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Amnoramisi. 3alpOIOHOBAHO I'PATKOBY MOIEJIb 13 BUIOBXKEHUX MOJIE-
KyJI, sKi B3a€MOMIIOTH MiK CODOI0 3a HOMOMOrow moreHmiaay bepme-
[Teaykaca. 3a momomororo momesoBanasa meromom Monrte Kapsio mo-
CJTLIKEHO TTOBEIiHKY BHYTPIITHBO1 €HePril, TEJIOEMHOCTI Ta CKAJIAPHOTO
napamMerpy BHOPAIKYBaHHs B OKOJI mepexomy Hemaruk-isorpomnua (HI)
cucrema. Ilokaszano, mo mpu 3pocranti BumoBxkeHHs mosekysa HI me-
pexin crae CUIBHIMNM IIEPEXOIOM HEePIIoro pomay. Pesyabraru mopiBHIO-
IOTHCA 13 IHIMMMHU JaHUMK KOMIT IOTEPHOT'O MOIE/IIOBAHHA Ta 3 EeKCIIe-
pumentom. Ilokaszano, mo moBeminka Oararbox HemMaTukiB B okosi HI
epexoay MoXke OyTr OMUCAHA 3AITPOITOHOBAHOI0 MOIE/LTIO i3 BiIIHOCHUM
BUJIOBXKEHHAM MOJIEKYJ1 BilL 3 10 5.

Investigation of nematic-isotropic phase transition in liquid
crystals by Monte Carlo simulations of lattice models

Ja.M.Ilnytskyi

Abstract. The lattice model of the elongated molecules interacting via
the Berne-Pechukas potential is proposed. The Monte Carlo simulations
of such a system is performed in the vicinity of the nematic-isotropic (NT)
transition. The internal energy, heat capacity and scalar order parameter
near transition are investigated. It is shown that for more elongated
molecules NI transition becomes of more strong first order. The results
are compared both with the results of other computer simulations and
with the experiment. It is shown that the behaviour of many nematics
in the vicinity of NI transition can be described by proposed model with
the elongation ratio of molecules from 3 to 5.
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1. Introduction

Many molecular fluids consisting of anisometric molecules have one or
several liquid crystalline phases [1]. The simplest among these phases is
the nematic one (it appears in nematogenic liquid crystals) characterized
by long range orientational and short range translational order. In the
case of thermotropic nematogens it can be observed below the isotropic
liquid phase. With the increase of temperature the nematic to isotropic
(NI) transition takes place [1].

To favour orientational ordering the intermolecular interactions in
nematogens have to be sufficiently anisotropic. In general they consist
of both long-ranged anisotropic interactions and short-ranged repulsive
ones, which complicates theoretical description of such systems. Maier-
Saupe theory [2] gives the mean-field description of NI transition con-
sidering each molecule to be placed in the mean field of all others. Only
long-ranged interactions are taken into account. This theory predicts
that NI transition is of first order, but overestimates essentially the order
parameter at transition and its latent heat as compared to the experi-
ment. Mean-field theory with both energetic and steric effects [3,4], two
particle [5] and four particle [6] cluster expansions were developed to de-
scribe NI transition too. These theoretical approaches do not include any
details of the intermolecular interaction and thus are not able to describe
wide variety of real nematogens. On the other side Onsager theory for NI
transition describes the system of long thin hard rods [7] taking into ac-
count only pure steric effects of excluded volume. This theory gives very
strong density driven first order NI transition. Landau-de Gennes phe-
nomenological theory of NI transition [1,8] starts from the expansion of
free energy in powers of order parameter and contains a few phenomeno-
logical parameters which can be fitted with the experiment. It predicts
the order of transition due to symmetry considerations, estimates pre-
transitional behaviour of the pair correlations and other properties [8].

The great progress in identifying the microscopic nature of phases in
liquid crystals was achieved by computer simulations which have been
initiated for these systems more than 20 years ago. There are several
approaches in providing computer simulations concerning NI transition.
First one is the Monte Carlo (MC) study of the lattice version of Maier-
Saupe model (called then as Lebwohl-Lasher model) performed by the
different groups [9-14]. Molecular dynamics study of this model was also
performed [15]. A MC study in which the restriction to lattice sites is
removed and a scalar component added to the anisotropic potential has
been done [16]. This approach consider NI transition as temperature
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driven one and gives the behaviour of internal energy, heat capacity,
and scalar order parameter (referred further as order parameter) in the
vicinity of transition point, as well as pretransitional properties of pair
correlations. The soft potential used in these simulations does not include
the details of molecular shape which can be important at the typical
densities in real nematics.

The second approach includes MC and molecular dynamics study
of relatively dense systems of hard particles with strong short-ranged
repulsive intermolecular interactions: for example the system of hard
spherocylinders [17,18] spheroids [19,20], thin hard platelets [21] and
of other shape (see [22]). Phase diagram includes in some cases both
nematic and smectic phases, and NI transition is interpreted as density
driven one. The molecules shape plays in this approach dominant role.

Other approaches are connected with the simulations of systems with
more realistic intermolecular potentials like potential with dispersion
forces [23], Berne-Pechukas [24-26] and Gay-Berne [27] potentials. The
last one seemed to be the most realistic for description of liquids with
elongated molecules and is used in many recent simulations. Adjustable
parameters in this potential can be fitted to describe real intermolec-
ular interaction in given mesogen. The phase diagram for Gay-Berne
liquid of 256 particles was investigated by means of molecular dynam-
ics simulations in wide range of temperatures [28]. Phases were identi-
fied by using computer graphics to vizualize configurations. System pos-
sesses an isotropic, nematic, smectic A, smectic B and a crystal phase.
Phase diagram of the similar system was also investigated in [29] using
molecular dynamics simulations in NVT ensemble. The isotropic liquid,
nematic and smectic B phases were identified. The temperature stabil-
ity of nematic phase is investigated. These simulations suggest that the
anisotropic attractive interactions play a crucial role in the formation
of smectic B phase. The adjustable parameters of Gay-Berne potential
were fitted for the case of p-terphenyl and molecular dynamics study of
256 molecules was performed in [30]. Isotropic, nematic and smectic A
phases observed. Model parameters for p-azozyanisole (PAA) were ad-
justed in [31] and again molecular dynamic study of 256 molecules is
done. The temperature dependencies of rotational and shear viscosities
are in a good agreement with the experimental data. Other bibliography
on related subjects can be find in corresponding literature [1,32-34].

We will concentrate our attention on results obtained by computer
simulations of Lebwohl-Lasher (LL) model which is the system of ani-
sosymmetric molecules confined to the sites of simple cubic lattice and
interacting via the simple anisotropic potential of Maier-Saupe type.
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Hamiltonian of the model is written in the form [9]:

H = —¢ Z PQ(COSGM), (1)
<ij>

where the sum includes all pairs < 7,j > of nearest neighbours, 6;; is
the angle between long axes of i-th and j-th molecule, € is the maximum
interaction energy, and P»(z) is the second Legendre polinomial. This
model was firstly proposed by Lebwohl and Lasher [9] to obtain more
exact MC simulations as compared to mean-field approximation of [2].
It was shown by the authors that transition is definitely of first order,
as well as estimations for transition temperature Ty, order parameter
in nematic phase at transition temperature Sy; and latent heat were
obtained. Then this model was subsequently studied in greater detail by
Jansen, Vertogen and Ypma [10]. These autors stated two aims: firstly,
to improve the accuracy of the calculations, and secondly, to calculate
the magnetically induced birefringence and the scattering of light by
orientational fluctuations in the isotropic phase. Then LL model was
revisited by Luckhurst and Simpson [11] to get more accurate data for
internal energy, heat capacity and latent heat at the transition, as well
as transition tempetature T;. MC data obtained by authors was ex-
tensively compared with results obtained within the cluster theories and
with experimental data on real nematics. Molecular dynamics study of
LL model was performed by Zannoni and Guerra [15]. MC data obtained
from simulation of LL model were essentially reestimated by Fabbri and
Zannoni [12]. The larger lattice of (30%) molecules was simulated and
the number of simulation runs was significantly higher than in previous
simulations. This allowed to get more precise estimates for transition
temperature Ty, as well as for order parameters < P, >= S, < P, >,
internal energy and heat capacity in transition region. Particular atten-
tion has been devoted to pair correlations Ga(r), G4(r). The difference
between T'n and isotropic phase limiting instability temperature 7* was
obtained with the good accuracy and agree well with the experiments
on real nematics.

Lebwohl-Lasher model was revisited again by Zhang, Mouritsen and
Zuckermann [13] using modern numerical techniques of analyzing phase
transitions. The finite-size scaling analysis proposed by Lee and Koster-
litz [35] and Ferrenberg-Swendsen reweighting technique [36] were used.
Unambiguos numerical evidence is found in favour of a weak first order
transition and the presence of pseudospinodal points T*, T** which are
extremely close to T;. Estimate for Ty coincides with one from [12],
and value for transition entalpy is in satisfactory agreement with experi-
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mental data on octylcyanobiphenyl (83CB) [37]. Pseusospinodal points 7™,
T** are located from the form of free energy as the function of order pa-
rameter with two minima in the transition region. Correlation functions
for the order parameter fluctuations for the temperatures just above the
transition are investigated by Greeff and Lee [14]. At those temperatures
for which the distribution of order parameter fluctuations is Gaussian,
inverse susceptibility is found to follow Landau theory behaviour, being
proportional to (7' — T*). The value for T* is close to one from [12].

Despite the limited realibility of LL model (in fact it interpretates NI
transition as a rotational order-disorder transition in an effective crys-
talline solid) it plays role of canonical model of a system which displays
an orientational phase transition like an Ising model for order-disorder
phenomena in alloys and magnetic systems. To bring more physics into
LL model one has to replace the simple anisotropic potential of Maier-
Saupe type in (1) by much more relistic one. Such attempt was made,
for example, in [23] where the MC simulation of lattice model with
anisotropic dispersion forces (being more realistic soft potential) is per-
formed. But in this case it turned to be that NI transition in such model
does not differ essentially from the transition in LL model. The order
parameter at transition is slightly higher and this produce the larger
entropy of the transition but both these values are insensative to vary-
ing the relative anisotropy in the polarizability in the system. Althought
authors believe these differences to be significant they would emphasize
that the transition is blurred by the relatively small ensemble used in
the simulations (10% particles).

It is evident that increasing of the systems size together with the
use of realistic potentials become very time consuming. The most com-
puter simulations on Gay-Berne fluids are simulated on 256 particles
[28-31] which system seemed to be too small for investigating phase
transitions. For this reason models of the same level of simplicity as LL
model seemed to be still useful for investigation of different phase tran-
sitions in anisotropic systems. The aim of this report is to modify the
simple anisotropic potential of Maier-Saupe type used in LL model by
including parameter of molecules elongation. The influence of this factor
on phase transitions in hard particles systems is already investigated [22].
We will investigate the influence of this factor in the system of particles
interacting via soft potential. This will be done by using the angular part
of Berne-Pechukas potential [24] instead of simple anisotropic potential.
This potential [24] is the single-site approximation of intermolecular site-
site atomic potential between linear molecules and describes the pairwise
interaction between two ellipsoids of revolution with given elongation.
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The potential of Maier-Saupe type can be reproduced from this poten-
tial in the limit of almost spherical molecules. Comparing results of our
simulations with experimental data for some nematics in the vicinity of
NI transition gives us optimism that LL model modified in such a way
gives one the possibility to simulate different real systems closer to their
nature.

The outline of this report is as follows. Section 2 contains description
of simulation method on pure LL model. We decided to perform our own
simulations (despite the great amount of data avaliable in literature)
firstly, to test out our procedure on well known model, and, secondly, to
remove any method-relative effects in future comparing with simulation
of modified LL model with Berne-Pechukas potential. Section 3 contains
definition of modified LL model and its simulation for different elongation
of molecules according to method described in section 2. The influence
of molecules elongation on latent heat and order parameter is discussed.
Section 4 contains comparing of our data with the experiments on real
nematics. We compare both latent heat, value of order parameter at NI
transition and extrapolate temperature dependence of order parameter
to get effective index (3. This section include the general conclusions too.

2. Monte Carlo simulation of Lebwohl-Lasher
model

Here we present the details of Monte Carlo simulations of LL model
in the vicinity of NI transition. We consider the system of 203 molecules
confined in the sites of simple cubic lattice with the periodic bound-
ary conditions. Each i-th molecule is characterized by unit vector «; di-
rected along its long axis. Each direction @; was stored as the set of it’s
Cartesian coordinates (x;,y;, z;). Pairwise interactions between nearest
neighbours are considered to be of the simple anisotropic form (1).

Simulations at each temperature started from perfectly ordered state
along OZ axis. Then we allow each molecule to rotate to new direction
u';. To satisfy the ergodicity condition we have to move in the phase
space of configurations by reasonable steps, so the new direction o i can
be choosen in the following way:

Ti+0-p1 Yi+0-p2 2i+0-ps

) )

), (2)

o
u'y = (wlz:ygazzl) = (

L Ly L

where § < 1is the restriction parameter, 12, = (z;+8-p1)*+ (y;+6-p2)* +
(zi + 8 - p3)? stay for normalization of u/;, p1 23 are the pseudorandom
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Figure 1: Dimensionless single-molecule internal energy U* in the vicinity
of NI transition for the Lebwohl-Lasher model (open circles — averaged
energy, triangles — separated energies of coexisting phases, open squares
— data from [11], AU* — dimensionless latent heat).

numbers from —1 to +1, generated by generators [38]:

(1)

M _ Tni1
Ppp1 = 2.0 % - 1.0, ®)
e = (@ - 2ff) &m0, @

Here a = 16807, m = 23! — 1, index (") denote 32-bit integer type
of variable, index ) floating-point type, & is bitwise AND operation
between the integers. We use three independent generators of (4) type
for each of p; 2 3 started from different initial zo.

The acceptance or rejection of new configuration is considered due to
the standard Metropolis algorythm [38]. Restriction parameter § restricts
possible rotation of the molecule during one step and makes it possible
to control the acceptance-rejection ratio. The same restriction for the
spherical polar angle when working in spherical frame is usually used too
[11]. One MC cycle is completed after allowing all molecules to change
their orientation. We performed 10° cycles for the temperatures close to
transition. The data obtained for dimensionless single-molecule internal
energy:

_<H>

U= N -€ (5)
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Figure 2: Histograms of internal energy distribution in the vicinity of NI
transition for the Lebwohl-Lasher model.

(where H is defined in (1)) are presented in fig.1. Our MC data for U*
coincides well with other ones for the same system size avaliable in lit-
erature [11]. Simple statistical averaging used for calculating of U* in
(5) (open circles in fig.1) produces a curve with the change of slope at
transition temperature Gnre. To find the latent heat of the transition
one can use histograms of the energy distribution [12]. In the vicinity of
transition these histograms demonstrate a two-hill shapes which indicate
the coexistance of isotropic and nematic phases (fig.2). Corresponding
cumulants of these distributions were discussed in details previously [12].
We can separate energy values of two phases by estimating maximums of
these histograms, which are shown in fig.1 by triangles. Our estimation
for latent heat for LL model is AU = AU*e = 0.062¢ in a good agree-
ment with values AU = 0.1e [10], AU = 0.07¢ [11] and AU = 0.05¢
[12].

The change of slope for U* at the transition region leads to the peak
in the single-molecule heat capacity ¢y (fig.3):

To find this derivative we used both differentiation of cubic splain in-
terpolation between U* points with respect to fe [11], and alternatively
differentiation of linear interpolation between U* points. Both methods
coincide well and give peak for cj, at Byre = 0.887 close enough to re-
sults Byre = 0.894 [10], Svre = 0.887 [11], and Snre = 0.890 [12]. It has
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Figure 3: Position of the NI transition temperature from the peak of heat
capacity for Lebwohl-Lasher model.

to be pointed that this procedure is very sensative to accuracy of energy
data points, so calculation of ¢y, is useful in general for estimating of
transition temperature and is not accurate enough to compare it with
the experimental data.

One of the most important aims of MC simulation in LL model is to
evaluate scalar order parameter [1]:

S =< Py >=< Py(cosb;) >, (6)

where 6; is the angle between long axis of i-th molecule and director
(preferred direction of nematic ordering). As it was pointed in [12] direc-
tor can fluctuate from one simulation cycle to other, so order parameter
is calculated with respect to the instantaneous prefered direction after
given cycle. This is normally done [10-12] by the method proposed by
Viellard-Baron [17]. According to this method the tensor order parame-
ter [1]

<z?>-1/3 < @iy > < xizp >
Sij = 3 <wyiw; > <yi>-1/3 < wyizi > (7)
<z > <z > <z}>-1/3
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is calculated after each MC cycle and its eigenvalues A; are found. Di-
agonalization of S;; corresponds to switching from laboratory frame to
the director frame. The largest eigenvalue of S;; gives the scalar order

parameter
S = max()\,-) .

Evaluation of S during simulations shows dramatic increasing of its
fluctuations in the transition region. Typical behaviour of S as the func-
tion of Monte Carlo cycles at Se = 0.886 is shown in fig.4. It is evident

0.4 I I I I I I I I I

0.3 ﬁ

01 |

0.0 T I T I B H
0 10 20 30 40 50 60 70 80 90 100
MC cycles 1073

Figure 4: Typical behaviour of the order parameter S vs Monte Carlo
cycles for temperatures close to NI transition (the case of Lebwohl-Lasher
model, Be = 0.886).

that this figure shows the jumps between two coexisting phases: isotropic
and nematic taking place simultaneously at this temperature. To sepa-
rate values for order parameter in two coexisting phases we can use
histograms of order parameter distribution. This turns to be possible
only for some temperature points due to the fact that two maxima at
histograms are too close and wide enough and thus intersect one another
strongly. The behaviour of order parameter as the function of tempera-
ture is shown in fig.5. We found that the order parameter in nematic
phase is Sy; = 0.240 which value is close to previous ones Sy; = 0.333
[10], Snr = 0.270[11], and Sy = 0.270 [12]. Typical experimental values
for Sy are between 0.3 and 0.45 [39]. It should be noted that behaviour
of S in the vicinity of Sy is very sharp so value of Sy is very sensative
to correct determination of Oy point.
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Figure 5: Order parameter S near NI transition for the Lebwohl-Lasher
model (triangles — present data, squares — data from [11])

Thus, we to recalled standard computational method for simulation
of LL model in the vicinity of NI transition [9-12]. Due to this we will
omit corresponding explanations in the next section containing original
results. On the other hand, in such way we will reduce the influence of the
computational details when comparing simulations of LL and modified
LL models being performed using unique simulational scheme.

3. Modified Lebwohl-Lasher model

As one can see LL model is capable to give the satisfactory quantitative
description of NI transition in the liquid crystal materials. But the values
for latent heat AU as well as nematic order parameter at transition point
Snr given by LL model are fixed and cannot cover entire interval of
typical experimantal values for real nematics [39]. To bring more physics
into this model one have to include additional parameters connected
with the details of the intermolecular interaction. We suppose that this
can be done by using more realistic Berne-Pechukas (BP) potential [24]
(the predecessor of Gay-Berne potential [27]). In the case we still retain
the lattice the translational part of this potential will be lost, and only
angular part will be essential. This will retain intermolecular interaction
in the system to be soft but brings the additional parameter of molecules
elongation.
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BP potential is the overlap potential which consider pairwise interac-
tion between moleculs of ellipsoids of revolution shape instead of linear
arrays of atoms. It has the Lennard-Jones form with the orientational
dependent strength and range parameter [24]:

Vi (5,105, 7) = e {(%)12 _ (”_1)6] , (8)

,
where
iy = eo [L =) (9)
and
P + 7 FT — PO ~1/2
won{-s [P gl w

The anisotropy of molecules are characterized by the anisotropy param-

eter:
a2—1 0'||
— - — 11
X=oop =0 (11)

where 0,0 are major and minor axes of ellipsoids of revolution, and a
is the elongation parameter. The distance r = o;; is, to good accuracy,
the separation at which two molecules of relative orientation specified
by unit vectors uj,u}, 7 touch.

Let us find BP potential in the limit of small anisotropy xy < 1. To
this end one can perform expansion of the square root in (9) in powers

N6
)11<<Hll Vpp (0,0}, T) = 3 {éﬁoX2 {(Ui) -

of x and keep leading terms:
i 12
213 - (%) ] } cos? 0;j

f[-@) o

Let us denote the distance dependent term by e:

=t () ()] w

Then it is evident that in the case of:
1. x<K1,
Tij _
2. —= = const.
T
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Figure 6: Angular part of Berne-Pechukas potential Vgpa(f) vs angle
between molecular axes 6 for different elongation of molecules (LL model
corresponds to @ — 1 case).

this limit reproduce the simple anisotropic potential of Maier-Saupe
type:

lim V; 1w, T) = —€P; 0;; t. 15
X1<<ml Bp (W, w),T) eP>(cos 6;5) + cons (15)

We will call the lattice model with BP potential as modified Lebwohl-
Lasher (MLL) model. Due to retaining of the lattice we need indeed only
angular part of this potential Vppa(8;;) which we normalize in such
manner that at limiting values of angle § = 0; 7 this potential have to
coinside with the Maier-Saupe type one. This leads to:

€ 1
ij
where

V1—x2 a
=2 . 17
1—/1—x* (a—1) )
So within the MLL model one can consider more or less elongated

molecules by varying the elongation parameter a which will change the
form of interaction potential (16). As one can see in the fig.6 potential

f:
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Figure 7: Dimensionless single-molecule internal energy U™ in the vicinity
of NI transition for the modified Lebwohl-Lasher model with molecules
elongation a = 3 (open circles — averaged energy, triangles — separated
energies of coexisting phases, AU* — dimensionless latent heat).

Vepa(6;;) with a = 3,5 is more hard as compared to Maier-Saupe one
when € approaches 7/2. On the other hand the LL model can be repro-
duced from MLL model in the case of almost spherical molecules a — 1
(x < 1). To verify this fact numerically we performed simulation of MLL
model for ¢ = 1.1. It turned to be that we got exactly the same results
as for the LL model in the previous section.

To investigate influence of molecules elongation on the NI transition
we performed simulations for reasonable cases a = 3 and a = 5. These
cases were also used in hard particles simulations [19,20]. Other possible
reason is that, for example, molecules of typical nematogen PAA are
roughly the rods with elongation parameter a = 4 [1]. All simulations are
done using the method described in previous section. We observed more
strong first order NI transition in both cases @ = 3 and a = 5 as compared
to LL model. The energy in the case of a = 3 is presented in fig.7. To
separate energies of isotropic and nematic phases we used histograms of
energy distribution. The NI transition in a = 5 case demonstrate very
strong first order nature with relatively large latent heat AU = 0.474¢
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Figure 8: Dimensionless single-molecule internal energy U™ in the vicinity
of NI transition for the modified Lebwohl-Lasher model with molecules
elongation a = 5 (open circles — averaged energy, triangles — separated
energies of coexisting phases, AU* — dimensionless latent heat).

and with absence of coexisting phases (see fig.8). The last fact can be
explained by the large potential barrier between two phases which cannot
be easily overcomed during simulations.

model Onr1€E AU SN

LL 0.887 | 0.062¢ | 0.240
MLL (a=3) | 0.9437 | 0.111¢ | 0.285
MLL (a=5) | 1.062 | 0.474¢ | 0.460

Table 1: Inverse transition temperature Gy e, latent heat AU, and order
parameter at transition Sy for NI transitions at Lebwohl-Lasher (LL)
and modified Lebwohl-Lasher (MLL) models.

Data for the order parameter S in the cases of a = 3 and a = 5
together with data for LL model are shown in fig.9. We got larger values
for Sy with increasing of a. Difference between cases a = 5 and a = 3 is
much more essential than between ¢ = 3 and LL model. The behaviour
of S in the case of @ = 5 demonstrate again much more strong first order
transition as compared to other cases. We collected values for inverse
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Figure 9: Behaviour of order parameter S near NI transition for models
with different elongation of molecules (8nxre — inverse temperature of NI
transition, At — inverse temperature of data extrapolation to fit power-
law dependence).

transition temperature Byye, latent heat AU, and order parameter at
transition Sy in table 1.

Due to these results it can be pointed unambiguosly that NI transi-
tion in MLL model become more strong first order one with increasing
of elongation parameter a. It is interesting to note, that computer simu-
lations of lattice model with anisotropic dispersion forces gave also more
strong first order transition as compared to LL model [23]. It is known
[22] that as the shape becomes more elongated, we expect to see pro-
gressive strengthening of transition, towards the Onsager limit [7]. These
results bring new light on comparing of MC data with entire set of ex-
perimental data on NI transition.

4. Comparing with the experimental data

Our data for NI transition temperature, latent heat, and the order pa-
rameter obtained within the MLL model can be compared with the ex-
perimental data on real nematics. For example the set of experiments on
13 nematics in the vicinity of NI transition was collected by Haller [39].
Let us discuss firstly the behaviour of order parameter S in the vicinity
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Figure 10: Comparing values for order parameter at transition Sy ob-
tained within the LL and MLL models with the experimental data.
Crosses are experimental data for different nematogens, circles — par-
ticular data for MBBA, rombs — for PAA (all experimental data are
taken from [39]).

of the NI transition (fig.9). As long as the NI transition is the first order
the order parameter have some non-zero value at NI transition temper-
ature Sy and drops to zero sharply when temperature is increased. As
was pointed in [39] one can extrapolate the gradual decrease of S until
it becomes zero at hypothetical second-order phase transition temper-
ature T'f. Such extrapolation yields after scaling of experimental data
following relation [39]:

S=01-T/TH?, (18)

where (3 is the critical index for order parameter in the hypothetical
second-order transition at 7' = TT. In our case we can write the similar
power law in terms of inverse temperature:

S = So(Be — Ble)? (19)

We performed several comparisons of our results with the experimen-
tal data. First of all we compared values for Sy; obtained for LL and
MLL models with the experimental set of correspondent values for Sy.
This is illustrated in fig.10 where one can see that the typical experi-
mental values for Sy; turned to be inside the interval between values
obtained for MLL model at a = 3 and a = 5. Let us consider some typical
nematogens. For example, from the rough steric point of view molecules
of p-methozybenzylidene-n-butylaniline (MBBA) correspond to elonga-
tion a = 3 and molecules of p-azozyanisole (PAA) to a = 4. The experi-
mental values for MBBA Sy = 0.283,0.332 [39] are indeed close enough
to our result Sy; = 0.285 for @ = 3 case, and the experimental values
for PAA Snr = 0.38,0.39 [39] (filled rombs in fig.10) are just at the
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middle between results for a = 3 and a = 5. Other method to compare
our results for order parameter with the experiment is to extrapolate our
data in nematic phase to the point e and to find the power law (19).
For this purpose we plotted the dependence of S vs fe in nematic phase
in logarithmic scale (fig.11). The best fits were found with the value of

log(Snem)
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Figure 11: Fitting data for order parameter in nematic phase Syenm, 0b-
tained for models with different elongation of molecules to power law
Spem = So(Be — f1e)? in logarythmic scale (effective index 8 = 0.2).

exponent 8 ~ 0.2 (solid lines in fig.11). This value agree well with the
experimental data being in the interval 8 € [0.17,0.225] [39].

Other quantity can be compared with the experiment is the latent
heat AU which coincides in our case with the enthalpy of the transition
AH. We can use the experimental data obtained from studying of ther-
mal behaviour of 8CB by adiabatic scanning calorimeter [37]. The result
for the NI transition enthalpy is AH = 612J/mol at transition temper-
ature Ty = 40.8°C'. Fitting the transition temperature obtained for LL
and MLL models to this value one can get energetic parameter € and then
value for transition enthalpy. We get AH = 143.23.J/mol for LL model,
AH = 272.83J/mol for MLL model (a=3) and AH = 1311.1J/mol for
MLL model (a=5). Despite the poor accuracy for these data we can
state that the experimental value for AH is between our results found
for MLL model at ¢ = 3 and a = 5, so our results give the reasonable
interval as compared to the experiment.
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Thus, the modified Lebwohl-Lasher model being the lattice model of
elongated molecules interacting via the angular part of Berne-Pechukas
potential was proposed. The standard Metropolis Monte Carlo algory-
thm was used to simulate this sytem in the vicinity of nematic-isotropic
transition. To separate the coexisting phases the histogram technique
was used. Behaviour of the internal energy, heat capacity and order pa-
rameter in the vicinity of transition was investigated. As compared to
pure LL model the additional parameter of molecules elongation a is
present and the influence of this parameter on the phase transition is
investigated. Simulations for the cases of molecules elongation a = 3
and a = 5 showed unambiguosly that nematic-isotropic transition be-
come more strong first order one with the increasing of a. Comparing
our results with the experimental data show that many real nematics
in the vicinity of nematic-isotropic transition can be described well by
proposed model with elongation of molecules from a = 3 to a = 5.
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