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1. Introduction

In the past twenty years many successful studies have been made of the
dynamical properties of classical fluids. Special attention has been paid
to hard-sphere and Lennard-Jones fluids as the most simple models of
realistic liquids. The various methods have been developed with the aim
to investigate the time-correlation functions (TCFs), the collective mode
spectrum and the generalized transport coefficients (see, for instance, [1-
3]). The subject of special interest was the studies of lower-order TCFs,
namely, the density-density, the density-energy and the energy-energy
TCFs as well as the transverse momentum-momentum TCF, because
these TCFs allow a unique determination of the generalized transport
coefficients. The most studied of them is the density-density TCF which
can be observed by scattering experiments. The all other TCFs noted
above were considered mainly in connection with computer experiments.

Among the most used methods of theoretical investigation of the
dynamical properties of simple fluids the following main ones may be
noted: (i) the method of kinetic equations [2—4]; (ii) approaches based
on the sum rules [5] or the linear response theory [7]; (iii) the formalism
of memory functions including so-called method of k- and ¢-dependent
memory functions (hydrodynamic description [1-3], different modifica-
tions of viscoelastic theory [1,6], the generalized mode approach [8-11],
etc.); (iv) the mode-coupling theory of fluids [12]; (v) the methods of
computer simulations [13,14]. The most part of these methods obtained
also a wide application for studying of complex fluids such as molecu-
lar fluids with internal structure, mixtures, suspensions etc. However, as
far as we can judge a lot of problems remain to be solved yet even in
the case of simple liquids. Some of them can be formulated as follows:
What is relation between various methods? What is the range of their
applications? In which a way the memory functions should be modified
for description of intermediate range of wave-vector k and frequency w?
These questions could be supplemented with other ones related to the
theoretical foundations of the non-equilibrium statistical theory of fluids.
To recognize all these problems it is necessary to reconsider the theory
of fluids from very beginning in such a way that the results would be
presented in the enough general form for the subsequent analysis of the
methods noted above (or at least some of them) on this basis. From the
other side, the formulation of the theory have to be rather simple in
order to be applied for calculations of the dynamic quantities such as
generalized transport coefficients for instance. To develop of such view-
point is the goal of our study. In this paper some general results of the
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non-equilibrium statistical theory of simple fluids are presented. We used
in our study the non-equilibrium statistical operator method in the form
proposed by Zubarev [15,16]. Some findings (see, for instance [17-19]) of
the next development of this method are also applied in our study.

The outline of this paper is as follows. In Sec.2 the general ideas of
nonequilibrium statistical operator method are formulated, the solution
of Liouville equation for arbitrary set of dynamic variables is found, and
the generalized transport equations are derived. A weak nonequilibrium
case is considered in Sec.3, and the equations of linear relaxation theory
in matrix form are derived. The problem of the dynamic variables choice
is discussed in Sec.4. Here too one of the most general case when the
set of dynamic variables besides the hydrodynamic variables includes
their derivatives up to order s is considered, and the recurrent relations
for memory functions of fluids are derived. A discussion and concluding
remarks are given in Sec.5.

2. Method of nonequilibrium statistical operator:
General relations

2.1. Liouville equation with boundary conditions

The nonequilibrium state of a system is described by the nonequi-
librium statistical operator p(x™V;t) which is a solution of the Liouville
equation

p(xN:t) +ilp(x"N;:t) =0, (2.1)
at”
where iL is the Liouville operator, and x¥ = {r,p}". For a simple
classical fluid with the Hamiltonian
p} o1
H=Y 5L+35% Vikeal, (2:2)
2m 2
f=1 f#1
the Liouville operator is
N
.2 Py 0 0
L= === - 2.3
) Z m aI‘f Za | fl 8pf 8pl)7 ( )

f=1 L

where V(|ry;]) is a potential of interparticle interactions. As it usually is
the nonequilibrium statistical operator p(x¥;t) is normalized to unity

Sp p(xN;t) =1, (2-4)
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where in the case of classical treatment of a fluid

drdp)™N
Sp(...):/... W(...).

In order to determine the nonequilibrium statistical operator p(x”; t)
from the Liouville equation (2.1) which is reversible with respect to time,
one has to pose the boundary conditions corresponding to the physics
of a system under consideration. In general case it can be done using
two fundamental ideas of Bogolubov. First, this is conception of quasi-
averages according to which one can introduce the infinitesimal source
in the equation (2.1) which destroy its symmetry with respect of time
inversion. The term with infinitesimal source should be tended to zero,
the thermodynamic limit having been performed. In such a way one
can find the retarded (or advanced) solution of the Liouville equation.
Second, it is the Bogolubov’s idea about the hierarchy of relaxation times
which can be also presented as an abbreviate description hypothesis.
From the physical point of view this means that a weak nonequilibrium
state of a system can be described via evolution of the most slowly
varying dynamic variables. With respect to the dynamic properties both
of these physical principles were best used by Zubarev in his formulation
of the nonequilibrium statistical operator method [15,16,20].

With Zubarev’s method of nonequilibrium statistical operator, the
retarded solutions of the Liouville equation (2.1) can be obtained from
the Liouville equation with an infinitesimal source (¢ — +0) which has
the following form

O ;1) 4 ilp(x 1) = —e(peV; 1) — py(e31), (2.5)
where p,(x";t) is so-called quasi-equilibrium statistical operator.

According to the hypothesis of an abbreviated description, in order
to find p,(xN;t) we restrict ourselves a priori to a certain set of the
most slowly physical quantities { P, } which are thought to determine the
nonequilibrium state. Of course in general case this is an approximation
whose applicability depends on the choice of the dynamic variables and
has to be judged afterwards. The problem of a choice of the dynamic
variables is one of the most difficult in nonequilibrium theory and will
be further discussed in more detail. Here, we assume that such variables
are the extensive quantities {Isa} and a=1,2,..., M.

The quasi-equilibrium statistical operator p,(x";t) can be found
from the condition of the informational entropy extremum under the
additional constraint that the mean values of the dynamic variables

(Pa)y = Sp{Papy(x";1)} (2.6)
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are fixed with preserving the normalization
Sp pg(x"s5t) = 1. (2.7)

As a result, the quasi-equilibrium statistical operator p,(x";t) can be
written in Gibbs-like form

pa(N i) = exp{—0(t) = S PuFu(t)} =exp{-S()},  (28)

where

®(t) =1In Sp exp{— Y _ PaFa(t)} (2.9)

is a corresponding quasi-equilibrium thermodynamic potential or, in
other words, so-called Massieu-Planck functional. The operator S (t) isin
fact the entropy operator, since its mean value (S(t))! gives the nonequi-
librium entropy of a system. We see in (2.8) and (2.9) that the depen-
dence of p,(x";t) on time is given only via the time-dependent quantities
{F,(t)} which are in fact the conjectured quantities to the set of dynamic
variables { P, }. The intensive quantities {Fy(¢)} can be found from the
conditions of self-consistency

<Pa>z = <Pa>t =Sp {Pap(xN;t)}, (210)

which follow immediately from the condition

0 ¢ dA
A = () (2.11)
when A = P,. For arbitrary quantity .4, the equality (2.11) is satisfied
in the sense of quasiaverages only when the limit ¢ — 0 is performed
after the thermodynamic limit.

Since the dynamic variables have to describe the local properties
of the system, they are depending on the space coordinate r (or k in
the case of the corresponding Fourier transforms). Hence, in the above
and following expressions an integration over space coordinates has to be
made explicit together with a summation over index of dynamic variables
Q.

Introducing the deviation

Sp(x™;t) = p(xN;t) — py (xN5 ),

equation (2.5) can be rewritten in the form

a .7 N, _ 8 .2 N,
o +iL 4+ €}dp(x™;t) = — e +iL} pg(x75t). (2.12)
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Since the operator p,(x";t) depends on time only via F,(t) (or the
conjectured quantities (P, )?), one can introduce the projection operator
P,(t) according to the definition

0
apq
The operator Py(t) is known as the Kawasaki-Gunton projection opera-

tor [21] and acts on the statistical operators or their combinations. For
pq(xN;t) in the form (2.8), it has the following structure

(xN;1) = =Py (t) iLp(x";t) (2.13)

PO = A0 = 3 SRy s () +

5Pq( )
+§a: 5By Sp Pa(...) (2.14)

and possesses the following properties

Py(t)p(t) = py(t), Py(t)pg(t) = py(t).

Finally, with the projector (2.14) the Liouville equation (2.12) takes the
form

{%+(1_7>q(t))ii+e} Sp(xN5t) = —(1="Py(t))iLpy(x"5t).(2.15)

2.2. Nonequilibrium statistical operator

A formal solution of (2.15) for the nonequilibrium statistical oper-
ator p(xV;t) can be written as follows

p(xN;t) = py(xN;t) —
t

- / e T, 1) (1 = Py(t))iLpy (xN; ") dt! (2.16)
where
T,(t,t) =expi{— /dT 1—P, (7))L} (2.17)

is a generalized operator of time evolution with regard to projecting. Let
us consider in (2.16) the action of P, and iL operators on the quasi-
equilibrium statistical operator p,(x";t). Taking into account the prop-
erties of the Liouville operator (2.3), the result of its action can be written
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in the form

where
Pa=iLP,. (2.19)

The statistical operators are considered here as quantum ones for gen-
erality. For deriving of the equation (2.18) we used the equality

A~

0
= /dT(Pq(XN;t))T (PXN)) (pg(x™; 1)), (2.20)
0

where X (xV) is an arbitrary dynamic quantity depending on coordinates
of phase space, and P is the generalized Mori projection operator defined
as follows

S L
Pt).. = (5 + > 5<<P >>qt {P, — (P} (2.21)

with properties
P(t) P(t) = P(t), P(t) (1 -"P(t) =0, P(t)Py= P,

Contrary to the Kawasaki-Gunton projection operator, the Mori oper-
ator (2.21) acts only on the dynamic variables (or dynamic operators).
Finally, taking into account (2.16) and (2.18), the nonequilibrium statis-
tical operator can be written in the form

t
pcst) = py(it) + [ e O ST RL() ¢

/ dr (N3] T(t ) (#) g (N3 )], (2.22)
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where
L) =1 -P(@1) Pa (2.23)

are the generalized fluxes. The evolution operator T'(¢,t") is now defined
in terms of the Mori projection operator P(t), namely

T(t,t') = eaps {— / dr(1 = P(r) iL}. (2.24)

The nonequilibrium statistical operator (2.22) describes the nonequi-
librium state of a liquid with the Hamiltonian (2.2) for the initial set of
dynamic variables {P,}. This operator is presented in the terms of the
generalized dissipative fluxes (2.23) describing transport phenomena. In
accordance with the hypothesis of an abbreviated description of nonequi-
librium state, p(x;t) is a functional of the observed physical quantities
varying in time (the mean values (P,)t). Hence, using the solution (2.22)
in order to obtain self-consistence description of nonequilibrium proper-
ties, one should derive equations for them, i.e. the generalized transport
equations.

2.3. Nonlinear transport equations

To obtain transport equations for average values (P, )¢, the equal-
ities

a@a)t = (Pa)' = (Pa)q + (1 = P(t)) Pa)’ (2.25)
may be used. The equalities (2.25) follow directly from the definition
of the Mori operator definition (2.21). Performing the averaging in the
right-hand side of (2.25) with the help of nonequilibrium statistical op-
erator (2.22), the generalized transport equations can be found in the
form

t
a)t:(ﬁa>g+z / dt'e=< =) g5 (t, ") F(t')dt',  (2.26)
B

<

af (t7 tl) =

- / dr (La(t), 7 (N t) Tt ) Es(t)p77 (V) (2.27)
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are so-called generalized memory functions of the system or, in other
words, the generalized transport kernels.

Using the matrix notation the transport equations (2.26) can be
rewritten as follows

t
%(ﬁ)t:<13)g+ / dt'e= (=gt ¢)(P, PY)F(t)dt!,  (2.28)

where ¢ = ||¢ag||, and P is a vector-column with elements {P,}.

The transport equation system (2.26) for the chosen set of dynamic
variables P = {Pa} corresponds of an abbreviated description of non-
equilibrium behavior of a liquid and may be used to the study both
strong and weak nonequilibrium states of the system. In general, this is
a set of nonlinear equations. The intensive quantities F,(t) entering in
the quasi-equilibrium statistical operator p,(xV;t) depend on averages
(P,)* through equations of self-consistency (2.8). The last ones are de-
termined from the system (2.26). Besides that, as the generalized mem-
ory functions @qp(t;t') are unknown, the question about the solutions
of the system (2.26) may be considered only under condition that the
approximations for these functions should be based on analysis of the
expression (2.27) and the corresponding equations for the higher-order
memory functions. However, it is well-known the restriction to the linear
case is a good approximation for transport phenomena in a fluid, and
the nonlinear equations have to use only for special problems of nonequi-
librium physics, for example for the description of dynamical behavior
near phase transition, which are not a subject of our study.

For a weak non-equilibrium case, the transport equations (2.26) can
be essentially simplified. Let us consider this case in more detail for
deriving the linearized transport equations.

3. Weak nonequilibrium case

3.1. Linearized transport equations

The behavior of the system near the equilibrium may be described
by set of the linear equations for deviations of macroscopic quantities
(P,)* from the equilibrium values (Py)o = Sp {Pspo(x™)}, where py is
the equilibrium statistical operator at temperature 1/3. Assuming the
deviations of intensive quantities dF),(t) = F,,(t) — F? from their equi-
librium values F? are small, the following expressions can be obtained
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from (2.8)-(2.9):

O(t) = g — > _(Pa)o 0Fa(t), (3.1)

S(t) =So— > AP, 0F,(t), (3.2)
where a

@y =In Sp exp{— Y _Pa F{}, (3.3)

So =9+ > Po FY, (3.4)

and AP, = P, — <]5a)0. The equilibrium statistical operator is
po = exp{—Py — ZP"‘ F°} = exp{—S,}. (3.5)

From the definition of quasi-equilibrium statistical operator (2.8), in lin-
ear approximation we obtain

) ={1-3" / dr AP, (7) 6Fa(t)}po, (3.6)
where
Apa(T) = pSAPapO_T. (3.7)

Using the self-consistency conditions (2.10), the relationship between the
deviations of intensive and extensive quantities can be found. In matrix
form we have

S(PY = —(AP,APH)§F*(t). (3.8)
The static correlation function (A, B) in general case is defined as follows

1 1

(4, B) = / dr (At Bpg o = / dr(AB(t = ihB7))o. (3.9)

0 0
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In the case of classical treatment we obtain from (3.9) the usual definition
of static correlation function in form (A, B) = (AB)g. As follows from
(2.22), the linearized nonequilibrium statistical operator is

t
Sp(t) = dpy(t) + > / dt'e ¥ D F, (t') x

1
X /dr ph To(t —t') (1= P)iLP, pL~". (3.10)
0

Using Fourier transformation for dependent on time functions

£(t) = / do f(w)erp(ivt),

the expressions (3.6) and (3.10) can be rewritten in a matrix form as
follows

6py(w) = — / dr APT(1)6F (w)po, (3.11)
0

1

1 o 5
+ [ dr p} (1 =P) Pt pl7"0F (w), 3.12
/Tpoiw+e+(1—77)iL( )BT poTOR W) (3.12)

where AP is a transposed vector with the elements {AP,} and 6F (w)
is a vector-column with elements {0F, (w)}. The projection operator P
and the operator Ty(t — ') are given by

P...=(...,APT)(AP,APT)"'AP, (3.13)
To(t —t') = exp{—(t — t')(1 — P)iL}. (3.14)

Using the linearized solution of the Liouville equation (3.12), it is easy to
obtain the setAof the linearized transport equations for the macroscopic
quantities (AP)!

{iw — i + Pc(w) }{AP)* = 0 (3.15)
where

iQ = (P ,APY) (AP, AP+)™! (3.16)
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is a frequency matrix, and
Pe(w) = P(e +iw) =
=(1-P) P

, ~(1-7P) P*) x
iw+e+ (1—-P)iL

X(AP,APT)™! (3.17)
is a matrix of the memory functions. The matrix equation (3.15) is the
set of the linearized transport equations or, in other words, the equations
of the linear relaxation theory.

3.2. Equilibrium time correlation functions

It can be shown the equations for the equilibrium time correlation
functions have the similar structure to (3.15). Really, a formal solution
of the Liouville equation (2.12) can be also written in the form

p(xN;t) = pg(xNit) —

t

1 -7 1 a A~

- / dt' et *”*’L“*t){% +iL}p,(xN;t). (3.18)
— o

For a weak nonequilibrium case, performing Fourier transformation for
dependent on time functions, we obtain

5p(w) = 8p,(w) +
1
1 ° . -
+ [ dr py———{P" +iwAPT}p; TOF (w). 3.19
O/ s oW, (3.19)

From the equations of self-consistency (2.10)
Sp {AP [55(w) = 6pg(@)]} = 0,
using the solution in the form (3.19), one find

1 A © ~

1 L -
= {_W(AR APY) + 2z YOF(w), (3.20)
where
(A,B%) = (4, ——B), (3:21)

"z 4L
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A, B = {P,P } and z = iw + ¢, and (A, BT)* is the matrix of Laplace
transforms of the quantum-mechanical equilibrium time correlation func-
tions (A, BT)(t) defined by

(A, BY)(t) = / dr(Apyexp{—iLt} Bpy o. (3.22)
0

Comparing of (3.15) with (3.20), and using of (3.8), it is easy to ob-
tain the matrix equation for Laplace transforms of the time correlation
functions (AP, APT)?

{ z—iQ +@(2)}(AP,AP")* = (AP,APY). (3.23)

Another result that follows immediately from such mathematical treat-
ment and will be useful for subsequent calculations is the expression for
the matrix of memory functions

Bz) = (P, Ph) -

3 D+ 2z 1 5 o+ z 1
—(P APt ——— (AP, P") )7 (3.24)
(AP,AP+)> (AP, APY)
It is important to note that as follows from the definition (3.21), the time
correlation functions under consideration can be expressed in terms of
the retarded correlation Green functions

1

Gt — 1) = —ib(t — 1) / dr (AW B(t)ps o, (3.25)

where 6(t) = 1 or 0 according to whether ¢ > 0 or ¢t > 0. In the case of
classical treatment the expression (3.25) gives the definition of classical
correlation Green functions. The spectrum of collective modes can be
determined from the equation

Det | z — i + ¢(2) |=0, (3.26)

which gives the poles of the regarded correlation Green functions con-
structed on the set of dynamic variables {Aﬁa}. It should be also stressed
that the matrix equation for the equilibrium time correlation functions
(3.23) is in fact the exact equation. This statement can easily be proved
using the expressions for the frequency matrix (3.16) and the matrix of
memory functions (3.24).




13 IIpenpunT

The linearized transport equations (3.15), the equations for the equi-
librium time correlation functions (3.23), and the equation for collective
mode spectrum (3.26) will be used as the basis for the next our study of
the dynamic behavior of simple fluids.

4. Extended set of dynamic variables

4.1. Introducing remarks

As it was noted before one of the most important problem of the
nonequilibrium statistical theory of many-body systems is the correct
choice of the dynamic (macroscopic) variables which have to be the most
slowly ones. Frequently, the existence of slow variables can be traced back
to conservation laws and, in the case of ordered systems, to continuous
broken symmetries. The associated dynamic variables are then the densi-
ties of the conserved quantities as well as the order parameters. However
the additional dynamic variables may be also included into the initial
set {Pa} Let us discuss this problem with some examples.

For the density-density time correlation function alone, many suc-
cessful descriptions exist in the literature using the approximations for
the memory functions defined on the one variable (the density of parti-
cles) [22], on the two variables (the densities of particles and momentum)
[2,1], as well as on the three dynamic variables when the variable asso-
ciated with the longitudinal component of the stress tensor is included
in addition [1,23]. As the modification of such kind of theories the mode
coupling theory of a fluid may be recalled. Mode-coupling approach was
proposed by Kawasaki [24], and for a simple classical liquid it was later
developed by Gotze et.al. [12] In this approach the binary and higher-
order combinations of the densities of particles and momentum are also
considered. On the basis of the approximations for the memory functions
in the form of two-mode decay integrals the closed equations for the time
correlation functions have been derived. As it has been shown such ap-
proach is especially very useful for description of liquid—glass transition
phenomena [25]. As will be seen later the methods noted above are in
fact the results of the same theory if the explicit expressions for the cor-
responding memory functions are used. And the different results for the
density-density time correlation function (or the dynamic structure fac-
tor) can be explained by the various approximations to have been used
in the calculations. Moreover, such theory can not give the correct hy-
drodynamic equations in the limit £ — 0 because the fluctuations of the
energy are neglected, and this means also that the generalized transport
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coefficients can not be calculated correctly. Therefore, we may conclude
that the all conserved variables should be considered from the very be-
ginning if the consistent calculations of the time correlation functions as
well as the generalized transport coefficients is the goal of the theory.
Nonequilibrium thermodynamics is based on the using of the con-
servation laws for the average values of physical quantities. Statistical
thermodynamics of non-equilibrium processes proceeds from the conser-
vation laws directly for the dynamic variables, i.e. it regards them from
the microscopic point of view. There are three conserved variables for a
single-component liquid, namely, the particle number density 7(r), the

momentum density J(r), and the energy density £(r). Their Fourier-
transforms 7y, Jx, £k can be defined as follows

. 1 ikr;

g = ——= » e, (4.1)
~ 1 )

JLT — p~L’T, eikri, (4.2)
k /—N z@: A

~ 1 pZ 1 ikr;
== 3 (P45 Y V). (4.3)
VN SeRam 26

In expression (4.2), as it usually is, the index L denotes longitudinal
component, i.e. the component parallel to a vector of k, which can be
taken to be parallel to the Oz axis, and index T denotes transverse
component, i.e. perpendicular to k. In such case we can consider the
variables (4.1)-(4.3) as functions of the wave-number & only.

It should be stressed that since the transverse component of the cur-
rent density is independent of the other variables this variable may be
treated separately from the longitudinal variables. From here on we con-
sider the dynamic variables as classical ones, and this means that in our
case (4, B) = (AB)y.

For the longitudinal fluctuations the set of so-called orthogonal dy-
namic variables can be introduced instead of the variables (4.1), (4.2)
and (4.3). These variables are connected with the initial ones by linear
transformation and can be found with the help of Schmidt’s orthogonal-
ization procedure using the expression (3.9) as the definition of scalar
product. Let us define the vector column BZ(k) with the components
l’;’é (k) = {n, j,f, ﬁk}, which are the orthogonal hydrodynamic variables,
where

hi =k — (Exfi_r)o (Ani_ )y g (4.4)
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is the density of generalized enthalpy. For the transverse fluctuations
we have one hydrodynamic variable only, namely [;’T(k) = AkL . Now,
using general results (3.15), (3.23) and (3.26), it is easy to derive the
corresponding equations for P = BT [27]. In this case the transport
equations for (B%T) is known in the literature as the generalized hy-
drodynamic equations which give in the hydrodynamic limit the Navier-
Stokes equations, but in general form they are much more complicated
because of the k- and w-dependent coefficients.

(From comparison with results of the nonequilibrium thermodynam-
ics the expressions for the generalized transport coefficients via the hy-
drodynamic memory functions can be found

(k) + 36k ) = ool k), (45
eh,2) = "ot 2y = Tk, ), (4.6
Ak, 2) = "Ckvg(k) ot (k, 2), (4.7)
Gk, 2) = 5l (k, 2). (4.8)

Here n(k, z), ((k, z) and A(k, z) are generalized bulk and shear viscosities,
and thermal conductivity coefficients, respectively. £(k, z) is a generalized
coefficient which describes the dynamical coupling between the stress and
the heat current and vanishes in the limit £ — 0. The memory functions
ol 5(k, z) are defined by (3.17) with P=pBLT,

From this point two main different ways in which the generalized
hydrodynamic theory was developed for the description for intermedi-
ate range of k and w may be separated. The first one may be called
once again as the method of k- and w-dependent memory functions in
which the various approximations were used for the memory functions
wgﬁ(k, z) (see, for instance, [2,3,1]). The main future of the second ap-
proach is an extension of the set of dynamic variables. As an example
the microscopic viscoelastic theory of a liquid can be recalled. In early
version of this theory [1] the flux of momentum was included into the
initial set of dynamic variables, and the fluctuation of energy (4.3) was
ignored. Later the variable of energy density ¢x was also considered in
the scheme of the viscoelastic theory [6]. It is evident that the results of
viscoelastic theory can be reproduced from (3.15), (3.23) and (3.26) if
the corresponding variables are chosen. As the another example of such
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kind of modifications the generalized mode approach can be noted [8—
11]. In this approach using Markovian approximation for memory func-
tions the general problem of dynamic theory reduced to the calculation
of the generalized mode spectrum of a system, and the time correla-
tion functions could be presented as a sum of partial terms related to
the corresponding collective mode. In five-mode approximation the first
results for Lennard-Jones liquid were obtained by de Schepper et. al.
[9]. The seven-mode approximation for longitudinal fluctuations and the
three-mode approximation for transverse fluctuations have been studied
by Mryglod et. al. [10,11].

4.2, Relations for the memory functions

In order to compare between themselves the results of various approaches
in which different sets of dynamic variables are used, let us consider more
general case. We introduce the following notations

Ao = [;,L’T, /i1 = ’Ui[;’g’T, .
A= GL)'BYT =il Ay, ..., A, = GL)*BY", (4.9)

where BL = {n,BL}, BY = {JL, h} and BT = BY = JT. Contrary to
Ref. [18] where the similar problem was considered we have a case that
one from the variables, namely j,f , has the special property of being
both a flux and a conserved variable, so that (iL)'# ~ (iL)!"='JF. The
set of the dynamical variables {f(o,ftl, . ,As} will be considered as
initial one and includes 3 4 2s variables for the longitudinal fluctuations
and 1 + s variables for the transverse fluctuations.

The orthogonalized dynamic variables constructed on (4.9) can be
found with the help of the Schmidt’s orthogonalization procedure with
the definition of scalar product in the form (3.9). As a result we have

Yo = Ao, Y1 =(1-Po)As, ...,
Yi=(Q1-P1)iLA_=1-P1)A, ...,

Y, =(1-Ps1)As, (4.10)
where
Po = APy = (... AD)o (Ao AT )5 Ao, (4.11)
[
Pl — Z A'Pn” (412)
m=0

0 Yo, (4.13)
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are Mori-like projection operators. Now the variables {Yl} possess the
properties

(VY70 = 0w dap(Y2 Yo, (4.14)

where o, = {J,e} for the longitudinal fluctuations. It is easily seen
that the <}A/laf/l,5>0 in (4.14) is proportional to d,p because of the different
symmetrical properties jkL and £ under the time inversion.

Using the general expressions obtained above and the properties of
Mori projection operators, the frequency matrix (3.16) and the matrix
of memory functions (3.17) can be calculated with P = {¥p,Y1,...,Y,}.
For frequency matrix we have

i I
Iy i I 0
i = Iy iQy I
0 _Fn—Q Z'Qn—l 1
_Fn—l ZQn
where
i = iQy = (LYY ) (VY1) (4.15)

Ly =iQ1y = (LYY o (MY )t =
= =Y V)oY )5, (4.16)

1y = <Z'IAJA/171Y5+>0<Y1?5+>51 = <Ylffl+>o<fflf/}+>al =1, (4.17)

I is a unit matrix. All of other elements of the frequency matrix are
equal zero. Moreover, as follows from the time reversal properties, for
the longitudinal fluctuations ¢{}; and I'; are nondiagonal and diagonal
matrices, respectively. For the transverse fluctuations we have ¢2; = 0.

(From the definition of matrix of memory functions (3.17) and the
equality

iLYy 0
a-PiLp=1-p)| = 7
ZIAAA/S Ys+1
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it is seen that the matrix of memory functions has only one non-zero
block, namely

0 0 0 O
0 0 0 0
@(S) =
0 0 0 0
0 0 0 s
where
~ 1 N N
s(2) = (Vo ———————Y L Vo (YY)t 4.18
@s(z) = ( s+lz+ (1= Pyl s+1>0< sty >0 ( )

The set of equations for (Y})¥ follows from (2.28) when
P={V,Y,....75}

(3w — 102 ) (AVp) — (AV1) =0,

To(AVo) + (iw — ifh ) (AVI)” — (AVa)* =0,

T, 5(AT; ) + (iw = i1 ) (AT, 1) — (AT, =0,
T (AT, ) + (iw —i0, + ¢3(2)> (AY,) = 0.

Solving the last equation with respect to (Af@)“’ and excluding this
variable from Eqs. (4.19) we obtain the transport equations for P =
{Yo,Y1,...,Ys_1} with the memory functions @;_;(z) in the form

Bur(2) = (21— 104+ 64(2)) Tucs. (4.20)

The recurrent relations (4.20) give the connection between the lower-
and higher-order memory functions and can be used for arbitrary choice
of dynamic variables and any s. It is necessary to stress that the relation
(4.20) is in fact exact. This statement could also be proved by the another
way which was applied in Ref. [9] for the particular case s = 1, namely,
using the known operator equality

(A+B)y'=A1-A'BA+B)!

in Eq. (4.18) with A =z + (1 - P,_1)iL and B = —AP,iLt.

Let us consider some particular results which follows from (4.20).
Using (4.20) the known result of Mori for dynamic structural factor in
the form of an ordinary continued fraction [26] can be reproduced when
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the set of the dynamic variables for longitudinal fluctuations includes
the densities of particles and momentum as well as higher order their
derivatives. Then, as it follows from (4.15), we have i€}; = 0. Moreover,
I'; and @;(z) have not a matrix structure in this case and are usual
functions, so that we have

stl
z+ @s(z)
The similar result can be found in the case of transverse fluctuations.
For longitudinal fluctuations, if the density of energy as well as its
derivatives are taken into account, i€}, I';, and @;(z) are 2 x 2 matrices.

In this case the recurrent relation (4.20) for arbitrary s can be rewritten
as follows

Gur(2) = (4.21)

Fll

~11 s—1
Ps_1(2) = . . , _ ,(4.22)

(e - COT PRI )

’ 2+ (2)
1'\22

~12 s—1
Pso1(2) = ~ R . (4.23)

R R O) [CR i)

R —i0F + 57 ()
Fll

~21 s—1
P-1(2) = _ — . (4.24)

R - M ) Gl i )

o —i0 + ¢71 (2)
. F22

=22 s—1
Pica(z) = . - . R ,(4.25)

(e - G AT+ 5P ()

’ 2+ ¢ (2)

and the known relations [9,27] for the memory functions of three- and
five-mode descriptions (s = 1) follow immediately from (4.22)-(4.25).

Using the equations for time correlation functions (3.23) and the
expressions (4.22)-(4.25), the time correlation functions of the hydrody-
namic variables can be written in the form of the ”generalized continued
fraction”. As it was pointed out in Ref.[17] such expressions for the time
correlation functions correctly conveys the analytic structure of the cor-
responding Green functions in the complex z-plane.
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5. Concluding remarks

Zubarev’s method of the nonequilibrium statistical operator has
been applied to derive the general equations of the linear relaxation the-
ory of a fluid for the set of dynamic variables which includes besides
the hydrodynamic macrovariables their higher order derivatives. The re-
current relations between the lower- and higher-order memory functions
are found. In fact these relations via Eqs. (4.5)-(4.5) give the connec-
tions between the generalized transport coefficients and the higher-order
memory functions. The recurrent formulas (4.20) are exact when the ex-
plicit expressions (3.17) (or (3.17)) for the memory functions are used.
Therefore, we may consider the set of the equations (3.15), (3.23) and
(3.26) for the hydrodynamic macrovariables, which are complemented by
the recurrent relations (4.20), as the basic equations of the generalized
hydrodynamics of simple fluids. These equations describe correctly the
hydrodynamic limit, make possible to calculate the generalized transport
coefficients, and can be used in the intermediate range of wavenumbers
k and frequencies w.

It is also shown that the results of many known descriptions follow
immediately from the basic equations when the dynamic variables and
an approximation for the memory functions are specified. We will dis-
cuss this point in more detail in the next paper of a series. In general, it
is important to stress especially, the choice of an approximation for the
memory functions should be considered in combinations with the recur-
rent relations (4.20). In such a manner only the consistent description of
a fluid can be obtained. From the physical point of view the choice of an
approximation is closely connected to some dynamical model of a fluid
to be considered and determines the range in which this model can be
used (so-called ”window conditions).
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