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Анотацiя. Ми використовуємо високотемпературнi розвинення за
степенями оберненої температури β = 1/T до 11 порядку i метод
ентропiї щоб обчислити магнiтну теплоємнiсть c(T ) та магнiтну од-
норiдну сприйнятливiсть χ(T ) для антиферомагнетика Гайзенберга
зi спiном S > 1/2 на гратцi кагоме. Ми доповнюємо цi обчислення
даними методу точної дiагоналiзацiї i скiнченотемпературного ме-
тоду Ланцоша для скiнчених систем. Ми обговорюємо як змiнюється
температурна залежнiсть теплоємностi iз ростом спiнового кванто-
вого числа S.

Preliminaries on thermodynamics of the spin-S Heisenberg an-

tiferromagnet on the kagome lattice

T. Hutak, J. Richter, T. Krokhmalskii, O. Derzhko

Abstract. We use high-temperature expansion series up to order 11 in
the inverse temperature β = 1/T and the entropy method to calculate
the magnetic specific heat c(T ) and the magnetic uniform susceptibility
χ(T ) for the kagome-lattice Heisenberg antiferromagnet with spin S >
1/2. We complement these calculations by exact diagonalization and
finite-temperature Lanczos method data for finite systems. We discuss
how the temperature dependence of the specific heat varies as the spin
quantum number S grows.
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1. Introduction

The spin-S Heisenberg model with the antiferromagnetic nearest-neigh-
bor exchange coupling J > 0 (usually, J = 1) on the kagome lattice
(KHAF) is a paradigmatic model in frustrated quantum magnetism,
which attracts a lot of attention both from theoretical and experimen-
tal sides [1]. The spin value S = 1/2 represents the pure quantum case,
whereas S → ∞ corresponds to the classical case. Thus, the spin value S
controls the role of quantum fluctuations which together with geometri-
cal frustration and thermal fluctuations are known to produce intriguing
properties of such a spin-lattice system. In what follows, we intend to
illustrate how some temperature characteristics of the KHAF depend on
S. Before that we briefly recall what is needed for our study.

Concerning the ground-state properties, it is believed that the ground
state of the S = 1/2 KHAF is a gapless spin liquid. However, there
are several gapless spin-liquid states, which distinguish by a law for the
specific heat decay as T → 0.

The ground-state physics of the S = 1 KHAF has been in focus
of many papers [2–16]. Various proposals have been suggested for the
ground state. Thus, Hida proposed a hexagon-singlet solid (HSS) state
as a candidate ground state [2]. An alternative candidate is the resonat-
ing Affleck-Kennedy-Lieb-Tasaki loop (RAL) state [6]. Another plausible
ground state, which although nonmagnetic but breaks lattice inversion
symmetry and possesses a simplex valence-bond crystal (SVBC) order,
is the SVBC state which favors trimerization [4, 7, 8, 10]. The ground-
state energy (per site) calculated by various methods can be found in
Supplemental Material. Most of data lie around −1.41. . .−1.40. Further-
more, the S = 1 KHAF is expected to be gapped. That is, in contrast
to the S = 1/2 case, the nonmagnetic excitations have finite energy gap
comparable to the one for the magnetic excitations. The value of the
spin gap is estimated in the range 0.2 − 0.3 [10]. The DMRG calcula-
tions of Ref. [13] give the following estimates for the singlet-triplet gap
∆s−t: 0.178 ± 0.005 for the HSS state and 0.2797 for the (triangular
valence-bond solid) TVBS state.

The ground-state energy for the S = 3/2 KHAF can be found in
Supplemental Material. For S ≥ 3/2 a ground-state magnetic long-range
order may appear [5, 9, 15, 17]. It was argued that the

√
3×

√
3 state is

the ground state which melts at any finite temperature [17].
Classical (S → ∞) ground states were discussed in Ref. [18]. The set

of all ground states is disordered, but as T → 0, however, the entropy of
fluctuations select a nematic correlations.
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Concerning the finite-temperature properties of the S = 1/2 KHAF,
an extra low-temperature peak or shoulder in the magnetic specific heat
at the temperature about ten times smaller than J is debated [19–29].
Moreover, an enhanced magnetic susceptibility at low temperatures be-
low half of J was observed [27, 30].

For S = 3/2, the specific heat exhibits a T 2 behavior and the sus-
ceptibility approaches a finite constant as T → 0 [17].

For the classical case S → ∞, it is known that the specific heat
with temperature decrease exhibits a maximum before achieves the value
11/12 at T = 0 [18]. In connection with the susceptibility, we note that
it reaches the value χ0 = 1/6 as temperature goes to zero [31, 32].

Concerning experiments, high quality crystals of herbertsmithite
ZnCu3(OH)6Cl2, in which the copper ions carrying spin one-half sit on
a kagome lattice, were synthesized in 2005. Much more S = 1/2 KHAF
realistic materials are known nowadays. This motivates an interest in
the theoretical study of the S = 1/2 KHAF: It would be highly desirable
to compare experiments with theory [33–35]. However, for a precise ex-
planation of finite-temperature measurements it is necessary to explore
side effects unavoidably present in real crystals. Thus, disorder (as non-
magnetic impurities) and several extra interactions for the S = 1/2 case
were discussed in detail using the entropy method by Bernu et al. [29].

Although, various magnetic kagome compounds with S > 1/2 exist,
see, e.g., Refs. [36–47] for S = 1 and Refs. [48–52] for higher S, much less
corresponding theoretical work is available. While for the ground state
several recent studies for S > 1/2 exist [2–16], only a few theoretical
investigations of finite-temperature properties of the KHAF are known
[17, 53].

In what follows, we study the thermodynamics of the spin-S KHAF
focusing on the specific heat c(T ) and the susceptibility χ(T ). Theo-
retical methods to study thermodynamics of highly frustrated quantum
Heisenberg antiferromagnets are rather scarce. Thus, quantum Monte
Carlo simulations are inapplicable because of the sign problem, exact
diagonalization and finite-temperature Lanczos methods are limited to
relatively small system sizes N [27, 54, 55], which become even smaller
when S > 1/2, the numerical linked-cluster approach to quantum lat-
tice models cannot access sufficiently low temperatures [24, 25], whereas
the second-order rotation-invariant Green’s-function method (RGM) is
too crude to reveal fine low-temperature features [53]. Furthermore, a
raw high-temperature expansion being complemented by Padé approxi-
mants is restricted to the temperature range above ∼ 0.5J . Here we use
the entropy-method interpolation for thermodynamically large systems.
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The key element of the entropy method is a sophisticated procedure of
interpolation between the known low- and high-temperature properties
in the microcanonical ensemble which respect the sum rules constraining
the specific heat [23, 29, 56–63]. Besides, we complement the entropy-
method results by numerical calculations for finite-size systems. Our aim
is to follow how the thermodynamic properties vary as the spin value
increases from the pure quantum limit S = 1/2 to the classical limit
S → ∞.

We end up this section with introducing the model and notations. We
consider the kagome-lattice Heisenberg antiferromagnet with the Hamil-
tonian

H =
∑

〈nm〉

Sn · Sm. (1)

Here the antiferromagnetic exchange coupling J > 0 is set to unity,
the sum runs over nearest-neighbor bonds on the kagome lattice, and
S2
n = S(S + 1), S = 1/2, 1, 3/2, . . . (in what follows, the largest value of

S is 4). We set ~ = 1 and kB = 1 throughout the paper.
In the rest of the paper, we first concisely explain the exploited meth-

ods (Section 2) and then report the obtained results (Section 3). We end
up with a brief summary (Section 4).

2. Methods

The main method of our study is the high-temperature expansion (HTE)
augmented further by the entropy-method interpolation which was elab-
orated for thermodynamically large spin systems without a finite-tem-
perature phase transition in Refs. [23, 29, 56, 57]. First, we use the HTE
program of Refs. [64, 65], which is freely available at

http://www.uni-magdeburg.de/jschulen/HTE/,
in an extended version up to nth order (n = 13 for S = 1/2 and n = 11
for S > 1/2). Thus, we compute the series of the specific heat (per
site) c(T ) =

∑n

i=2 diβ
i + O(βn+1) (d1 = 0) and the static uniform sus-

ceptibility (per site) χ(T ) =
∑n

i=1 ciβ
i + O(βn+1) with respect to the

inverse temperature β = 1/T . (Recently, an algorithm for calculating
high-temperature expansion series of Heisenberg models in the thermo-
dynamic limit, which accounts for the presence of a magnetic field, has
been reported [66]; however, this algorithm is restricted to the spin value
S = 1/2.) As a result, we have the following high-temperature series for
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the Helmholtz free energy (per site) for low magnetic fields h (gµB = 1)

−βf(T, h) =
lnZ(β, h,N)

N

β→0
= ln (2S + 1) +

n
∑

i=2

di
(i − 1)i

βi+O(βn+1)

+
1

2
β

(

n
∑

i=1

ciβ
i+O(βn+1)

)

h2+O(h4), (2)

where Z(β, h,N) is the canonical partition function. HTE up to 10th
order for arbitrary spin S can be found in Appendix B of Ref. [65]. In
the present paper, we use one more order results, that is,

d11=−76 377 321 757

66 134 880
J11, c11=

49 904 041

47 239 200
J10 (3)

for S = 1,

d11=−6 245 386 099 381

24 772 608
J11, c11=

12 298 193 957

2 211 840
J10 (4)

for S = 3/2; d11 and c11 for S = 2, 5/2, 3, 7/2, and 4 can be found in
Supplemental Material.

The most straightforward way to extend the region of validity of the
raw HTE is to construct simple Padé approximants [65]. Our studies
on the spin-S KHAF used HTE up to 11th order. Therefore, we may
construct [u, d](T ), u + d ≤ n = 11 and in what follows we show the
close to diagonal Padé approximants like [4, 5](T ), [4, 6](T ), [5, 5](T ),
[6, 4](T ), [5, 6](T ), [6, 5](T ).

As a key tool, we exploit the entropy method [23, 29, 56, 57] to in-
terpolate between the high-temperature behavior given by the HTE and
the presumed low-temperature behavior to get thermodynamic quan-
tities over the full temperature range. This procedure is explained for
self consistency in Supplemental Material. Here we only mention that
we work in the microcanonical ensemble with the entropy (per site) as
a function of the internal energy (per site) s(e). We need, besides the
known Maclaurin series for s(e) up to order n = 11, the ground-state
energy per site e0 and the behavior of the specific heat c(T ) as T → 0,
which determines s(e) as e → e0+0. Then we interpolate an auxiliary
function G(e), which depends on the specific low-temperature behavior
of c(T ) and which is uniquely related to s(e), using (two-point like) Padé
approximants [u, d](e), u + d ≤ n = 11. According to Ref. [29], if e0 is
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exact, the adopted low-temperature c(T ) is correct, and n is sufficiently
large, the approximate entropy-method capp(T ) for all [u, d](e) is close
to the exact one1. The described prescription can be straightforwardly
extended in the presence of a magnetic field to obtain the susceptibility
χ(T ), however, χ0 ≡ χ(T=0) is necessary as an extra input parameter
if the low-energy excitations are gapless. We are not aware about χ0 for
S = 3/2, 2, 5/2, 3, 7/2, 4 besides RGM data [53] which, however, are
not enough accurate to be used for interpolation.

A complementary method of our study is the exact diagonalization
and the finite-temperature Lanczos methods which allow to illustrate the
temperature dependences c(T ) and χ(T ) for the finite-size S = 1 KHAF.
The clusters with N = 18, 21 and periodic boundary conditions imposed
are used to obtain c(T ) and χ(T ). Finite-temperature Lanczos method
is explained in some detail in Ref. [27]. Within its frames, the sum in the
partition function over all states within the Hilbert space of the model
is replaced by the sum over R different randomly chosen states. In our
study we used R = 10 . . .200 to balance the accuracy and the required
computation time.

3. Results

First, we discuss in some detail the case S = 1 KHAF, which has been
considered in several recent papers. Then we pass to the case of higher
spin values S = 3/2, 2, 5/2, 3, 7/2, 4, which is less studied.

3.1. S = 1

We begin with numerics for finite-size systems, see Fig. 1. Several ob-
servations are immediately evident. The results for different numbers of
sites coincide above the temperature approximately equals 0.7 for c(T )
or 0.5 for χ(T ) indicating the confidence region. Next, c(T ) has a low-
temperature maximum, the position of which lies outside the confidence
region and is size-dependent (≈ 0.17 for N = 18 but ≈ 0.11 for N = 21).
χ(T ) illustrates a gapped spectrum (although a finite system is always
gapped), but the position of maximum (≈ 0.44 for N = 18 and ≈ 0.40
for N = 21) is outside the confidence region. Finally, having only two
values N = 18 and N = 21 it is impossible to predict low-temperature
behavior of c and χ as N → ∞, and thus numerics is inconclusive even
for the S = 1 case.

1This observation can be used to proceed even in the case when the ground state
and low-energy excitations are unknown [29, 63].
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Figure 1. Numerics for (top) c(T ) and (bottom) χ(T ) of the S = 1 KHAF
of N = 18 (green) and N = 21 (blue) sites. Solid and dash-dotted lines
correspond to R = 200 (N = 18), R = 50 (N = 21) and R = 100
(N = 18), R = 10 (N = 21), respectively, see Sec. 2. The insets present
the same data in linear scale. The results for different sizes practically
coincide above 0.7 for c(T ) and 0.5 for χ(T ).

We pass to the entropy-method calculations. As said above, HTE
series up to 11th order (Ref. [65] and Eq. (3)) for the model at hand
is available. Furthermore, the required low-temperature properties are
known: We may take for the ground-state energy, e.g., e0 = −1.41, see
Supplemental Material, and assume gapped excitations.

In Fig. 2 we report the entropy-method results (along with simple
Padé extrapolations and numerics) for c(T ) and χ(T ) of the S = 1
KHAF. As can be seen in the top panel of Fig. 2, the entropy-method
curves agree with simple Padé approximants and numerics in the high-
temperature region. Above that, c(T ) exhibits a shoulder in the temper-
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Figure 2. Entropy-method results (red, gold, violet) along with simple
Padé (magenta) and finite-size (blue) data for (top) c(T ) and (middle
and bottom) χ(T ) of the S = 1 KHAF. Entropy-method curves based
on [5, 6](e), [6, 5](e), [4, 6](e), [5, 5](e), [6, 4](e), and also on [4, 5](e) for
χ(T ) with (top and middle) e0 = 1.41 and (bottom) e0 = −1.44, simple
Padé approximants, [5, 6](T ) and [6, 5](T ), and the shaded region be-
tween them are shown for T ≥ 0.5, whereas numerics for N = 21 are
shown for T ≥ 0.2. Note that simple Padé approximants and numerics
can reproduce the main maximum of c(T ) but not a shoulder below it.
Furthermore, the maximum of χ(T ) is predicted differently by different
approaches.
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Figure 3. Entropy-method results (red, gold) for the energy gap ∆ of
the S = 1 KHAF. We also show results for finite systems, of DMRG
calculations (gray stripe) [10], as well as results under the hypothesis of
HSS or TVBS ground state [13].

ature range 0.07− 0.3. Recall that for the S = 1/2 KHAF, the entropy-
method calculations under both assumptions, of gapless spectrum with
α = 1, 2 [23] or of gapped one [57], yield an extra low-temperature max-
imum of c(T ). In the middle panel of Fig. 2 we report χ(T ) for the S = 1
KHAF as it follows from the entropy-method interpolation (e0 = −1.41,
gapped exciations) along with simple Padé approximations and numer-
ics. Obviously, the agreement between various entropy-method curves
is rather poor (essentially worse in comparison to the case of specific
heat) and only one of them, which is based of [4, 5](e), yields a plausible
profile of χ(T ) (maximum around 0.80 of the height about 0.14). We
note that decreasing the ground-state energy e0 from the value −1.41 to
the value −1.44, i.e., by 2.1%, leads to better agreement between vari-
ous entropy-method curves (more Padé approximants are closer to each
other), see the bottom panel of Fig. 2. One may speculate that having
only n = 11 coefficients of high-temperature expansion series one gets
a relatively self-consistent entropy-method prediction for χ(T ) if the as-
sumed e0 is 102.1% of the true ground-state energy ≈ −1.41, but with
further increasing n the assumed value e0 will tend to the true value
e0 ≈ −1.41.

To gain more insight into this problem, we discuss an energy gap of
the S = 1 KHAF. In Fig. 3 we show the dependence of the entropy-
method gap ∆ as a function of the assumed ground-state energy e0.
Setting e0 = −1.41, we get the gap value within the range [0.11, 0.15].
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Furthermore, we report in Fig. 3 the singlet-triplet (magnetic or spin)
gap according to DMRG calculations, which lies in the range between
0.2 and 0.3 [10] along with the expected gaps for HSS and TVBS ground
states [13]. As it follows from Fig. 3, the entropy-method ∆ = 0.2 ap-
pears if e0 ≈ −1.43. It is important to note that the entropy method
does not distinguish the singlet-singlet gap and the singlet-triplet gap
and yield the value of the lowest-energy gap, which governs the low-
temperature behavior of the specific heat. Therefore, the entropy method
may face a problem if the singlet-singlet (nonmagnetic) gap is smaller
than the singlet-triplet gap: The former gap follows from the entropy-
method calculations but the latter one, which is larger and not present
in the entropy-method scheme, controls the low-temperature behavior of
the susceptibility. If for the case under consideration ∆s−s is smaller than
∆s−t, see above, it is not astonishing that the entropy-method output
for χ(T ) is worse than for c(T ). Decrease of e0 results in increase of the
energy gap, see Fig. 3, and might improve the entropy-method output
for χ(T ). However, the problems with χ(T ) within the entropy method
may be more intricate as is illustrated for the square-lattice S = 1/2 and
S = 1 Heisenberg antiferromagnet in Supplemental Material.

To summarize this subsection, neither numerics no simple Padé ap-
proximants can reproduce c(T ) and χ(T ) below T = 0.5. Although the
entropy-method interpolation contains correct low-temperature behavior
of the model at hand, because of only n = 11 terms of HTE available and
“worse” HTE series for S > 1/2, it can reproduce temperature profiles
only modestly in comparison to the S = 1/2 case (less almost coinciding
Padé approximants). Moreover, the results for the specific heat look bet-
ter than the ones for the susceptibility which may be related to singlet
(nonmagnetic) lowest-energy excitations above the gapped ground state.

3.2. S > 1

Bearing in mind the results for the S = 1/2 KHAF [23, 29, 57] and
for the S = 1 KHAF (see previous subsection), we pass to the cases
S = 3/2, 2, 5/2, 3, 7/2, 4. Since the ground state for S ≥ 3/2 possesses
a magnetic long-range order, it seems reasonable to assume the gapless
spectrum with α = 2 for all S ≥ 3/2. The values of e0 are available from
the coupled cluster method (CCM) calculations [5], whereas the values of
χ0 may be taken, in principle, from the RGM calculations [53]. However,
in view of that the RGM approach is not precise enough and the entropy
method faces some difficulties in obtaining χ(T ) for gapples excitations
too (see Supplemental Material), we restrict ourselves in what follows to
c(T ) only. Before presenting our findings, it might be worth to recall that
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(i) S = 3/2 results were reported in Ref. [17] (but the curve c(T ) reported
there hardly obey the sum rule

∫∞

0
dTc(T )/T = ln(2S + 1), see Fig. 4)

and (ii) a number of reliable classical Monte Carlo simulations data for
c(T ) and χ(T ) for the case S → ∞ were reported in Refs. [18, 31, 32, 67].

In Fig. 4 we show entropy-method curves c(T ) for the cases S = 3/2,
S = 2, and S = 5/2. Some of Padé approximants [u, d](e) are with “def-
fects” (see Ref. [68], pp. 38-66) and must be put in the proper perspective,
see Refs. [62, 68]. Following the temperature profiles c(T ) obtained on
the basis of [5, 6](e), [6, 5](e), and [5, 5](e), one may conclude that the
low-temperature shoulder fades away as the spin value S exceeds S = 2.
(Note, however, that such a behavior holds for the 11th order results; the
10th and 9th orders lead to a rather dispersive bunch of curves c(T ).)
Below, we consider the 11th order Padé approximant [5, 6](e) only to
continue discussion of the spin value effect on c(T ).

In the top panel of Fig. 5 we report c(T ) for several spin values
S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4 and S → ∞ to demonstrate how the
pure quantum case (S = 1/2) transforms into the classical one (S → ∞).
As can be seen from this figure, there are some hints for low-temperature
features (peak or shoulder) if S = 1/2, 1, 3/2; the case S = 2 is
marginal; and there is only one peak in c(T ) if S = 5/2, 3, 7/2, 4. In
the bottom panel of Fig. 5, we illustrate how the main peak in the spe-
cific heat cmax = c(Tmax) is modified as S varies. Namely, we report the
dependence of the height of the main maximum cmax (main panel) and
its position Tmax (inset) as functions of the spin value S. We present re-
sults of different methods: Entropy method, simple Padé approximation,
numerics. Again the spin value S = 2 is a special one. As is seen in the
inset, the position of the main peak Tmax moves to lower T/[S(S + 1)]
as S increases from 1/2 to 2 and all approaches yield almost identi-
cal predictions for that. When S exceeds 2, the main peak continues
to decrease, however, the predictions of different methods become quite
different. Similar picture occurs for the height of the main peak c(Tmax),
see the main panel.

In summary, we may conclude that an extra low-temperature feature
below the main maximum of c(T ) is present for S = 1/2, 1, 3/2 only, but
not for larger spin values S ≥ 5/2. Some observed features are similar
to those obtained by the RGM calculations of c(T ) and χ(T ) for the
spin-S KHAF [53]. For example, according to Ref. [53], the position of
the main maximum of c(T ) shifts towards lower values of T/(S(S + 1))
with increase of S, however, the role of low-lying excitations relevant for
the low-temperature physics is beyond the RGM approach.
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Figure 4. c(T ) for the spin-S KHAF within the entropy method for
(top) S = 3/2, (middle) S = 2, and (bottom) S = 5/2. In the panel with
S = 3/2 data we also plot the tensor-network result of Ref. [17].
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the entropy method (Padé approximant [5, 6](e) only). The values of e0
were taken from the CCM paper [5]. Solid lines correspond to the as-
sumption about the gapless spectrum with α = 2; dash-dotted lines (for
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cmax versus S. Inset: Tmax versus S.
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4. Summary

The main challenge in describing the thermodynamics of the spin-S
KHAF is a lack of appropriate methods for calculation of thermody-
namic quantities for the whole temperature range. HTE augmented by
the entropy-method seems to be a possible tool to tackle the problem.
In the present paper, we have illustrated a crossover between pure quan-
tum (small S) and classical (large S) behavior of the specific heat of the
spin-S KHAF: The low-temperature feature of the specific heat (shoul-
der) disappears as S exceeds a specific value, the value of which according
to our calculations is 2.

It is worth to mention a recent theory of a hidden energy scale, which
is significantly lower than the microscopic energy scale of spin interac-
tions, presented in Refs. [69, 70]. The hidden energy scale manifests itself
as a lower-temperature peak, well below the common higher-temperature
peak, in c(T ). With our study we may put forward a question about the
role of the spin value S in this scenario for the hidden energy scale for
geometrically frustrated magnets.
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Supplemental Material

A: The ground-state energy for the S = 1 and S = 3/2
cases

In Table 1 and Table 2 we collected the ground-state energies obtained
by various authors for the case S = 1 and S = 3/2, respectively. The
CCM ground-state energy for S = 2, 5/2, 3 can be found in Ref. [5],
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Table 1. The ground-state energy per site e0 for the S = 1 KHAF
obtained by various methods [exact diagonalization (ED) for various
clusters of N = 18 sites and N = 24, series expansion (SE) method
assuming

√
3×

√
3 or q=0 order, nonperturbative linked-cluster expan-

sion (NLCE), density-matrix renormalization-group (DMRG) algorithm,
tensor-network (TN) methods, coupled-cluster method (CCM) assuming√
3×

√
3 or q=0 order, hexagonal singlet solid (HSS) state, resonating

Affleck-Kennedy-Lieb-Tasaki loop (RAL) state, triangular valence-bond
solid (TVBS) state].

e0/S
2 (S = 1)

ED
−1.451 10 (N=18a), −1.439 26 (N=18b) [10];

−1.426 689 4 (N=24) [11]
SE −1.395 0 (

√
3×

√
3), −1.390 3 (q=0) [15]

NLCE −1.411 4 [14]

DMRG
−1.410(2) [10];

−1.411 1, −1.412 2 [13]
TN −1.411 6(4) [8]

CCM −1.403 1 (
√
3×

√
3), −1.396 5 (q=0) [5]

HSS

−1.36 [10];
−1.360 0 [12];
−1.410 95 [13]

RAL −1.383 [6]

TVBS

−1.387 1 [12];
−1.391 2± 0.002 5 [13];

−1.40 [15]

Table 2. The ground-state energy per site e0 for the S = 3/2 KHAF
obtained by various methods [series expansion (SE) method, tensor-
network (TN) methods, coupled-cluster method (CCM)].

e0/S
2 (S = 3/2)

SE −1.2530 (
√
3×

√
3), −1.2527 (q=0) [15]

TN −1.265(2) [17]
CCM −1.2680 (

√
3×

√
3), −1.2643 (q=0) [5]
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whereas the CCM data for S = 7/2 and S = 4 are e0 = −13.677 125
and e0 = −17.649 269 368 7, respectively. Concerning the opposite limit
of infinite temperature, HTE up to 10th order for arbitrary spin S can
be found in Appendix B of Ref. [65].

It might be interesting to illustrate the consistency of the low- and
high-temperature properties of the KHAF using the sum rules for the
internal energy and the entropy,

e(T )−e0 =

T
∫

0

dTc(T ); e0 = −
∞
∫

0

dTc(T ) (A1)

and

s(T )=

T
∫

0

dT
c(T )

T
; ln 2=

∞
∫

0

dT
c(T )

T
, (A2)

see Ref. [19]. Replacing c(T ) by a simple Padé approximant, e.g., [5, 6](T )
and the lower limit in the integrals T = 0 by a value T ∗ until which all
Padé approximants agree with each other, we can estimate the upper
bound e∗0 for e0 and a part of the entropy, which comes from the tem-
perature region [0, T ∗]. One more estimate for e0 may be obtained as
in Ref. [71], Supplemental Material, Appendix D (this approach uses a
monotonous decrease of e(T ) as T decreases to zero).

B: HTE for S = 2, 5/2, 3, 7/2, 4

Here, we report the 11th order coefficients in HTE for the KHAF with
S = 2, 5/2, 3, 7/2, 4. We have

d11 = −625 587 268 339

151 200
J11,

c11 =
2 863 397 370 551

1 260 000
J10 (B1)

for S = 2,

d11 =
10 417 179 602 755 425 863

15 479 341 056
J11,

c11 =
17 166 356 000 458 470 419

77 396 705 280
J10 (B2)
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for S = 5/2,

d11 =
90 425 361 936 437

2 520
J11,

c11 =
7 229 967 967 257 239

793 800
J10 (B3)

for S = 3,

d11 =
1 708 825 945 895 179 243

1 966 080
J11,

c11 =
3 104 351 513 640 540 433

14 745 600
J10 (B4)

for S = 7/2, and

d11 =
44 103 941 566 868 273 233

3 306 744
J11,

c11 =
53 216 684 483 872 733 269

16 533 720
J10 (B5)

for S = 4.

C: Entropy-method interpolation

In the entropy method, we pass to the microcanonical ensemble working
with the entropy (per site) s as a function of the energy (per site) e,
s(e), in the whole (finite) range of energies. The temperature T and the
specific heat (per site) c are given by the formulas

T =
1

s′
, c = −s′

2

s′′
, (C1)

where the prime denotes the derivative with respect to e. These equations
form a parametric representation of the dependence c(T ). Knowing the
high-temperature series for c(T ) up to nth order we immediately get the
series for s(e) around e = e∞ = 0 up to the same order n,

s(e)|e→e∞=0 → ln(2S + 1) +

n
∑

i=2

aie
i, (C2)

the coefficients ai are the known functions of the coefficients di, see
Appendix A of Ref. [56]. The behavior of s(e) as e approaches the ground-
state energy e0 is also known. It is,

s(e)|e→e0
∝ (e− e0)

α

1+α (C3)
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if c(T ) vanishes as Tα when T → 0 (gapless excitations) and

s(e)|e→e0
∝ −e− e0

∆
(ln [∆ (e − e0)]− 1) (C4)

if c(T ) vanishes as T−α exp(−∆/T ), α = 2 when T → 0 (gapped exci-
tations). Therefore we proceed differently in the gapless case and in the
gapped case. Here it is assumed that e0 and α are known (gapless case)
or e0 is known and α = 2 (gapped case).

In the gapless case, we introduce the auxiliary function [23]

G(e) =
(s(e))

1+α

α

e− e0
(C5)

and approximate it as follows

Gapp(e) = G(0)[u, d](e), G(0) =
[ln (2S + 1)]

1+α

α

−e0
, (C6)

where [u, d](e) = Pu(e)/Qd(e) denotes the Padé approximant and the
coefficients of the polynomials Pu(e) and Qd(e) (of order u and d, re-
spectively, u + d ≤ n) are determined by the condition that the ex-
pansion of [u, d](e) has to agree with the power series of G(e)/G(0)
[which follows from Eqs. (C5) and (C2)] up to order O(eu+d). Of course,
G(0) = Gapp(0). The approximate entropy follows by inverting Eq. (C5)

sapp(e) = [(e− e0)Gapp(e)]
α

1+α . (C7)

The approximate prefactor A in the power-law decay of the specific heat
c(T ) for T → 0, c(T ) → ATα, is given by

Aapp =
α1+α

(1 + α)
α [Gapp(e0)]

α . (C8)

In the gapped case, we introduce the auxiliary function [56]

G(e) = (e− e0)

(

s(e)

e− e0

)′

(C9)

and approximate it as follows

Gapp(e) = G(0)[u, d](e), G(0) =
ln (2S + 1)

e0
, (C10)

where [u, d](e) = Pu(e)/Qd(e) again denotes the Padé approximant and
the coefficients of the polynomials Pu(e) and Qd(e) (of order u and d,
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respectively, u+d ≤ n) are determined by the condition that the expan-
sion of [u, d](e) has to agree with the power series of G(e)/G(0) [which
follows now from Eqs. (C9) and (C2)] up to order O(eu+d). Of course,
G(0) = Gapp(0). The approximate entropy follows by inverting Eq. (C9)

sapp(e)

e− e0
=

ln (2S + 1)

−e0
−

0
∫

e0≤e≤0

dξ
Gapp(ξ)

ξ − e0
. (C11)

From technical point of view, before performing the integration in the
r.h.s. of Eq. (C11) we have to perform the partial fraction expansion of
the integrand which is obviously a rational function. The approximate
energy gap ∆ in the decay of the specific heat c(T ) for T → 0, c(T ) ∝
T−2 exp(−∆/T ), is given by

∆app = − 1

Gapp(e0)
. (C12)

Until now we assumed that there is no external magnetic field. In
the presence of the magnetic field h, we face the entropy s(e, h). The
magnetization (per site) m and the magnetic uniform susceptibility (per
site) χ are given by the formulas [29]

m =
1

(s(e, h))′
∂s(e, h)

∂h
, χ =

m

h
; (C13)

the last equation implies that h is infinitesimally small. Clearly, in the
presence of (infinitesimally small, in practice, sufficiently small, say,
10−10 . . . 10−3: One decreases h until the result does not further vary)
fixed magnetic field h the HTE coefficients for the specific heat are
changed,

di → di +
(i− 1)i

2
ci−1h

2, i = 2, . . . , n, (C14)

and we again arrive at Eq. (C2) in which the coefficients ai are now the
known functions of the coefficients di, ci, and h. For the gapless case all
reasonings in Eqs. (C3), (C5) to (C8) hold with the only difference: The
ground-state energy now is e0 − χ0h

2/2, where χ0 is the ground-state
susceptibility which is assumed to be known. The obtained in Eq. (C7)
entropy depends now on h, sapp(e, h). For the gapped case the ground-
state energy remains unchanged in the presence of infinitesimally small
magnetic field, i.e., χ0 = 0, and therefore all reasonings in Eqs. (C4),
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(C9) to (C12) hold. Again, the obtained in Eq. (C11) entropy depends
now on h, sapp(e, h).

In summary, knowing the high-temperature c(T ) and χ(T ) together
with the ground-state energy e0, the exponent α, and the ground-state
susceptibility χ0 (gapless case) or the ground-state energy e0 (gapped
case, α = 2) we obtain c(T ) and χ(T ) at all temperatures. [sapp(e, h)
yields the specific heat c(T ) by Eq. (C1) and the susceptibility χ(T ) by
Eqs. (C13) and (C1)]. Usually, those Padé approximants which give un-
physical solutions are discarded; the remaining ones are called “physical”
[23, 56]. However, one may use even the unphysical Padé approximants
after putting the Padé approximants with “defects” in the proper per-
spective [62, 68].

The authors of the recent paper [29] have demonstrated that even if
the ground-sate energy e0 is unknown (very often it is the case), it can
be extracted from the rest available information based on the idea that
larger is number of coinciding Padé approximants, best is estimation for
e0. In the present study, we use e0 as an input even though the exact e0
values for S ≥ 1/2 remain unknown.

Finally, we mention the logZ-method interpolation. The logZ method
is another scheme for interpolating with constraints [58]. Within this
method one works in the canonical ensemble only and the method is
applicable for finite systems too. We consider the function

l(β, h) =
lnZ(β, h,N)

N
= −βf(T, h), (C15)

which gives the specific heat c(T, h) or the uniform susceptibility χ(T, h),

c(T, h) = β2 ∂
2l(β, h)

∂β2
, χ(T, h) =

1

β

∂2l(β, h)

∂h2
. (C16)

We know the high-temperature behavior of l(β, h), see Eq. (2). Moreover,
in some cases we know the low-temperature behavior detailedly. For
instance, for finite systems we have

lnZ(β, 0, N)
β→∞→ −βE0 + d1 exp (−β∆E1) + . . . , (C17)

where E0 is the ground-state energy, ∆E1 = E1 − E0, E1 is the first-
excited-state energy and d1 is its degeneracy and even more excited states
can be taken into account. Then we may write [58]

lapp(β, 0) = −βe0

+
d1 exp (−β∆E1) + . . .

N

∑6

n=0 anβ
n

1 +
∑5

n=1 an+6βn + a6β6
(C18)
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and determine the Padé coefficients a0, . . . , a11 using the high-temperatu-
re series for l(β, 0) up to order n = 11. In the presence of magnetic fields,
taking into account that the states may experience the Zeeman splitting,
one may construct lapp(β, h). While the specific heat for finite systems
within the logZ method was discussed in Ref. [58], the susceptibility has
not been studied within this approach so far.

D: Entropy-method calculations for the square-lattice

S = 1/2 and S = 1 Heisenberg antiferromagnets

The problems with χ(T ) within the entropy method may be illustrated
using as a testing bed the square-lattice S = 1/2 or S = 1 Heisenberg
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Figure 6. Specific heat c(T ) for the square-lattice Heisenberg antiferro-
magnet with spin (top) S = 1/2 and (bottom) S = 1 within the entropy
method. Circles correspond to quantum Monte Carlo data [72].
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Figure 7. Susceptibility χ(T ) for the square-lattice Heisenberg antiferro-
magnet with spin (top) S = 1/2 and (bottom) S = 1 within the entropy
method. Circles correspond to quantum Monte Carlo data [72].

antiferromagnet. Reliable quantum Monte Carlo (QMC) data exist and
they can be used for comparison. To apply the entropy method, we take
into account that the energy spectrum is gapless, the exponent for power-
law decay of c(T ) as T → 0 is α = 2, and the values of e0 and χ0 may
be taken from Ref. [73]. Our findings are presented in Figs. 6 and 7.

As can be seen in these figures, the entropy method is able to repro-
duce QMC data for the specific heat for S = 1/2 and S = 1 (Fig. 6),
but is less reliable for the susceptibility, especially when S = 1 (Fig. 7).
Interestingly, by increase e0 by ≈ 3.3% (−2.327 93 → −2.251) one gets
the blue curves in the lower panel of Fig. 7, which are much closer to
QMC data. However, for the correct value of e0, the entropy method
predicts incorrect temperature shapes of the susceptibility, see the red
curves in the lower panel of Fig. 7.
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A general message that may be derived from this example as well as
from another example discussed in Sec. 3.1 is that the entropy method
works better for the specific heat than for the susceptibility. We may also
mention here the entropy-method results for χ(T ) of the S = 1/2 KHAF
[29] and the numerical results of Refs. [27, 30] which poorly agree this
way indicating that a reliable calculation of χ(T ) for frustrated quantum
spin systems remains an open problem.

To end up, we note that the square-lattice spin-S Heisenberg antifer-
romagnet may be an interesting nonfrustrated model for checking how
the temperature dependence of the specific heat c(T ) (obtained by the
entropy method and compared to QMC data) varies as the spin quantum
number S grows. To obtain such results, which are similar to those in
Fig. 5, we need HTE series for S = 3/2, 2, 5/2, 3, 7/2, 4; they can be
obtained up to n = 11 using the Magdeburg code [64, 65]. Comparing
two lattices, the kagome lattice and the square lattice, from the perspec-
tive of Fig. 5 may be an interesting task for future studies which allows
to compare and contrast the frustrated and nonfrustrated lattices, both
with the coordination number 4.
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University Press, 1996).
69. P. Popp, A. P. Ramirez, and S. Syzranov, Origin of the hidden energy

scale and the f -ratio in geometrically frustrated magnets (2024),
arXiv:2406.12966 [cond-mat.str-el] .

70. A. P. Ramirez and S. Syzranov, Order and disorder in geometrically
frustrated magnets (2024), arXiv:2408.16054 [cond-mat.str-el] .
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