \7 398
~ (2) ~ (2) - Y* U ( . )
Mpi(a) Mpg(a) q BB

where Méz)(q) are 3 x 3 matrices whose elements are the Fourier-trans-
forms of the pair correlation functions

(2 _ Ve 3 —iq(R,—R;) { 15(2)
M= G /d ge (w5 (q))aﬁ. (3.29)

Again our approach has expressed the model correlation functions via
the “partial” ones

(A,(afé))aﬁz (81a855) (3.30)
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4. Dynamic properties

The cluster approach of the previous sections can be applied to the de-
scription of the system’s dynamics. Within the master equation approach
the density matrix p({S},t) is governed by the equation that describes
some stationary Markov process

p({S}.1) = > Wp({S}.1) (4.1)
15}

Kinetics of the system is determined by the transition matrix W. Within
the Glauber’s [45] approach the spin system interacts with a heat bath
which induces spin flips (S; = —5;). The state of the heat bath is as-
sumed to be constant, therefore a probability of the spin flip per unit
time W;({S}) depends only on the spin configuration and is independent
of time. Thus the master equation takes the form

%px({S},t) = ZV%(...—Si...)px(...—Si...,t)
- ZWZ»(...&...)px(...si...,t) (4.2)

A detail balance condition for the equilibrium density matrix of the
system leads to the following relations for the transition matrix

_ exp(—¢e;5;/0) 1 — S;tanhe;/0

= 4.3
exp(£;5;/0) 1+ S;tanhe; /6’ (43)
where ¢; 1s a local field acting on the ith spin
g = K; + Z I(iij. (44)
J

Suzuki and Kubo [34] suggested the following form of the transition
probability, which is compatible with (4.3)

! — (1 = S; tanhg;/6), (4.5)

Wile i) = 5=
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where 7; is a constant which characterize an interaction of the ith spin
with the heat bath and define the time scale of the relaxation processes.

Expressions (4.2) and (4.5) lead to the following equation for an av-
erage value of spin

Dz’,t <Si>H,t = <tanh 6i/9>H,t s (46)

where

(- Nige = SppsypUSH O ); Dee =14 70 (47)

This equation can also be derived more rigirously from the Liou-
ville equation with spin-phonon Hamiltonian. Nonequilibrium statistical
operator method with an assumption that the phonon-phonon correla-
tion functions are independent of frequency near w & 1/7; [47] gives the
same results as the Glauber’s approach yields and provides microscopic
expressions for the phenomenological constant 7;. The same can be done
within the perturbation theory [46] on the basis of the quantum equation
of motion for the spin moment.

In the case of the equilibrium disorder the sort configuration changes
as well as the spin configuration during the observation time, thus in this
case one should consider the sort kinetics also. This kinetics can also be
formulated in terms of spin operators: o; = X;1 — Xj2 (03 = £1), but
the equation of Glauber type is invalid in this case, because the spin
flip (¢; = —0o;), which is the basic process of equation (4.2), means the
transformation of H ion to D ion (and vice versa) at ith hydrogen bond.
It is obvious that the sort configuration changes due to another processes.
For the annealed system the Kawasaki equation [48,49] is relevant, which
considers elementary processes {---0;---0;---} = {---0;---0;---} (an
exchange between the nearest neighbour sites).

We shall consider the dynamics of model near the frequencies of the
ferroelectric dispersion. It seems obvious that the sort configuration can
not change during the time 10~%s. This implies that the sort distribution
is frozen with respect to quick changes of the external field (but can
feel the slow changes of temperature and the quasistatic changes of the
field). Therefore in the frequency region v > 1M H z the spin kinetics of
both annealed and quenched models is governed by the equations (4.2),
(4.6). Their dynamic correlation functions, however, differ due to the
differences in the sort distribution.

When one expands tanhe; /6 in a power serie, he obtains moments
(S; "'Sin>H,t in the right-hand side of (4.6), where sites iy ---i, are
the nearest neighbours of the site i. Expressions (4.2) — (4.6) yield an
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equation for these moments that in turn involves the second coordi-
nation sphere, therefore equation (4.6) is accurately solvable only for
the one-dimensional models in zero field (ideal chain [45,34,50], chain
with impurity on one site [51]). For models with field or chaos or in
the lattice of higher dimensions the closures are used, which express the
higher moments via lower. For example, the random phase approxima-
tion (S; "'Sin>H,t R~ <Si1>H,t . "<Sin>H,t provides a closure to equa-
tion (4.6) and lead to the results of MFA in statics. We can not re-
strict our consideration to MFA, because, as we mention before, it yield
some qualitatively incorrect results for the disordered system with short-
range interactions. The better results can be achieved in the two-site
cluster approximation. This approximation with the long-range interac-
tions accounted in MFA provides good agreement between the theory
and the experimental data on the crystals C'sDy POy, C'sHy POy [23,22]
and PbDPOy4, PbH POy [25] for spontaneous polarization, specific heat,
static and dynamic permittivity.

In our previous papers [41,42,52] the two-site cluster approximation
was developed for disordered Ising model and improved in order to obtain
the q-dependent dynamic pair correlation function of the model. The
exact results for one-dimensional lattice (dynamic pair correlator of ideal
chain without field [34], static correlation functions (3.24)) are partial
cases of the obtained formula. In this paper we apply the same method
for the two-sublattice model, which are appropriate for the CDP-type
ferroelectrics.

We construct the self-consistency equation, similar to the equation
(3.17). Within a one-site approximation we replace in €; the contributions
of all spins by the effective fields

g — 65»1] = Zr@t + Kit = Kit, (4.8)

whereas in a two-site approximation the contribution of the one spin is
considered explicitly

g — 652] = Zr@” + [(iij + Kit = jKit + [(iij. (4.9)
r#£j

In the case of the ideal system no more assumptions are needed in order
to obtain the closed set of kinetic equations:

it(S5) = (tanhel/6) . = tanh /6, (4.10)

H i
it<Si>H

D
D Jt = <tanh 652]/9>H7t = it<Si>Hyt + Lita
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where

Py = [tanh(jmt + Ki;)/0 — tanh(; &y — Kij)/a} (4.11)

— N =

Ly = = {tanh(j:‘%it + Ki;)/0 + tanh(; & — [(ij)/ﬁ} .

[\]

For the disordered system one should point out the dependence of the
effective fields .;; on the sort configuration. We shall consider the fields
@it to be different in the one-site and two-site approximations until
the sort averaging is carried out. For the sort averaging procedure both
the “one-site” and “two-site” fields will be assumed to be locally sort-
dependent

r@it = Zr@ia,tXiow (412)

(a4

We also consider the relaxation times 7; to be different for deuteron and
proton

= 79X (4.13)

The technique, similar to those used in the static case, yields us the
dynamic pair correlation function of the model, as a response of the spin
moment to weak perturbation of external field with the frequency w and
wavevector q:

1)
(2) _dma(q,w)
mY, s(qw) =0 ———-. (4.14)
aogh (553@(q,w)

We obtain

(@) mplaw)) _ (Vaalaw)  Yaw N0
. (2) “\ Yi. o Usslqw))

where the matrices U, Y have the form Q3.20) with the w-dependent
cluster correlators in place of the matrices F'. This correlators depend on
the lowest moments of sort distribution (Xj,), = ¢o and (X;0Xj5), =
Wi ;3. The former is the fraction of the sort o quasispins, the latter
1s a probability to find the quasispins of sorts « and 3 at sites i, j
respectively. ¢, is defined by the chemical content of the sample; in the
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quenched system w;, ;3 1s a constant defined by the conditions of the
sample freezing, in the case of the annealed system w;, ;5 can be found
from the static theory

Wia,jp = (XiaXjp)y,, (4.16)

and depends on the temperature and static external field.

5. Comparison with the experiment

The theory developed above provides the analytic expressions for such
observable quantities as the specific heat, polarization

1
P=z ZO; do(Sia) (5.1)

(here (---) denotes the averaging that corresponds to the type of disor-
der), static susceptibility

N 1 ¢ i R,
X(q) = —k'BT . V Zdocdﬁ<5ioc5jﬁ> [ a(R; RJ), (52)
ap
ab
Qs N

1 ~ (2)
TV ; dodgexp(iq(rq, — I‘b))mzaﬁﬁ(q), (5.3)

ab

S
n
—_

A 1 : (2)
== k’B—T . V;dadﬁ exp(iq(r, _rb))Mzoﬁgﬁ(q)’ (5.4)
dynamic susceptibility (AS: w > 1M Hz, QS: any w)

N 1 . (2)
=TT ;dad@ exp(iq(ry — I‘b))mzaﬁg(%w)a (5.5)

ab

x(q,w)

where r, 1s a position of the quasispin that belong to sublattice a in the
elementary cell, d, is a dipole moment of the sort o quasispins along the
ferroelectric axis.

The dielectric permittivity of a ferroelectric crystal is ¢ = & +
47y, € 18 greater than 1 due to the contribution of the electron and
other subsystems of the crystal. It does not depend on temperature or
frequency in the region of the ferroelectric dispersion and can be easy
estimated from the experimental data £ = £(c0).
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Figure 3: Temperature dependence of the spontaneous polarization in
LHP and DLHP crystals. Lines present theoretical results
for concentrations 0, 0.5, 1 with parameters Kgg = 500K,
Kpp = 783K, Kgp = vKpggKpp, Jgg = 123K,
JDD = 14[(, JHD = \/JHHJDD, Hg = 0.573D, HD =
0.55D, 7§ = 75 = 2.4 % 10~ 5. Symbols show experimen-
tal data [8].

It should be noted that in the annealed model formulae (5.2) and
(5.5) yield different results for the static susceptibility in the ferroelectric
phase: x(q) # x(q,0). The reason for this is that in the dynamic theory
we suppose sort configuration to be frozen with respect to the changes
of the field. Doing so, we exclude from y(q,w) the corresponding contri-
bution. This is correct at the frequencies of ferroelectric dispersion, but
wrong at w — 0.

The one-dimensional model without a long-range interaction does
not posess a phase transition. With the interchain interaction being ac-
counted this model predicts the ferroelectric phase transition of the sec-
ond kind. In the case of annealed system the sort ordering or segregation
transition also appears. Description of the ordered or segregated phase
does not introduce significant difficulties into the theory, but we restrict
our consideration to the uniform mixture.

Having accounted the symmetry of the CDP and LHP crystals, one
obtains that the nearest neighbour interactions K4 jg, Via js do not de-
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Figure 4: Inverse dielectric permittivity and relaxation time of the
crystals LHP and DLHP. Lines present the theory, symbols
are experimental data [17]. There is no good fit for deuter-
ated crystal near T, due to smearing of the phase transition
in DLHP. The reason for such smearing out may be defects
of crystal. Small spontaneous polarization in DLHP (see
figure 3) is the evidence of these defects.

pend on position in chain, q = 0 Fourier-transforms of the long-range
interactions do not depend on the sublattice indices (Z] Jiajo = Jag,
Zj Lio jp = Iap) therefore without the transverse electric field sublat-
tices A and B are equivalent and constitute one simple lattice. In this
case the correlation functions do not depend on the sublattice indices,
final expressions become much simpler, and we present them below. The
free energy of the system takes the form
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Figure 5: The dependence of the ferroelectric transition temperature

AS

T. on the degree of deuteration for CDP crystal (param-
eters are given in table 2). The line 1 corresponds to the
quenched system with the complete sort chaos. The lines
for the annealed system and the quenched system with or-
dering almost coincide and are denoted by number 2.

QS : F/N:9Z/anana—9%Zwa@ana@
aff

1 1
+§ Z Joc@m(o})mg );
af
Top = 2eartVas)/0 o

X [cosh(/%; + R/@) + aqp cosh (k] — R/ﬁ)] ;
-2
Zo =2 (1 - (m<;>/ca) ) , ap = exp(—2Kqp/0),

Co + m(o})

iy = | Ka/0+ Y Jagml /0 + 2 In = /s 66

3 Co — M

Z Z
F/N:Hz’ln—2—9%1n<R 2 [ﬂ—l—l])

Co 2c1c0x | 2¢9
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Table 2: The model parameters that describe experimental data on
Cs(H1_:Dy)2POy4: the nearest neighbour coupling K, gs;
the long-range interaction J,g; the effective dipole moment
of proton (deuteron) on a hydrogen bond d,; the parameter
of kinetic equation — relaxation time of noninteracting pro-
ton (deuteron) 72. The parameters V = Vop+Var —2Vup,
Iop describe nonexchange interaction of quasispins.

AS QS
WHgp — CHgCp wWgp — min(cH, CD)
Kgp/ks, K || 500 500 500
Jup ke, K 1.6 3.2 1.6
V/kp, K -1000 —
I.g/kp, K 0 —
Kpp/ke, K 610
Kyg/ks, K 390
Jpp/ke, K 2.85
Jum/ke, K 1.05
dp, e.s.u. 2.18x1071®8
dg, e.s.u. 1.87x10718
5, s 3x107 1
7'19[, S 6.2x10713
-I-1 ZJ @m(l)m(l) 1 ZI Cals; (5.7)
9 @ o 153 9 aftalp,
apf apf
:Lzzzz,R:a—l— a2+ z(l—a?),a=rc —ca
219
Spin moments m&l) = {S;4) should be found by minimization of the free

energy. The cluster dynamic correlation functions read

(p<z>(w)) = bupca - (m(“l)/‘f“)

af Da ’
. RuD
£(20) ) =6, N oy 5.8
(FE) op ﬁ;w DDy = PoyPro’ (5:8)
) Ryo P
FaD ) — w, folLlap
( ) w8 P DoDs — PupPsa’
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Figure 6: The dynamic dielectric permittivity ¢ = & — 72’ of the
crystal C'sDy POy at the frequencies v = 5.1, 72.4, 251, 423,
730, 1044, 2000, 1150 MHz: theoretical lines correspond to
the model parameters of the table 2, symbols present the
experimental data [9,16,22].

and

1
Dy = 14+iwtl; Pop = 3 [tanh(k), + Kag) — tanh(i, — Kag)],(5.9)

Rag = 2aup (Qa(x@(l + cosh 2k’ cosh 2/%/@)

+(1+ aiﬁ)(cosh 2k’ + cosh 2/%/5))
_2

X

[cosh (&), + Rj) + aop cosh(ky, + R/ﬁ)]
(1+ aZg + 2aqp cosh 2. (5.10)

X
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Figure 7: The dynamic dielectric permittivity of the crystal
CsH3POy. Lines present theoretical results (parameters in
table. 2), symbols show experimental data [16].

Parameters of the theory are: the short-range interaction in chains
Kpp, Kpg = Kgp, Kgg; the q = 0 Fourier-transform of the long-
range interaction Jpp, Jpg = Jgp, Jig; the effective dipole moments
of deuteron and proton in hydrogen bond dp, dg; the relaxation times
of noninteracting proton and deuteron 73, 75. In the case of quenched
disorder the probability wp g to find proton and deuteron at the nearest
neighbour H-bonds is another parameter, for the annealed system the
parameter is a quantity V= Vop +Vug —2Vp g that defines energetical
advantage (V < 0) or disadvantage (V > 0) of the sort configurations,
when the nearest neighbour H-bonds contain proton and deuteron.
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Figure 8: Comparison of the experiment (see also caption to figure 9)

and the model with the nonequilibrium disorder. Thick lines
show theoretical results for quenched model with parame-
ters given in table 2. In the case of the complete sort chaos:
Wap = cocp (lines 1, 2, 3’, 4°, b correspond to concentra-
tions # = 0, 0.12, 0.47, 0.83, 1) there is no satisfactory
agreement between the theoretical and experimental values
of 1/g¢. Good fit to experimental data can be reached, if
we suppose that deuterons and protons tend to occupy the
nearest H-bonds: wi2 = min(ey, ca) > ciea (the lines 1-5
describe concentrations » = 0, 0.2, 0.53, 0.88, 1).
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Figure 9: Spontaneous polarization P, inverse dielectric permittiv-

ity 1/ep and inverse relaxation time 1/7 of the ferroelec-
tric Cs(H1-3;D;)2 POy at different degrees of deuteration.
Squares correspond to experimental data [15], thin lines
in the lower picture connect experimental points from the
paper [16]. Thick lines, denoted by numbers 1-5 are theo-
retical results for equilibrium model with parameters given
in table 2 for concentrations # = 0, 0.2, 0.54, 0.88, 1.
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The figures 3, 4 and 6, 7 show that the theory provides good de-
scription for the crystals without chaos: CDP, LHP and their completely
deuterated analogs (model parameters are given in table 2). For the bet-
ter description of the permittivity and relaxation time in the ferroelectric
phase one should take somewhat different values for the quasispin dipole
moment d, and the bare relaxation time 7¥ as it was in the papers
[22,23,25].

For CDP there exist also dielectric measurements of partially deuter-
ated crystals [15,16]. Tt should be noted that deuteron concentration x
has not been measured in this experiments and dependence of the Curie
temperature 7. on the degree of deuteration is unknown. Such infor-
mation is highly desirable, because it raises requirements to the model
parameters. Theoretical T.(x) dependence for CDP is shown in the fig-
ure 5. Another drawback of the mentioned above experiments is that
permittivity and relaxation time were not measured in the ferroelectric
phase, where multidispersive relaxation and greater differences between
annealed and quenched systems may take place. On the other hand, com-
parison of q-dependent static and dynamic correlation functions with
experimental data (e.g. neutron scattering experiments) might also be
very interesting.

At given parameters the theory predicts almost monodispersive re-
laxation in paraphase for all . Such behaviour actually takes place in the
experiment for C's(Hi_;D;)2POy4. Figure 8 shows, that in the case of
the quenched disorder with complete sort chaos (was = cacg) the static
permittivity differs from that of C's(H1_,D;)2PO4. The annealed model
with V = 0 does not describe experiment also. Therefore we have rejected
these (quite artificial) restrictions and obtained good fit to experiment
within both annealed (figure 9) and quenched models (figure 8). Both
models predict sort ordering in the system: great values of wis signify
that hydrogens and deuterons tend to situate at the nearest neighbour
H-bonds. It means that the following ordering of H and D ions in chains
takes place: DHDDDHDDHDHD at cg < cp (protons never meet to-
gether), HDHHDHHHHDHDH at cg > c¢p (deuterons never situate
at neighbouring hydrogen bonds) and DHDHDH at ¢y = ¢cp = %
6. Conclusions

On the basis of disordered Ising model we develop the statistical the-
ory for ferroelectric properties of pseudo-one-dimensional H-bonded fer-
roelectrics Cs(Hy_pDy)2 POy and PbH,_ Dy PO,4. We consider short-
range intrachain interactions within two-site cluster approximation, long-
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range interactions are taken into account within mean field approxi-
mation. Dynamics of the system is considered on the basis of master
equation approach. Thermodynamic potentials, order parameters, static
and dynamic correlation functions of the model are calculated. We de-
velop the theories for quenched and annealed systems and compare their
predictions to experimental data. The model provides good description
of dielectric measurements in the crystals of C'sHsPO4, PbH PO, and
their deuterated isomorphs. We have not determined a type of disorder in
Cs(H1-3Dy)2 POy, because both quenched and annealed theories match
with available experimental data. The experimental determination of
Te(2), dielectric measurements in the ferroelectric phase and the mea-
surements, related with q-dependent correlation functions, are desirable
in this respect. The theory predicts a sort ordering in C's(H1_;Dy)2 P04
crystals. This prediction as well as theoretical T, on x dependence are
the most interesting features for experimental verification.
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