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mod�
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mod�
� Dz�loxins~kogo-Mor�� u vipadkovomu lorenco-vomu pol�.Spin- 12 isotropic XY chain with Dzyaloshinskii-Moriya interac-tion in random lorentzian transverse �eldO.V.Derzhko, T.M.VerkholyakAbstract. The exact results for thermodynamical properties of one-di-mensional spin- 12 isotropic XY model with Dzyaloshinskii-Moriya inter-action in random lorentzian transverse �eld are obtained. This permitsto discuss some approximate methods of disordered spin systems the-ory. The approximate scheme of examining the thermodynamics of one-dimensional spin- 12 XXZ Heisenberg model with Dzyaloshinskii-Moriyainteraction in random lorentzian �eld is suggested.
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1 PreprintShortly after famous paper by E.Lieb, T.Schultz and D.Mattis [1], whomaking use of Jordan-Wigner transformation reformulated the Hamilto-nian of spin s = 12 XY chain in terms of non-interacting fermions andobtained a series of rigorous results, the random versions of such modelsattract much attention. Some exact results were derived by H.Nishimori[2] for isotropic XY chain in random lorentzian transverse �eld. It be-came possible because of the fact that after fermionization of such modelone comes to a system of electrons on lattice that may transfer from siteto site with the random (lorentzian) energy at sites. The average one-particle Green's function for such model was obtained �rst by P.Lloyd[3] (see also [4{7]).What follows is based on the notation that similarly to [2] one canconsider the case of more complicate interspin interaction including to itthe so-called Dzyaloshinskii-Moriya interaction. It was introduced phe-nomenologically by I.E.Dzyaloshinskii [8] and then derived by T.Moriya[9] and it is widely used as one of microscopical mechanism (togetherwith ANNNI model) of appearance of incommensurate phase in crys-tals [10]. V.M.Kontorovich and V.M.Tsukernik noted [11] that takinginto account of such interaction in s = 12 XY chain does not destroythe consideration proposed in Ref. [1] since after Jordan-Wigner trans-formation, as in the previous case, one comes to a quadratic in Fermioperators form. In Ref. [11] the problem about the possibility of ap-pearance of spiral spin structure in such a chain was examined; for thispurpose the pair equal-time spin correlation functions were evaluated.Other papers dealing with statistical mecanics of s = 12 XY chains withDzyaloshinskii-Moriya interaction [12{19] like the Ref. [11] are devotedto perfect (non-random) versions of the model.The present paper contains some exact results of statistical mechanicsof 1D s = 12 isotropic XY model with Dzyaloshinskii-Moriya interactionin random lorentzian �eld. The paper is organized as follows. Fermion-ization and Lloyd's problem are considered in Section 1. Here the av-erage one-fermion Green's functions, the average spectral density andthe average fermion correlation functions are derived. Section 2 containscalculations of thermodynamical properties of the model in question.A discussion of the estimation of static spin correlations is also givenin it. The comparison of exact results with the ones obtained withindi�erent approximate approaches (Bose commutation rules approxima-tion, Tyablikov-like approximation, coherent potential approximation)are performed in Section 3. The developed in Sections 1 and 2 schememay be used for the approximate study of 1D s = 12 XXZ Heisenbergmodel with Dzyaloshinskii-Moriya interaction in random lorentzian �eld.
ICMP{96{25E 2This possibility is discussed in Section 4. Conclusions are given in Sec-tion 5. Brie
y the results of the present paper were reported in [20{22].1. Fermionization, Lloyd's problem, average one-fermion Green's functions, average spectral den-sity, average fermion correlation functionsA chain of N spins s = 12 with interaction between nearest neighbours,that are in transverse �elds with random component distributed accord-ing to lorentzian law is considered. The Hamiltonian of the model hasthe formH = NXj=1(
0 +
j)szj + J N�1Xj=1 (sxj sxj+1 + syj syj+1)+D N�1Xj=1 (sxj syj+1 � syj sxj+1)= NXj=1(
0 +
j)�s+j s�j � 12�+N�1Xj=1 �J + iD2 s+j s�j+1 + J � iD2 s�j s+j+1� : (1.1)After Jordan-Wigner transformationc1 = s�1 ; cj = (�2sz1)(�2sz2):::(�2szj�1)s�j ; j = 2; :::; N;c+1 = s+1 ; c+j = (�2sz1)(�2sz2):::(�2szj�1)s+j ; j = 2; :::; N;fc+i ; cjg = �ij ; fc+i ; c+j g = 0; fci; cjg = 0 (1.2)one comes to the following quadratic in Fermi operators HamiltonianH = NXj=1(
0 +
j)�c+j cj � 12�+N�1Xj=1 �J + iD2 c+j cj+1 � J � iD2 cjc+j+1� ; (1.3)that can be treated like in Ref. [3].



3 PreprintLet's introduce the following retarded and advanced temperaturetwo-times Green's functions [23]G�nm(t) � �i�(�t) < fcn(t); c+m(0)g > : (1.4)The goal of further consideration is to �nd the average Green's functionsG�nm(t), where the average means(:::) � Z +1�1 d
1::: Z +1�1 d
Np(:::;
j ; :::)(:::);p(:::;
j ; :::) = NYj=1 1� �
2j + �2 (1.5)(i.e. 
js are independently distributed according to the lorentzian prob-ability distribution density centred at 
j = 0 with the width �).It is easy to get the equation of motion for (1.4), namelyi ddtG�nm(t) = �(t)�nm + (
0 +
n)G�nm(t)+J + iD2 G�n+1;m(t) + J � iD2 G�n�1;m(t): (1.6)Using spectral representation of Green's functions (1.4)G�nm(t) = 12� Z +1�1 d! exp (�i!t)G�nm(!);G�nm(!) = Z +1�1 dt exp (i!t)G�nm(t) (1.7)the equations (1.6) can be rewritten in the form!G�nm(!) = �nm + (
0 +
n)G�nm(!)+J + iD2 G�n+1;m(!) + J � iD2 G�n�1;m(!); (1.8)or in the form that is initial for locator expansionG�nm(!) = �nm! � (
0 +
n) + J+iD2 G�n+1;m(!) + J�iD2 G�n�1;m(!)! � (
0 +
n) : (1.9)Formal solution as a series with respect to intersite interaction readsG�nm(!) = �nm! � (
0 +
n)+J + iD2 1! � (
0 +
n) �n+1;m! � (
0 +
n+1)+J � iD2 1! � (
0 +
n) �n�1;m! � (
0 +
n�1) + ::: : (1.10)
ICMP{96{25E 4It is easy to average G�nm(! � i�) presented as (1.10). Really, oneshould perform the averaging of [ 1!�i��(
0+
j) ]kj , i.e. to calculate theintegral1� Z +1�1 d
j �
2j + �2 � 1!�i�� (
0 +
j)�kj= 1� Z +1�1 d
j �(
j + i�)(
j � i�)[!�i�� (
0 +
j)]kj : (1.11)For retarded (advanced) Green's function the integrand has one pole inthe lower (upper) half of the complex plane 
j and two poles in theupper (lower) half of the complex plane 
j . Thus expanding the contourof integration in the lower (upper) half of the complex plane and usingthe residuum theory one ends up with� 1!�i�� (
0 +
j)�kj = � 1!�i�� (
0 � i�)�kj (1.12)that is the famous property of lorentzian distribution. In result the av-erage series (1.10) can be summed up with the resultG�nm(! � i�) = �nm!�i�� (
0 � i�)+ J+iD2 G�n+1;m(! � i�) + J�iD2 G�n�1;m(! � i�)!�i�� (
0 � i�) : (1.13)Since the average Green's functions are translationally invariant theequations (1.13) can be solved with the help of transformationG�nm(! � i�) = 1N X� exp[i(n�m)�]G�� (! � i�); (1.14)� = 2�nN ; n = �N2 ;�N2 +1; :::; N2 � 1 for even N or n = �N�12 ;�N�12 +1; :::; N�12 for odd N ; the solution of algebraic equation for G�� (! � i�)readsG�� (! � i�) = 1! � [
0 +pJ2 +D2 cos (�+ ')]�i(�+ �) ;cos' � JpJ2 +D2 ; sin' � DpJ2 +D2 : (1.15)The average Green's functions in site representation can be found in re-sult of summation over � in (1.14) that in thermodynamical limit reduces



5 Preprintto the following integrationG�nm(! � i�) = 12� Z ��� d� exp [i(n�m)�]�1! � (
0 + pJ2+D22 fexp [i(�+ ')] + exp [�i(�+ ')]g � i(�+ �)) : (1.16)Setting z = exp [i(�+ ')] one comes to the contour integral on unitcircle in complex plane zG�nm(! � i�) = �exp [i'(n�m)]2�i� I dz zn�mpJ2+D22 z2 � [! � 
0�i(�+ �)]z + pJ2+D22 : (1.17)The denominator in the integrand in (1.17) should be presented as aproduct a(z � z1)(z � z2) wherea = pJ2 +D22 ;z1 = ! � 
0�i(�+ �)pJ2 +D2 +s�! � 
0�i(�+ �)pJ2 +D2 �2 � 1;z2 = ! � 
0�i(�+ �)pJ2 +D2 �s�! � 
0�i(�+ �)pJ2 +D2 �2 � 1; (1.18)and since z1z2 = 1 z1(z2) is over (in) the unit circle. For n � m theintegration yieldsexp [i'(n�m)]pJ2 +D2 f!�
0�i(�+�)pJ2+D2 �q[!�
0�i(�+�)pJ2+D2 ]2 � 1gn�mq[!�
0�i(�+�)pJ2+D2 ]2 � 1 ; (1.19)whereas for n � mexp [i'(n�m)]pJ2 +D2 f!�
0�i(�+�)pJ2+D2 �q[!�
0�i(�+�)pJ2+D2 ]2 � 1gm�nq[!�
0�i(�+�)pJ2+D2 ]2 � 1 : (1.20)Combing (1.19), (1.20) one �nally gets for (1.17)G�nm(! � i�) =exp [i'(n�m)]pJ2 +D2 f!�
0�i(�+�)pJ2+D2 �q[!�
0�i(�+�)pJ2+D2 ]2 � 1gjn�mjq[!�
0�i(�+�)pJ2+D2 ]2 � 1 : (1.21)
ICMP{96{25E 6The obtained result (1.21) gives the average elementary excitationspectral density�(E) � 1N Xj �(E � �j) = � 1� 1N X� ImG�� (E + i�)= � 1� ImG�nn(E) = � 1� Im 1p(E � 
0 + i�)2 � (J2 +D2) : (1.22)It will be used in the next Section for examination of thermodynamicalproperties of the model in question.In order to estimate spin correlations one should calculate averagefermion correlation function < c+m(0)cn(t) > that can be found from therelation [23]< c+m(0)cn(t) > = � 1� Im Z 1�1 d! exp (�i!t)G�nm(! + i�)exp (�!) + 1 : (1.23)In particular, the static average fermion correlation function at low tem-pereture limit comes out from the following calculation< c+m(0)cm+p(0) > � < c+mcm+p > = < c+n�p(0)cn(0) >= � 1� Im Z 0�1 d!G�n;n�p(! + i�)= � 1� Im exp (i'p) Z �
�1 dy [y + i
 �p(y + i
)2 � 1]jpjp(y + i
)2 � 1= 1� j p j Im�exp (i'p) hy + i
 �p(y + i
)2 � 1ijpj jy=�
y=�1�= 1� j p j Im fexp (i'p)�24�!0 +sp(!20 � 
2 � 1)2 + 4
2!20 + !20 � 
2 � 12+i
 � isp(!20 � 
2 � 1)2 + 4
2!20 � !20 + 
2 + 12 35jpj9>=>; ; (1.24)where y � !pJ2+D2 � !0, !0 � 
0pJ2+D2 , 
 � �+�pJ2+D2 . The derivedresults (1.15), (1.21), (1.22), (1.24) remind the corresponding expressionsobtained in slightly di�erent cases in Refs. [24,25].



7 Preprint2. Thermodynamical properties. The in
uence ofDzyaloshinskii-Moriya interactionThe obtained in the previous Section results are of great use in un-derstanding the thermodynamical properties of the model in question.Really, consider a model with a certain realization of transverse �elds atsites. After exploiting Jordan-Wigner transformation (1.2) for the Hamil-tonian (1.1) one comes to a quadratic in Fermi operators form that canbe diagonalized by a canonical transformation �k =PNj=1(gkjcj+hkjc+j )[1] (see also [26,27]) with the result H = PNk=1 �k(�+k �k � 12 ): Elemen-tary excitation spectrum �k and the coe�cients gkj and hkj are de-termined from �kgkn = PNi=1 gkiAin, ��khkn = PNi=1 hkiA�in, whereAij = (
0 + 
i)�ij + J+iD2 �j;i+1 + J�iD2 �j;i�1. The calculation of freeenergy per site for this realization is straightforwardf = limN!1 1N (� 1� ln Yk �exp����k2 �+ exp���k2 ��)= � 1� Z dE�(E) ln�2 cosh �E2 �;�(E) � limN!1 1N Xk �(E � �k) (2.1)and the result of its averaging over con�guration is given byf = � 1� Z dE�(E) ln�2 cosh �E2 �= � 1� Z dE�(E) ln [1 + exp (��E)]� 
02 ; (2.2)where �(E) is the average spectral density that has been found in theSection 1 (formula (1.22)).Further one �nds the internal energye = f + � @f@� = Z dE�(E) E1 + exp (�E) � 
02 ; (2.3)the entropys = �2 @f@� = Z dE�(E)�ln [1 + exp (��E)] + �E1 + exp (�E)� ;(2.4)and the speci�c heatc = �� @s@� = �2 Z dE�(E) E2(2 cosh �E2 )2 : (2.5)
ICMP{96{25E 8Using magical property of �(E) (1.22)@@
0 �(E) = @@
0 "� 1� Im 1p(E � 
0 + i�)2 � (J2 +D2)#= � @@E�(E) (2.6)one �nds the transverse magnetization< 1N NXj=1 szj > = @f@
0 = Z dE�(E) 11 + exp (�E) � 12 (2.7)and static transverse susceptibility�zz = @< 1N PNj=1 szj >@
0 = �� Z dE�(E) 1(2 cosh �E2 )2 : (2.8)Note, that since at T ! 0 11+exp (�E)! 0 if E > 0 and 11+exp (�E)! 1 ifE < 0, the transverse magnetization and static transverse susceptibilityat 
0 = 0 in low tempereture limit are given by< 1N NXj=1 szj >= Z �
00 dE0 "� 1� Im 1p(E0 + i�)2 � (J2 +D2)# ; (2.9)�zz = � 1� 1p�2 + J2 +D2 : (2.10)The results of numerical investigation of thermodynamical proper-ties of the model (1.1) are depicted in Figs.1-5. The dependence onDzyaloshinskii-Moriya interaction (D = 0; D = 0:5J; D = J) of theaverage spectral density �(E) (
0 = 0) for di�erent values of the widthof lorentzian distribution � (� = 0; � = 0:25J; � = 0:5J; � = J) isshown in Fig.1. In Figs.2,3 it is shown the temperature behaviour of en-tropy and speci�c heat for 
0 = 0 for di�erent values of Dzyaloshinskii-Moriya interaction (D = 0; D = 0:5J; D = J) and di�erent valuesof � (� = 0; � = J): The changes in the dependence of transversemagnetization on the value of transverse �eld 
0 that are caused byDzyaloshinskii-Moriya interaction (D = 0; D = 0:5J; D = J) for sev-eral values of � (� = 0; � = J) at T = 0 can be seen in Fig.4. In



9 PreprintFig.5 the temperature behaviour of static transverse susceptibility inzero transverse �eld for few values of Dzyaloshinskii-Moriya interaction(D = 0; D = 0:5J; D = J) and � (� = 0; � = J) are presented.As it can be easily seen from the formula for �(E) (1.22) and inFig.1 the presence of Dzyaloshinskii-Moriya interaction formally causes
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Figure 1: The average spectral density �(E) (1.22) vs. EJ for di�erentvalues of �; 
0 = 0, D = 0 (dashed curves), D = 0:5J (long dashedcurves) and D = J (solid curves).the change of J2 to J2+D2. This leads to e�ective increase of interspininteraction and results in broadening of zones both with sharp edges(when � = 0) and with smooth ones because of randomness (when� 6= 0). Rather small quantitative changes in temperature behaviourof entropy and speci�c heat (Figs.2,3) reveal the tendency caused by
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Figure 2: Temperature dependence of entropy s for � = 0 and � = J ;
0 = 0, D = 0 (dashed curves), D = 0:5J (long dashed curves) andD = J (solid curves).
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Figure 3: Temperature dependence of speci�c heat c for � = 0 and� = J ; 
0 = 0, D = 0 (dashed curves), D = 0:5J (long dashed curves)and D = J (solid curves).



11 PreprintDzyaloshinskii-Moriya interaction. Dzyaloshinskii-Moriya interaction de-creases the transverse magnetization for a given value of transverse �eldin both cases when � = 0 and when � 6= 0 (Fig.4) and decreases thevalue of static transverse susceptibility in zero transverse �eld in lowtemperature region. The obtained result are in agreement with the de-rived ones for non-random version of 1D s = 12 isotropic XY model intransverse �eld [18,19].Unfortunately, the obtained results do not permit to get any exactestimations for static spin correlation functions. Considering the simplestone < szj szj+n >, using the relation szj = c+j cj � 12 and exploiting Wick-Bloch-de Dominicis theorem one �nds< szjszj+n >= < c+j cjc+j+ncj+n >� 12< c+j cj >� 12< c+j+ncj+n >+ 14= < c+j cj >< c+j+ncj+n >�< c+j c+j+n >< cjcj+n >+< c+j cj+n >< cjc+j+n >�< c+j cj >+ 14 : (2.11)Thus, knowing only < c+mcn > it is not possible to derive any rigorousresults even for simplest (transverse) static spin correlation function. Itis worthwhile to note that its calculation faces with the similar problemsthat were considered in [4]. Apparently, the problem of spin correlationscan be solved within developed recently numerical approach [26{30].3. Standard approximate approaches in the theoryof disordered spin systemsLet's consider the results one faces with after adopting some standardapproximate approaches in disordered spin systems theory while consid-ering the thermodynamics of the model de�ned by (1.1).3.1. Bose commutation rules approximation for spin opera-tors s+; s�Implying instead of Pauli commutation rules for spin operators s+, s�[s�j ; s+m] = �jm(1� 2s+j s�j ) Bose commutation rules, that is[s�j ; s+m] � �jm; (3.1)one comes to a system of bosons on lattice that may transfer from site tosite with random (lorentzian) energy at sites. Introducing the following
ICMP{96{25E 12
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Figure 4: The dependence of transverse magnetization mz �< 1N PNj=1 szj > on transverse �eld 
0J for � = 0 and � = J ; 1=� = 0,D = 0 (dashed curves), D = 0:5J (long dashed curves) and D = J (solidcurves).
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Figure 5: Temperature dependence of static transverse susceptibility �zzfor � = 0 and � = J ; 
0 = 0, D = 0 (dashed curves), D = 0:5J (longdashed curves) and D = J (solid curves).



13 PreprintGreen's functionsD�nm(t) � �i�(�t) < [s�n (t); s+m(0)] >; (3.2)and repeating the derivation of Section 1 one ends up withD�nm(!�i�) =exp [i'(n�m)]pJ2 +D2 f!�
0�i(�+�)pJ2+D2 �q[!�
0�i(�+�)pJ2+D2 ]2 � 1gjn�mjq[!�
0�i(�+�)pJ2+D2 ]2 � 1 (3.3)that gives for average spectral density formula (1.22). However, theaverage boson correlation function < s+m(0)s�n (t) > = � 1� Im R1�1 d!�exp (�i!t)D�nm(!+i�)exp (�!)�1 contains the denominator that tends to 0 when! ! 0:Let's discuss this problem in details. After assuming Bose commuta-tion relation one has the quadratic in Bose operators s+j ; s�j form (1.1)that with the help of linear canonical transformation 
k =PNj=1(fkjs�j +dkjs+j ) can be diagonalized with the result H = � 12PNj=1(
0 + 
j) +PNk=1 Ek
+k 
k + const. Since Ek, fkj , dkj are determined from the equa-tions Ekfkn = PNi=1 fkiAin, �Ekdkn = PNi=1 dkiA�in, one immediatelyconcludes that Ek = �k. The ground state energy of this Hamiltoniancoincides with the exact value if const = � 12PNk=1 �k+ 12PNj=1(
0+
j)and thus �nally H = PNk=1 �k(
+k 
k � 12 ). Free energy per particle isgiven byf = limN!1 1N �(� 1� lnYk exp���k2 �[1 + exp (���k) + exp (�2��k) + :::])all �k > 0= limN!1 1N 24� 1� Xk ln exp���k2 �1� exp (���k)35= 1� Z dE�(E) ln [1� exp (��E)]� 12 Z dE�(E)E: (3.4)Note, that the partition function for Bose system exists only when thecondition all �� > 0 (or �(E) = 0 if E � 0) is valid. Really, otherwisethe state without bosons is not the ground state, since one-boson statehas smaller energy, the energy of two-bosons state is more smaller etc.,
ICMP{96{25E 14the probability of their appearance increases respectively and thus thepartition function tends to in�nity. This di�culty arises because of ap-proximate treating of elementary excitations as bosons (they are exactlyfermionic objects in the case under consideration) and it is crushing if�(E) 6= 0 for E � 0: Thus, one can consider the average thermodynami-cal quantities obtained within approximation (3.1), that is, free energyf = 1� Z dE�(E) ln [1� exp (��E)]� 
02 ; (3.5)internal energye = Z dE�(E) Eexp (�E)� 1 � 
02 ; (3.6)entropys = Z dE�(E)�� ln [1� exp (��E)] + �Eexp (�E) � 1� ; (3.7)speci�c heatc = �2 Z dE�(E) E2(2 sinh �E2 )2 ; (3.8)transverse magnetization< 1N NXj=1 szj > = Z dE�(E) 1exp (�E)� 1 � 12 ; (3.9)and static transverse susceptibility�zz = �� Z dE�(E) 1(2 sinh �E2 )2 (3.10)when the relation�(E) = 0 for E � 0 (3.11)holds true.Considering at �rst the case � = 0, when�(E)=( 1� 1pJ2+D2�(E�
0)2 ; 
0�pJ2+D2<E<
0+pJ2+D2;0; otherwise; (3.12)one �nds that (3.11) is valid only in the case of strong transverse �elds
0 >pJ2 +D2; (3.13)



15 PreprintDzyaloshinskii-Moriya interaction increases the value of the �eld behindwhich (3.11) becomes true. In the case � 6= 0 one immediately �nds that(3.11) is never true, since there always will be elementary excitationswith negative energy and therefore it is impossible to treat them asbosons. Thus, the consideration of the disordered version of the modeldemands the revision of the problem of validity of approximation thatwas suitable for study of non-random version of the model.The results of numerical calculation of temperature behaviours ofentropy and speci�c heat according to exact formulae (2.4), (2.5) (solidlines) and approximate ones (3.7), (3.8) (long dashed curves) in the caseof validity of approximation (3.1) (� = 0; 
0 = (p2 + 0:1)J; D =0; D = 0:5J; D = J) are presented in Figs.6,7. These results showthat Bose commutation rules approximation for spin operators s+; s�gives suitable results only for low temperatures, and in the presence ofDzyaloshinskii-Moriya interaction only at very low temperatures.3.2. Tyablikov-like approximationDoes not assuming Bose commutation rules for operators s+; s� (3.1),one faces with the equations of motion that contain more complicatedGreen's functionsi ddtD�nm(t) = �(t)�nm(�2 < szn >) + (
0 +
n)D�nm(t)+J + iD2 (�2)(�i�(�t) < [szn(t)s�n+1(t); s+m] >)+J � iD2 (�2)(�i�(�t) < [s�n�1(t)szn(t); s+m] >): (3.14)Within Tyablikov-like approximation it is supposed that< szn(t)s�n+1(t)s+m >� < sz > < s�n+1(t)s+m >;< s+mszn(t)s�n+1(t) >� < sz > < s+ms�n+1(t) >;< s�n�1(t)szn(t)s+m >� < sz > < s�n�1(t)s+m >;< s+ms�n�1(t)szn(t) >� < sz > < s+ms�n�1(t) > : (3.15)Then instead of (3.14) one hasi ddtD�nm(t) = �2< sz >�(t)�nm + (
0 +
n)D�nm(t)+(�2< sz >)J + iD2 D�n+1;m(t) + (�2< sz >)J � iD2 D�n�1;m(t): (3.16)
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Figure 6: Entropy vs. temperature for � = 0, 
0 = (p2 + 0:1)J : ex-act results (solid curves), Bose commutation rules approximation (longdashed curves), Tyablikov-like approximation (dashed curves).
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Figure 7: Speci�c heat vs. temperature for � = 0, 
0 = (p2 + 0:1)J :exact results (solid curves), Bose commutation rules approximation (longdashed curves), Tyablikov-like approximation (dashed curves).



17 PreprintActing like in Section 1 one ends up with D�nm(!�i�) =exp [i'(n�m)]pJ2+D2 f !�
0�i(�+�)(�2<sz>)pJ2+D2�q[ !�
0�i(�+�)(�2<sz>)pJ2+D2 ]2�1gjn�mjq[ !�
0�i(�+�)(�2<sz>)pJ2+D2 ]2 � 1 (3.17)that yields the following result for average spectral density�(E) = � 1� Im 1q[E�
0+i�(�2<sz>) ]2 � (J2 +D2) : (3.18)The introduced average transverse magnetization at site is determinedfrom the equation< sz > = < s+s� >� 12 = � 1� Im Z 1�1 d!D�mm(! + i�)exp (�!)� 1 � 12= Z 1�1 d!exp (�!)� 1�(!)� 12 : (3.19)Equation (3.19) contains Bose factor 1exp (�!)�1 and thus, apparently,Tyablikov-like approximation is possible if �(!) = 0 for ! � 0. The tem-perature behaviours of entropy and speci�c heat found within Tyablikov-like approximation (3.15) (dashed lines) in comparison with exact re-sults (solid lines) and results obtained within approximation (3.1) (longdashed lines) are shown in Figs.6,7. Despite some improvment over theBose commutation rules approximation that can be seen in Figs.6,7 theresults obtained within Tyablikov-like approximation generally speakingare not closer to exact ones in comparison with the results derived withinBose commutation rules approximation.3.3. Randomly disordered crystals theory methodsLet's consider 1D spin- 12 isotropicXY model with Dzyaloshinskii-Moriyainteraction in random (not necessary lorentzian) transverse �eld withinusually used methods in the theory of disordered crystals [5,6,31]. Thestarting point is the equation for Green's functions that after introducingthe notationsWpr � 
p�pr; Vps � J + iD2 �s;p+1 + J � iD2 �s;p�1 (3.20)can be written in the form!G�nm(!) = �nm + 
0G�nm(!) +WnrG�rm(!) + VnsG�sm(!) (3.21)
ICMP{96{25E 18(for G�nm(!) de�ned by (1.4) or (3.2) within Bose commutation rulesapproximation) or!D�nm(!) = �2 < szn > �nm +
0D�nm(!) +WnrD�rm(!)+(�2 < szn >)VnsD�sm(!) (3.22)(for D�nm(!) (3.2) within Tyablikov approximation, < szn > is only ther-modynamically averaged value (without con�gurational averaging as in(3.15)) of transverse spin at site n); the summation over the repeatingindices from 1 to N is implied. The di�erent approaches of randomly dis-ordered crystals theory are constructed from so called propagator andlocator expansions.Propagator expansion. Let's rewrite the Hamiltonian of the systemin question (1.1) in the formH = aH + NXj=1
jszj = aH + NXj=1
j �s+j s�j � 12� (3.23)and introduce Green's functions aG�nm(!) or aD�nm(!) for the systemwith Hamiltonian aH that, naturally satisfy the following equations! aG�nm(!) = �nm +
0 aG�nm(!) + Vns aG�sm(!) (3.24)or ! aD�nm(!) = �2 < szn > �nm +
0 aD�nm(!)+(�2 < szn >)Vns aD�sm(!): (3.25)Multiplying (3.21) (or (3.22)) by aG�gn(!) ( aD�gn(!)) one comes to thefollowing equationsG�gm(!) = aG�gm(!) +a G�gn(!)WnrG�rm(!) (3.26)or D�gm(!) = aD�gm(!)< szn >< sz > + aD�gn(!) ~WnrD�rm(!);~Wnr � Wnr�2 < sz > + Vnr �< szn >< sz > � 1� : (3.27)Note, that since generally speaking < szn >6=< sz > even in the case ofdiagonal disorder after Tyablikov-like approximation one faces with non-diagonal disorder problem. Expanding of (3.26) (or (3.27)) in degrees ofWnr( ~Wnr) leads to propagator expansion.



19 PreprintLocator expansion. Let's introduce locatorsg�nm(!) � g�n �nm � 1! � (
0 +
n)�nm (3.28)or d�nm(!) � d�n �nm � �2 < szn >! � (
0 +
n)�nm: (3.29)Then equations (3.21), (3.22) can be rewritten in the formG�nm(!) = g�nm(!) + g�np(!)VpsG�sm(!) (3.30)or D�nm(!) = d�nm(!) + d�np(!)VpsD�sm(!): (3.31)While expanding r.h.s. of (3.30), (3.31) in degrees of Vps one comes tolocator expansion.Further analysis deals only with diagonal disorder when, for example,the propagator expansions have the formG�gm(!) = aG�gm(!) +aG�gn(!)
n aG�nm(!) + aG�gn(!)
n aG�np(!)
p aG�pm(!) + ::: (3.32)or D�gm(!) = aD�gm(!) +aD�gn(!)~
n aD�nm(!) + aD�gn(!)~
n aD�np(!)~
p aD�pm(!) + ::: ;~
n = �
n=2< sz >: (3.33)Extracting in (3.32) t-matrixtn � 
n1� aG�nn(!)
n ; (3.34)one can rewrite (3.32) as a series in degrees of t-matrixG�gm(!) = aG�gm(!) + aG�gn(!)
n aG�nm(!)+ aG�gn(!)
n aG�nn(!)
n aG�nm(!)+ aG�gn(!)
n aG�np (n6=p)(!)
p aG�pm(!)+ aG�gn(!)
n aG�nn(!)
n aG�nn(!)
n aG�nm(!)+ aG�gn(!)
n aG�np (n6=p)(!)
p aG�pp(!)
p aG�pm(!)+ aG�gn(!)
n aG�nn(!)
n aG�nf (n6=f)(!)
f aG�fm(!)
ICMP{96{25E 20+ aG�gn(!)
n aG�np (n6=p)(!)
p aG�pf (p 6=f)(!)
f aG�fm(!) + :::= aG�gm(!) + aG�gn(!)tn aG�nm(!)+ aG�gn(!)tn aG�np (n6=p)(!)tp aG�pm(!) + ::: : (3.35)Within approximation of average t-matrix one assumes thattn ' t � Z d
1:::d
Np(
1; :::;
N ) 
n1� aG�nn(!)
n ; (3.36)whereaG�nm(!) =exp [i'(n�m)]pJ2 +D2 [!�
0�i�pJ2+D2 �q(!�
0�i�pJ2+D2 )2 � 1]jn�mjq(!�
0�i�pJ2+D2 )2 � 1 : (3.37)In result one is able to sum the series for average Green's functions (3.35)G�gm(!) = � aG�(!)1� aG�(!)t�gm : (3.38)Within coherent potential approximation one should seek the Green'sfunctions of the system with Hamiltonian �H =NXj=1(
0 + �
)szj+J N�1Xj=1 (sxj sxj+1+syj syj+1)+D N�1Xj=1 (sxj syj+1�syj sxj+1); (3.39)where �
 is unknown coherent �eld. These Green's functions are given by�G�nm(!) =exp [i'(n�m)]pJ2 +D2 [!�
0��
�i�pJ2+D2 �q(!�
0��
�i�pJ2+D2 )2 � 1]jn�mjq(!�
0��
�i�pJ2+D2 )2 � 1 : (3.40)SinceH = �H + NXj=1(
j � �
)�s+j s�j � 12� ; (3.41)! �G�nm(!) = �nm + (
0 + �
) �G�nm(!) + Vns �G�sm(!); (3.42)one can get acting like while deriving (3.26) the following equationG�gm(!) = �G�gm(!) + �G�gn(!) �WnrG�rm(!);�Wnr =Wnr � �
�nr = (
n � �
)�nr; (3.43)



21 Preprintand hence the following propagator expansionG�gm(!) = �G�gm(!) + �G�gn(!)(
n � �
) �G�nm(!)+ �G�gn(!)(
n � �
) �G�np(!)(
p � �
) �G�pm(!) + ::: : (3.44)This series can be rewritten as an expansion in degrees of �t -matrix�tn � 
n � �
1� �G�nn(!)(
n � �
) ; (3.45)namely, G�gm(!) =�G�gm(!)+ �G�gn(!)�tn �G�nm(!)+ �G�gn(!)�tn �G�np (n6=p)(!)�tp �G�pm(!)+::: :(3.46)Determining the coherent �eld �
 from the condition�tn � Z d
1:::d
Np(
1; :::;
N ) 
n � �
1� �G�nn(!)(
n � �
) = 0; (3.47)where accorging to (3.40)�G�nn(! � i�) = 1q(! � 
0 � �
�i�)2 � (J2 +D2) ; (3.48)one �nds thatG�gm(!) = �G�gm(!) + �G�gn(!)�tn �G�nm(!)+ �G�gn(!)�tn �G�np (n6=p)(!)�tp �G�pm(!) + ::: ' �G�gm(!); (3.49)that is the desired result within coherent potential approximation.In the case of lorentzian transverse �eld the equation for coherent�eld �
 (3.47) readsZ 1�1 d
j 1� �(
j + i�)(
j � i�)� (
j � �
)q(! � 
0 � �
�i�)2 � (J2 +D2)q(! � 
0 � �
�i�)2 � (J2 +D2)� 
j + �
 = 0: (3.50)Supposing that Im[�
 +q(! � 
0 � �
�i�)2 � (J2 +D2)] >< 0 one canperform integration with the help of the residuum theory getting in result
ICMP{96{25E 22instead of (3.50)(�i�� �
)q(! � 
0 � �
�i�)2 � (J2 +D2)q(! � 
0 � �
�i�)2 � (J2 +D2) + �
�i� = 0: (3.51)Equation (3.51) has solutions �
 = �i� and after insertion them into(3.40) one gets exact result (1.21). It can be proved post priory the pos-sibility of assumed displacement of poles in (3.50) at least for ! ! 1:Thus, in the case of lorentzian transverse �eld the coherent potetial ap-proximation contains exact result for average Green's functions G�nm(!):Consider now another version of random transverse �eld that is givenby probability densityp(
1; :::;
N ) = NYj=1[x�(
j) + (1� x)�(
j � 0)]: (3.52)Then the equation for coherent �eld �
 (3.47) readsx ��
1� �G�nn(!)(��
) + (1� x) 0� �
1� �G�nn(!)(0� �
) = 0 (3.53)and after some calculation reduces to 3th order algebraic equation for �
�
3 +(x2�2x)02�(J2+D2)+4(1�x)0(!�
0)+(!�
0)22(x0+
0�!) �
2 +(1�x)0(J2+D2)�(1�x)202(!�
0)�(1�x)0(!�
0)2x0+
0�! �
 +�(1� x)202(J2 +D2) + (1� x)202(! � 
0)22(x0+
0 � !)= �
3 + a�
2 + b�
 + c = 0: (3.54)It is generally-known [32] that at �rst one should substitute �
 = y � a3obtaining in result y3+py+q = 0 with p = �a23 + b; q = 2 �a3 �3� ab3 + c:Then the real "noncomlete" cubic equation has� one real and two conjugate complex roots if Q > 0;� three real roots at least two of which coincide if Q = 0;� three di�erent real roots if Q < 0;



23 Preprinthere Q � �p3�3+ � q2�2 : The solution can be presented in the trigonomet-rical form� if Q � 0; p > 0; theny1 = �2rp3 cot 2�; y2;3 =rp3 �cot 2��ip3 csc 2�� ;tan� = 3rtan �2 �j�j � �4� ; tan� = 2qr�p3�3 �j�j � �2� ; (3.55)� if Q � 0; p < 0; theny1 = �2r�p3 csc 2�; y2;3 =r�p3 �csc 2��ip3 cot 2�� ;tan� = 3rtan �2 �j�j��4� ; sin� = 2qr��p3�3 �j�j��2� ; (3.56)� if Q < 0 (and hence p < 0 ), theny1 = 2r�p3 cos �3 ; y2;3 = �2r�p3 cos��3��3�;cos� = � q2q��p3�3 (3.57)(all cubic roots are real).Further one should act in a following way: 1) for a given x to calculatea; b; c in (3.54), p; q and Q; 2) comparing Q and p with the zero, towrite down y1;2;3; and hence �
1;2;3; 3) to check whether �t after inserting�
j is really equal to zero (since the algebraic transformation from (3.53)to (3.54) may lead to appearance of extra roots); 4) to substitute �
jinto �G�nn(E + i�) (3.40); and 5) to calculate the average spectral densitywithin coherent potential approximation (3.47)�(E) ' � 1� Im �G�nn(E) = � 1� Im 1q(E � 
0��
j+i�)2�(J2+D2) : (3.58)Further the case J = 1; D = 0; 0 = 1 is under consideration. Herethe example of performing of this program is given:x = 0:01;

ICMP{96{25E 24E = 0:02;a = 47:015001; b = �97:000202; c = 48:985399;p = �833:803646; q = 9267:099096; Q = 0:896875;�
1 = �49:014405+ i0:000000;�
2 = 0:999702+ i0:001967;�
3 = 0:999702� i0:001967;j�tj�
1=1:012523�10�13; j�tj�
2=3:978199�10�3; j�tj�
3=3:064551�10�12;E = 0:03;a = 22:505001; b = �47:985301; c = 24:480448;p = �216:810318; q = 1228:762879; Q = 0:087101;�
1 = �24:504032+ i0:000000;�
2 = 0:999516+ i0:002358;�
3 = 0:999516� i0:002358;j�tj�
1=1:187939�10�14; j�tj�
2=4:811497�10�3; j�tj�
3=2:295226�10�12;E = 0:04;a = 14:331667; b = �31:640401; c = 16:308864;p = �100:105961; q = 385:512229; Q = 0:023724;�
1 = �16:330344+ i0:000000;�
2 = 0:999339+ i0:002665;�
3 = 0:999339� i0:002665;j�tj�
1=5:717649�10�15; j�tj�
2=5:488112�10�3; j�tj�
3=2:070775�10�12;E = 0:05;a = 10:242501; b = �23:463002; c = 12:220623;p = �58:432610; q = 171:921947; Q = 0:009691;�
1 = �12:240840+ i0:000000;�
2 = 0:999170+ i0:002918;�
3 = 0:999170� i0:002918;j�tj�
1=1:362799�10�14; j�tj�
2=6:062763�10�3; j�tj�
3=3:098188�10�12;etc. Since �t with �
1 for x = 0 and x = 1 is not equal to zero, thisroot has been rejected. Unfortunately, there are no exact results for arandom model in question (3.52). Nevertheless, for arbitrary randomspin- 12 anisotropicXY model in transverse �eld it is possible to calculatenumerically (see [26,27]) the quantity R(E2) = 1N PNk=1 �(E2��2k); theaverage value of which is connected with the average value of �(E) by



25 Preprintthe relationR(E2) = �(E) + �(�E)2 j E j : (3.59)In Fig.8 the results of calculations within coherent potential approxi-mation (3.58), (3.59) (broken lines) are depicted together with the exactresults (solid lines). The comparison shows just how little is the change inR(E2) and thus in thermodynamical quantities. This seems to be condi-tioned by the fact that for the model in question (since it is described byHamiltonian (1.3)) the thermodynamical averaging has been performedexactly.4. One-dimensional spin-12 XXZ Heisenberg modelwith Dzyaloshinskii-Moriya interaction in lorent-zian random external �eldThis Section is devoted to examining of somewhat more complicated than(1.1) case. Namely, now the intersite interaction contains the couplingof z components of neighbouring spins and the Hamiltonian readsH= NXj=1(
0+
j)szj+J N�1Xj=1 (sxj sxj+1+syj syj+1)+D N�1Xj=1 (sxj syj+1�syj sxj+1)+Jz N�1Xj=1 szjszj+1 = NXj=1(
0 +
j)�s+j s�j � 12�+N�1Xj=1 �J + iD2 s+j s�j+1 + J � iD2 s�j s+j+1�+Jz N�1Xj=1 �s+j s�j s+j+1s�j+1 � 12s+j s�j � 12s+j+1s�j+1 + 14� :(4.1)After Jordan-Wigner transformation (1.2) one getsH = �N
02 + (N � 1)Jz4 � 12 NXj=1
j +NXj=1 �
0 +
j � Jz2 (2� �j;1 � �j;N )� c+j cj +N�1Xj=1 �J + iD2 c+j cj+1�J � iD2 cjc+j+1�+Jz N�1Xj=1 c+j cjc+j+1cj+1: (4.2)
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�EJ �2Figure 8: R(E2) vs. E2: exact results (solid curves) (the averaging isdone only over few random realizations) and the results within coherentpotential approximation (long dashed curves) for the model with disorder(3.52): 
0 = 0, J = 1, D = 0, 0 = 1.



27 PreprintNote, that the key di�culty is that due to new intersite interaction onefaces with the terms that are the products of four Fermi operators. It iseasy to �nd the equations of motion for Green's functions (1.4)i ddtG�nm(t) = �(t)�nm + (
0 +
n � Jz)G�nm(t)+J + iD2 G�n+1;m(t) + J � iD2 G�n�1;m(t)+Jz[�i�(�t) < f(cnc+n+1cn+1)(t); c+m(0)g >�i�(�t) < f(c+n�1cn�1cn)(t); c+m(0)g >]: (4.3)Equations (4.3) contain higher Green's functions and thus cannot besolved exactly. Nevertheless, making the approximation< f(c+n+1cn+1cn)(t); c+m(0)g >� < c+j cj > < fcn(t); c+mg >�< c+j+1cj > < fcn+1(t); c+mg >;< f(c+n�1cn�1cn)(t); c+m(0)g >� < c+j cj > < fcn(t); c+mg >�< c+j�1cj > < fcn�1(t); c+mg >; (4.4)one gets instead of (4.3) the equationsi ddtG�nm(t) = �(t)�nm + [
0 + Jz(2< c+j cj >� 1) + 
n]G�nm(t) +J�2Jz< c+j+1cj >+iD2 G�n+1;m(t)+J�2Jz< c+j�1cj >�iD2 G�n�1;m(t)(4.5)that can be treated like (1.6). Substituting 
0+Jz(2< c+j cj >�1) insteadof 
0; J � 2Jz< c+j�1cj > � iD instead of J � iD into (1.15) one �ndsthatG�� (!�i�) = 1! � h
0 + J+ exp (i�) + J� exp (�i�)i�i(�+ �) ;
0 � 
0 + Jz(2< c+j cj >� 1);J� � J � 2Jz< c+j�1cj >�iD2 : (4.6)Returning back to the site representation needs the calculation of thefollowing integral (compare with (1.16)-(1.21))G�nm(!�i�) = 12� Z ��� d� exp [i(n�m)�]

ICMP{96{25E 28� 1! � h
0 + J+ exp (i�) + J� exp (�i�)i�i(�+ �) : (4.7)Putting z = exp (�i�) (for n � m and n � m; respectively) one comesto contour integral over unit circle centred at z = 0 in complex plane zG�nm(!�i�) = � 12�i I dz zn�mJ+z2 � [! � 
0�i(�+ �)]z + J�= � 12�i I dz zn�mJ+(z � z+1 )(z � z+2 ) ;z+1 = ! � 
0�i(�+ �) +q[! �
0�i(�+ �)]2 � 4J+J�2J+ ;z+2 = ! �
0�i(�+ �)�q[! �
0�i(�+ �)]2 � 4J+J�2J+ ;z+1 z+2 = J�J+ = J � 2Jz< c+j�1cj >� iDJ � 2Jz< c+j+1cj >+ iD (4.8)for n � m,G�nm(!�i�) = � 12�i I dz zjn�mjJ�z2 � [! �
0�i(�+ �)]z + J+= � 12�i I dz zjn�mjJ�(z � z�1 )(z � z�2 ) ;z�1 = ! �
0�i(�+ �) +q[! � 
0�i(�+ �)]2 � 4J+J�2J� ;z�2 = ! �
0�i(�+ �)�q[! � 
0�i(�+ �)]2 � 4J+J�2J� ;z�1 z�2 = J+J� = J � 2Jz< c+j+1cj >+ iDJ � 2Jz< c+j�1cj >� iD (4.9)for n � m. The result of integration can be easily obtained; it dependson the position of z�1;2 in complex plane z with respect to unit circlecentred at the origin of complex plane. The introduced static averagefermion correlation functions are given by< c+j cj > = � 1� Im Z 1�1 d! G�jj(! + i�)exp (�!) + 1 ; (4.10)



29 Preprint< c+j�1cj > = < c+j cj+1 > = � 1� Im Z 1�1 d!G�j;j�1(! + i�)exp (�!) + 1 ; (4.11)< c+j+1cj > = < c+j cj�1 > = � 1� Im Z 1�1 d!G�j;j+1(! + i�)exp (�!) + 1 : (4.12)The equations (4.8)-(4.12) permit to determine self-consistently cor-relation functions < c+j cj >; < c+j+1cj >; < c+j�1cj > that were intro-duced in (4.4). Knowing them one can get the average spectral densitythat is given by �(E) =� 1� Im 12� Z ��� d� 1!� h
0+J+ exp (i�)+J� exp (�i�)i+i(�+�)= 1� Im 12�i I dzJ�(z � z�1 )(z � z�2 ) : (4.13)Such approach can be viewed as a generalization of rather old ideas (see[33]) for the case of random lorentzian external �eld.5. ConclusionsThe results which have been obtained in the present paper are summa-rized as follows. Considering spin- 12 isotropicXY chain with Dzyaloshin-skii-Moriya interaction in random lorentzian transverse �eld (1.1) as asystem of fermions (1.3) one is able to obtain exactly the average one-fermion Green's functions G�nm(!�i�) (1.21). This permits to get exactresult for average spectral density (1.22) and therefore, for thermody-namical quantities (2.2)-(2.5), (2.7)-(2.10), to examine the in
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