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Tepmonunamika S = 1/2 antudepomarueruka laitzenbepra Ha
rparTiii rimepkarome

T. I'yrak, T. Kpoxmassceknit, FO. IITxax, 1. Pixtep, O. ep:xko

Amnoraitisi. Bukopucrano 16 mogaHKiB BHCOKOTEMIIEPaTyPHOTO PO3BUHEH-
Ha mias S=1/2 antudepomarnernka l[aiizenGepra Ha rparni rimepkarome,
JOTTIOBHEHUX METOJOM E€HTPOIIil, o0 JOCTIANTH TEIMIOEMHICT ¢ 1 OTHOPiAHY
crpuitHaTauBicTh X Mozesi. PosrisHyTo aBa crieHapil: Ge3miMHHUN UH
ITMHHUN €HepreTuYHUil CHeKTp. ¢, KpiM miky mobiusy 1'=0.669, wmae
Hu3bKOoTemMneparypunit mk npu 120.021—0.033. Burmsan x wmmxae T=0.5
CIJIBHO 3aJIeXKUTh BiJi BUOpAHOTO CrieHapio. KHepris oCHOBHOTO cTany — ey €
[—0.440, —0.435]. O6uucseHo ¢ i x mis cKinueHnx rparok 3 N=24 i 36 Bysuis.
Pesynpraru cBiguars Ha KOpHUCTH OE3IIIINHHOrO CIieHAPiio, KON MaKCAMYyM X
mpu T'~0.118—0.194 kpaiie TOTOMKYETHCSI B 060X METOIAX.

Thermodynamics of the S = 1/2 hyperkagome-lattice Heisenberg
antiferromagnet

T. Hutak, T. Krokhmalskii, J. Schnack, J. Richter, O. Derzhko

Abstract. The S=1/2 hyperkagome-lattice Heisenberg antiferromagnet al-
lows to study the interplay of geometrical frustration and quantum as well
as thermal fluctuations in three dimensions. We use 16 terms of a high-
temperature series expansion complemented by the entropy-method interpola-
tion to examine the specific heat and the uniform susceptibility of the S=1/2
hyperkagome-lattice Heisenberg antiferromagnet. We obtain thermodynamic
quantities for the two possible scenarios of either a gapless or a gapped energy
spectrum. We have found that the specific heat ¢ exhibits, besides the high-
temperature peak around 7'=0.669, a low-temperature one at 17'~0.021—0.033.
The functional form of the uniform susceptibility x below about 7T'=0.5 de-
pends strongly on whether the energy spectrum is gapless or gapped. The
value of the ground-state energy can be estimated to eq € [—0.440, —0.435].
In addition to the entropy-method interpolation we use the finite-temperature
Lanczos method to calculate ¢ and x for finite lattices of N=24 and 36 sites. A
combined view on both methods leads us to favour a gapless scenario since then
the maximum of the susceptibility at T=0.118—0.194 agrees better between
both methods.

ITonaerbea B Physical Review B

Submitted to Physical Review B

© Iucruryr isuku KoHeHCOBaHUX cucreMm 2024
Institute for Condensed Matter Physics 2024



Ipenpunatn Iucruryry disuku koujgencoanux cucreM HAH VYkpainu
PO3IIOBCIO/ZKYIOThCS Cepel] HAyKOBUX Ta iHdopMmariiinnx ycranos. Boxnn
TaKOXK JIOCTYIIHI IO €JIEKTPOHHIN KoMmIT'toTepHiit Mmepexki Ha WWW-cep-
Bepi iHcTUTYTY 3a ajgpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Tapac Iroposuu I'yTak

Tapac €sBcraxiiiopuy Kpoxmasibebkuii
FOpren ITuak

Moranec Pixrep

Outer Bonogumuposua JlepxKko

TEPMOJMHAMIKA S = 1/2 AHTUGEPOMATHETUKA ['AII3EHBEPTA HA
TPATII TTIIEPKATOME

Pobory orpumano 5 cepmusa 2024 p.

BarBepkeno 1o apyky Buenoro pamoro IOKC HAH Ykpaiuu
PexomenioBano 10 APYKY BiiIiIOM KBAHTOBOI CTATUCTUKHU

Burorossieno npu IOKC HAH VYxkpaiuu
(© Vci npasa 3acrepexkeni

ICMP-24-02E 1

1. Introduction

Frustrated quantum spin systems are a subject of intense ongoing re-
search in the field of magnetism [1-4]. Geometric frustration and quan-
tum fluctuations may evade any ground-state ordering even in three
dimensions. Among several famous examples, the S = 1/2 pyrochlore-
lattice Heisenberg antiferromagnet has attracted much attention, being
for decades a candidate for the realization of a spin-liquid state in three
dimensions [5]. After intense numerical studies, a lattice symmetry break-
ing in the ground state has been revealed [6-9].

A closely related example is the S = 1/2 hyperkagome-lattice
Heisenberg antiferromagnet. Inspired by experiments on the spinel ox-
ide NayIr3Og [10], in which low spin d® Ir** ions reside on the ver-
tices of a hyperkagome lattice, several theoretical studies for the classical
(S — o0) and quantum (S = 1/2) Heisenberg antiferromagnet on such a
lattice have been performed [11-19]. The main focus of these studies is at
ground-state properties of the S = 1/2 hyperkagome-lattice Heisenberg
antiferromagnet. For the ground state of this model a gapped quantum
spin liquid with topological order [12] and a gapless quantum spin lig-
uid with spinon Fermi surfaces [15] were proposed by Lawler et al.. In
contrast, Bergholtz et al. [16] proposed a valence bond crystal with a 72
site unit cell as the ground state of this model; this implies a spin gap
with a huge number of singlet excitations below the lowest triplet state
and thus a power law for the specific heat and a vanishing susceptibility
for vanishing temperature.

The finite-temperature properties of the S = 1/2 hyperkagome-
lattice Heisenberg antiferromagnet have also been considered [15-17, 19].
It was argued that ¢(T) o< T? at low T [15] (similar to what is observed
for NagIrsOgs [10]) and that x(7T") has a non-zero value at T = 0 and
almost no temperature dependence as T — 0 [19] (again in agreement
with experimental data for NasIr3Og [10]). In addition, high-temperature
series expansions for ¢ and y were developed and compared with the ex-
perimental data for NayIrgOg [17].

On the experimental side, apart from the mentioned iridate com-
pound NaylrzOg [10], there are other solid-state realizations of the
hyperkagome-lattice Heisenberg anitiferromagnet, see, e.g., Refs. [20—
22]. Note, however, that the 5d-based transition-metal oxides, such as
NayIrsOg, are known for having a large spin-orbit coupling so that
the pure Heisenberg Hamiltonian apparently should be accomplished
by other terms relevant for such materials [23]. Indeed, previous theo-
retical papers [15, 17, 19] compare ¢(T') or ¢(T)/T and x(T) or 1/x(T)
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to available experimental data for the S = 1/2 hyperkagome antifer-
romagnet NayIrsOg [10]. These comparisons exhibit noticeable discrea-
pancies roughly below J/2 (J is about 300 K for NasIr3Og) and even
at higher temperatures for the specific heat. The authors attributed this
disagreement to an incomplete subtraction of nonmagnetic contribution
to the experimentally measured ¢(T") [17] and an insufficiency of the spin-
isotropic Heisenberg model for description of the S = 1/2 hyperkagome
antiferromagnet NayIr3Og [16, 23].

In the present paper, we consider the S = 1/2 hyperkagome-lattice
Heisenberg antiferromagnet — a benchmark model of frustrated quantum
magnets, and study its thermodynamics. The toolbox to tackle thermo-
dynamics of frustrated quantum spin systems is rather scarce. Quantum
Monte Carlo suffers from the sign problem [24], exact diagonalization or
finite-temperature Lanczos methods are restricted to too small lattices
[25—-27], the density-matrix renormalization group technique requires a
mapping via a “snake” path to a one-dimensional system [28]. Besides,
the pseudofermion functional renormalization group approach focuses
on the wave-vector-dependent susceptibility [19], whereas one more uni-
versal method, the rotation-invariant Green’s function method [29-35],
has not been applied to the S = 1/2 hyperkagome-lattice Heisenberg
antiferromagnet so far.

In our study, we use the high-temperature series expansions to the
order of 8¢ (3 = 1/T) provided by Singh and Oitmaa in Ref. [17].
Singh and Oitmaa used the high-temperature series to compute various
thermodynamic properties down to a temperature! of about T ~ 0.25
[17]. However, this range can be extended down to zero temperature
if one combines the series expansion with possible assumptions about
the low-energy spectrum of the spin model within the framework of the
so-called “entropy method”. The entropy-method interpolation of high-
temperature series expansions was suggested by Bernu and Misguish [36]
and later used in several studies [37-44]. In the present paper, we use
the series expansion [17] and the entropy method [36, 38, 40, 41, 43] to
obtain the temperature dependence for the specific heat ¢(T") and the
uniform susceptibility x(7) for the S = 1/2 hyperkagome-lattice Heisen-
berg antiferromagnet. We also obtain a prediction for the ground-state
energy of the model ey, which provides self-consistency of the entropy-
method calculations. Our entropy-method calculations are accompanied
by finite-temperature Lanczos calculations for finite lattices up to 36
sites.

I Temperatures are given as multiples of the exchange interaction. 7' = 0.25 thus
means kpT/J = 0.25.
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Figure 1. The hyperkagome lattice. Besides the 12 sites from the same
unit cell (1,...,12 stand for 71,...,712), we show 13 more sites of the
nearby unit cells (we use, e.g., 11—z +y+ 2z for 711 —e; + e, + e,
to lighten notations). Additionally, we show 28 bonds (black lines); 15
bonds connect the sites from the same unit cell and 9 bonds connect the
sites of the neighboring cells. The remaining 4 bonds, which connect the
sites1+yand 12+y,8—zand 9—z,9—zand 11 —z, 11 —2x+y+ 2
and 12 + y, are shown for better clarity. We also display the underlying
pyrochlore lattice.

The remainder of this paper is organized as follows. In Section 2
we introduce the model and briefly explain the methods to be used for
obtaining the thermodynamic quantities. Then, in Section 3, we report
our results for the ground-state energy e, the specific heat ¢(T'), and the
uniform susceptibility x (7). Finally, we discuss our findings in Section 4.

2. Model and methods

The hyperkagome lattice has been described in several papers. It can be
viewed as a three-dimensional network of corner-sharing triangles with
12 sites in a cubic unit cell. It also can be viewed as a 1/4 depleted
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pyrochlore lattice, meaning that three out of the four sites in every
tetrahedron are occupied by spins. As a result, each spin of the three-
dimensional hyperkagome lattice has only four nearest neighbors just as
for the two-dimensional kagome lattice. There are several different con-
ventions regarding the coordinates of lattice sites (see, e.g., Refs. [23, 45—
47]). According to Fig. 1, we define the sites on the hyperkagome lattice
sites by Rpo = Ry + 7. Here, R,, = n,e, + nye, + n.e,, where
Mg, Ny, N, are integers and e, = (1,0,0), e, = (0,1,0), e, = (0,0,1),
generates a simple cubic lattice. Moreover, the origins of the 12 equiva-
lent sites in the unit cell may be defined by r,, « = 1,...,12 with

1 1 1
Tl—z (—2,0,2), 7“2—1 (-1,3,2), 7“3—1 (-2,3,1),
T—l(—llo) 7“—1(—213) T—l(—123)
4_4 y Ly ) 5_4 P ) 6_4 ) ;
7“—1(—321)T—l(022)7“—1(011)
7_4 ) &y ) 8_4 ) ) 9_4 ) ;
1 1
’1“10:1 (—3, 3, 0) , 11— (0, O, 0) s ’1“1221 (—3, O, 3) . (1)

In Fig. 1, we denote r1,...,712 by 1,...,12. In addition, we display 13
sites of the nearby unit cells by 11—z +y+ 2z, 11 —x+ 2z, 8 — z and so
on, where, e.g., 11 — 2 4+ y + z means r1; — e, + €, + €, and so on.

In the present paper, we study a benchmark model in the theory
of frustrated quantum magnetism and consider the isotropic Heisenberg
Hamiltonian on the hyperkagome lattice, which is given by

H=J Y Sma-Sns. (2)
(ma;np)
Here, we set the antiferromagnetic interaction J = 1, the sum runs

over the nearest-neighbor bonds of the hyperkagome lattice, and Sy,
represents the S = 1/2 spin-vector operator at the lattice site Ryq-
Expanding the sum in Eq. (2) for fixed m, one gets 24 bonds, that is, 15
bonds connecting the sites within the unit cell with the same cell index
m and 9 bonds connecting the sites of the unit cell m with the sites
of the neighboring unit cells m —e,, m — ey, m —e., m — e, + e,
m+e; —e;, and m + ey — e;, see Fig. 1. The remaining 4 bonds in
Fig. 1, i.e., the ones which connect the sites 1 +y and 12+ y, 8 — x and
9—2,9—xand 11—2, 11 —2+y+z and 12+y (cf. the bonds connecting
the sites 1 and 12, 8 and 9, 9 and 11, 11 — z + 2z and 12), are shown here
for the sake of clarity.
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It is worth noting that the hyperkagome lattice has similarities with
the two-dimensional kagome lattice (corner-sharing triangles in two di-
mensions), which features also four nearest neighbors, as well as with
the three-dimensional pyrochlore lattice (corner-sharing tetrahedrons in
three dimensions), which could be considered the “mother” crystal struc-
ture, featuring six nearest neighbors for each spin. An important prop-
erty is that all three lattices support dispersionless (flat) one-magnon
bands. The shortest closed loop on the hyperkagome lattice beyond the
triangles is a decagon; it involves ten bonds. The shortest cycle on the
kagome and pyrochlore lattices beyond the triangles is a hexagon; it in-
volves six bonds. Since the even regular polygon (decagon or hexagon)
is surrounded by equilateral triangles, one expects a localized-magnon
state, which lives on a decagon or hexagon, and belongs to a flat band,
for more details see Refs. [48, 49].

In what follows, we examine the thermodynamic properties of model
(2) on the hyperkagome lattice over the full temperature range. We also
compare our findings to the properties of the two-dimensional kagome-
lattice Heisenberg antiferromagnet [50, 51|, as well as of the three-
dimensional pyrochlore-lattice Heisenberg antiferromagnet [41, 50].

In the remainder of this section, we briefly explain the exploited meth-
ods: Numerics for finite-size lattices and high-temperature series comple-
mented with the entropy-method interpolation. Here, we only report the
key elements necessary to state our results in Sec. 3.

First, we determine numerically temperature dependencies for peri-
odic lattices of N = 12 sites (exact diagonalization) and N = 24, 36 sites
(finite-temperature Lanczos method); for a similar study of the S = 1/2
pyrochlore-lattice Heisenberg antiferromagnet see Refs. [41, 52]. Since
the unit cell for the hyperkagome lattice contains 12 sites, finite-lattice
numerics is restricted to one unit cell [15] and two or three unit cells
arranged as a chain. More details about finite-lattice calculations can be
found in Refs. [25, 53, 54]. Our numeric results for finite-size lattices are
reported in Figs. 2 and 3 and are discussed in Sec. 3.

Second, we use the high-temperature series expansion up to 16th
order, which was reported in Ref. [17] (the Magdeburg HTE code [50,
55| yields the same series of the specific heat and the static uniform
susceptibility, however, only up to 13th order), and employ the entropy
method [36-38] to obtain temperature dependencies for infinite lattice.

The raw high-temperature series expansion may be improved by sim-
ple Padé approximants [u, d|(T) = P,(8)/Qa(5). Here, P,(8) and Q4(8)
are polynomials of order v and d, v + d < 16, and the series expan-
sion of [u,d](T) coincides with the high-temperature series of ¢ or x up
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Figure 2. Finite-lattice results for (top) the specific heat and (bottom)
the uniform susceptibility. Exact-diagonalization (N = 12) and finite-
temperature Lanczos method (N = 24, number of different random
states R = 200 [25-27] and N = 36, R = 20) data. The results for
N =24 and N = 36 differ from each other below about 17"~ 0.2.
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Figure 3. Comparison with the kagome- and pyrochlore-lattice cases for
(top) the specific heat and (bottom) the uniform susceptibility. Finite-
temperature Lanczos method data for N = 36 (hyperkagome lattice,
see Fig. 2, and kagome lattice [51]) and N = 32 (pyrochlore lattice
[41]). The extra low-temperature peak of ¢(T) at T ~ 0.117 for the
pyrochlore lattice (top panel, black curve) is a finite-size effect and is
not present for N — oo [41]. Moreover, the subtle details of ¢(T') at very
low temperatures (top panel) are finite-size effects, too.
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Figure 4. Padé approximants of the high-temperature series [17] for (top)
the specific heat and (bottom) the uniform susceptibility. They start to
deviate from each other in both panels below T = 0.5.
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to 16th order with respect to 8 = 1/T. Comparing close to diagonal
Padé approximants in Fig. 4, we conclude that they start to deviate
notably one from another below 7" ~ 0.5 and thus can reproduce the
high-temperature peak of ¢(T") at T & 0.669, but not any of the specific
features of x(7T') since x(T") increases monotonously to temperatures well
below T'= 0.5 and also has got its maximum below 7" = 0.5.

In order to study the thermodynamic behavior at lower temperatures
we use the entropy-method interpolation scheme introduced by Bernu et
al. [36-38] and further used in several studies [39-44]. Within the entropy
method one interpolates the entropy (per site) s as a function of the
mean (internal) energy (per site) e, s(e). As e approaches its maximal
value eso = E(T — o0)/N = tr(H)/N = 0, the entropy is known
from high-temperature series expansion, s(e) = In2 + >, a;e’ (ie.,
the coefficients ag,...,a16 are known, see Ref. [36]). As e approaches
its minimal (ground-state) value eg, the entropy behaves as s(e) o (e —
e0)®/ 0+ if ¢(T) = AT® for T — 0 (gapless low-energy excitations)
or as s(e) o< —[(e — eg)/Al(In[A(e — eg)] — 1) if ¢(T) o e=2/T/T? for
T — 0 (gapped low-energy excitations). Next, we interpolate, instead of
s(e), an auxiliary function G(e), different for the two types of low-energy
excitations, which immediately gives s(e). For the gapless case we have

s (2™ Pye)
Cle)= g 7 Comle)="g) Qale) ’
sapp(€) = [(e — eo) Gapp(e)]& . (3)

And for the gapped case we have

R
Sapp(€) . 111_2 _ 0 Gapip(g)
ot - 22 [t n

Here, P,(e) and Qg4(e) are the polynomials of order w and d, u+d < 16,
and the series expansion of the quotient [u, d](e) = P,(e)/Qa(e) coincides
with the Maclaurin series of G(e) known up to 16th order. Besides, the
prime denotes the derivative with respect to e. Knowing the dependence
s(e), we obtain the desired temperature dependence of the specific heat
¢(T) in parametric form: T = 1/s/(e) and ¢ = —[s'(e)]?/s” (e). Finally, we
can calculate either the prefactor A, Aupp = [T/ (1+ )] [Gapp(€0)]®,
for the gapless case or the energy gap A, A,pp, = —1/Gapp(ep), for the
gapped case. In the presence of a (small) external magnetic field h one
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gets the entropy Sapp(e, h) which yields the uniform susceptibility x via
the relations: m = [1/5'(e, h)]0s(e, h)/Oh, x = m/h (h — 0). For further
details see Refs. [36, 38, 40, 41, 43].

Thus, to obtain the thermodynamic quantities within the framework
of the entropy method one needs, besides the high-temperature series for
¢ and ¥, to know i) the ground-state energy e, ii) how ¢(T") vanishes
as T — 0, and iii) the value of xyo = x(T = 0) in the case of gapless
low-energy excitations. Even if the precise value of ey is not available
and both gapless and gapped excitations are acceptable, one can pro-
ceed as in Ref. [40]. First, one has to assume some reasonable value eg
in order to explore a certain region of ey systematically. Second, one has
to assume the exponent « in the case of a gapless spectrum or one has
to assume that the spectrum is gapped. Then, for the assumed ey and
gapless/gapped energy spectrum one has to calculate within the entropy
method the specific heat ¢(T') using all np available Padé approximants
[u,d](e). There are n + 1 Padé approximants based on the series up to
nth order. We discard from the very beginning four Padé approximants
[n,0], [n — 1,1], [1,n — 1], [0,n] so that np = n — 3. Next, one has to

|
025 L .;\. .

—0.4425 —0.44 —0.4375 —0.435 —0.4325
€0

Figure 5. The ratio of the number of “coinciding” entropy-method Padé
approximants n.p to the number of all considered entropy-method Padé
approximants np, p = ncp/np, based on the series of 15th (thin green)
and 16th (thick red) orders as a function of the chosen value of eg.
Here T; = 0.5, AT = 0.025, Tt = 0.1, see the main text. We consider
both assumptions, gapless (solid) and gapped (dot-dashed) low-energy
excitations.
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examine the “closeness” of all np profiles ¢(T"). To this end, we inspect
them thoroughly from some high temperature 7; down to T} < T} with
temperature steps AT. If the absolute value of the difference of a cer-
tain ¢ from the arithmetic mean value for this bundle, ¢, at a running
temperature T (Tt < T < T;) is less than, e.g., 0.001, this ¢ belongs
to the set of “coinciding” Padé approximants. In the opposite case, this
Padé approximant is discarded and not considered for lower tempera-
tures. According to Refs. [40, 43|, a large number of coinciding curves
nep, or more precisely a large value of p = ncp/np, provides evidence
that the assumptions made about eg and the low-energy excitations are
self-consistent.

In Fig. 5 we illustrate such an analysis based on np Padé approxi-
mants following from the 15th (thin green) and 16th order (thick red)
in Egs. (3) or (4) for the specific heat ¢(T') under the assumption of a
gapless spectrum with o = 2 (solid) or a gapped spectrum (dot-dashed).
Here we set T} = 0.5, AT = 0.025, Tt = 0.1. If ¢q is taken in the range
[—0.4402,—0.437 9] assuming a gapless spectrum, i.e., ¢(T) = AT? as
T — 0, and the analysis is based on 16th order (np = 13), we find
that ncp = 6 and p ~ 0.46. In addition, for the prefactor A we get
A = 493-727. If e( is taken in the range —[0.4381, —0.435 3] assum-
ing a gapped spectrum and the analysis is based on 16th order, we find
p = 4/13 =~ 0.31. In addition, the energy gap is A = 0.025—0.018. All
these findings are visualized by the thick red curves in Fig. 5. Slightly
different values of ey which provide maximal values of p follow from
the analysis based on 15th order, see the thin green curves in Fig. 5.
Namely, for the gapless spectrum with eg € [—0.4415,—0.4385] we
have p = 5/12 ~ 0.42, A = 377—563; for the gapped spectrum with
eo € [—0.4385,—0.437 2] we have p = 6/12 = 0.5, A = 0.027—0.024.

Following the strategy of Refs. [40, 43|, we may conclude that
the entropy-method prediction for the ground-state energy is ey €
[—0.4402,—0.4379] (gapless excitations) or ey € [—0.4381,—0.435 3]
(gapped excitations). In what follows, we use this missing input parame-
ter eg for the entropy method, considering both assumptions about ¢(T)
as T — 0 as well as the minimal and maximal values of ey to obtain
the light blue and light red shaded areas in Fig. 6. We note in passing
that the uniform susceptibility x(7') is less convenient for seeking a large
value of p = ncp/np, since it requires the additional parameter xq if the
spectrum is gapless.

More details about the entropy-method calculations can be found in
Refs. [36, 38, 40, 41, 43]. Our entropy-method results are reported in
Fig. 6 and are discussed in Sec. 3.
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Figure 6. Entropy-method results for (top) the specific heat and (bottom)
the uniform susceptibility of the S = 1/2 hyperkagome-lattice Heisen-
berg antiferromagnet. Blue curves correspond to the gapless spectrum
(c = AT? as T — 0) and red ones to the gapped spectrum (coce™ /T /T2
as T'— 0). The shaded area (light blue and light red) represents the re-
gion of ey where p has a maximum (see Fig. 5). We also show N = 36
data (green, T > 0.1) and two simple Padé approximants [7,7] and [8, 8]
for ¢(T') and x(T) and color in gray the region between them (T > 0.2).
In the case of gapless excitations, we examine the three values of xj:
0, 0.07, and 0.13.
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3. Results

3.1. Ground-state energy eq

We begin with the discussion of the ground-state energy of the S =
1/2 hyperkagome-lattice Heisenberg antiferromagnet. Various proposals
about the nature of the ground state, i.e., spin liquids or valence-bond
crystals, yield ey € —[0.430,—0.424], see Table 1. Exact diagonaliza-
tions for N = 12,24, 36 yield —0.453 74, —0.446 33, —0.445 10, see Ta-
ble 1, that, apparently, are overestimated values of the thermodynam-
ically large systems. As explained above, to provide consistency of the
entropy-method calculations, we have to assume for ey the values in
[—0.440, —0.435]: This is a combination of both possible scenarios of ei-
ther a gapless or a gapped energy spectrum. Yet another plausible simple
approach to determine eg from the high-temperature series expansion
[6] yields ey about —0.448. The determination of ey based on the high-
temperature series expansion seems to be rather formal, since it does
not use any specific picture for the ground state. However, the expe-
rience from other models, including exactly solvable ones and precisely
examined numerically ones, gives hints that it may yield quite reasonable
predictions [40, 43].

It is worth noting that the ground-state energy for the kagome lattice
is quite close: —0.4386(5) [56, 57], —0.4387 [58] (i.e., about —0.219 per
bond), but for the pyrochlore lattice it is rather different: —0.490(6) [6],
—0.4831(1) [7], —0.489 [9] (i.e., about —0.163 per bond).

3.2. Thermodynamic properties

We pass to the finite-temperature properties of the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet. First, in Figs. 2 and 3
we report the temperature dependence of the specific heat ¢(T") and the
uniform susceptibility x(7) obtained for finite lattices of N = 12, 24, 36.

Table 1. Ground-state energy eg obtained by different authors

N=12 [15] —0.454

N=12/24/36 (present paper) —0.45374/—0.44633/-0.44510
QSL [15] —0.424

VBC [16] ~0.430115

EM (present paper) [—0.440, —0.435]
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Second, in Fig. 6 we report ¢(T) and x(T') obtained by the entropy
method. Here, both possibilities, the gapless spectrum with a = 2 or the
gapped spectrum, were considered, see blue and red curves, respectively.
The ground-state energy eg was determined from the analysis of ¢(T') as
was explained in Sec. 2. We used [8, 8](e) in Eqs. (3) or (4) as well as
the region of ey where p has a maximum, see Fig. 5, in order to estimate
the spread of the derived functions. For the gapless excitations we set
xo =0, 0.07, 0.13.

Let us now discuss the thermodynamic quantities of the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet in some detail. As it
follows from the upper panel of Fig. 2, the high-temperature peak of the
specific heat does not show any finite-size scaling; it is already provided
by the calculations for one unit cell (N = 12). On these grounds, we
thus speculate that the curve of the specific heat at temperatures of the
high-temperature peak and above represents the thermodynamic limit?,
see also N = 36 data in Fig. 6. The position of the low-temperature
peak, on the other hand, does depend on the size; it is at T ~ 0.101
for N =12, at T = 0.069 for N = 24, and at T ~ 0.055 for N = 36.
Moreover, the height decreases notably with growing N. The results of
the entropy method in Fig. 6 refer to the infinite lattice. As it follows
from Fig. 6, the specific heat ¢(T') besides the high-temperature peak at
T =~ 0.669 has an additional low-temperature one at about 7" =~ 0.033
(gapless excitations) or T &~ 0.021 (gapped excitations); the height of
the low-temperature peak is about two times smaller than the height of
the main peak.

As can be seen in the lower panel of Fig. 2, the maximum of x(7") has
a mild dependence on system size; it occurs at T ~ 0.204 for N = 12,
at T ~ 0.168 for N = 24, and at T = 0.158 for N = 36. Moreover,
the height remains practically unchanged. This behavior can be traced
back to the size of the singlet-triplet gap for these systems. Its value is
As_t ~ 0.383,0.216,0.136 for N = 12,24, 36, respectively. According to
the entropy-method analysis reported in Fig. 6, the uniform susceptibil-
ity x(T') behaves identically at T above about 0.5 for gapless and gapped
excitations. For lower temperatures, x(7T') has a maximum at T ~ 0.118
if xo =0.13, at T = 0.194 if xo = 0.07, at T ~ 0.260 if xo = 0 (gapless
excitations) or at T = 0.309 (gapped excitations) and then smoothly
approaches x¢ as the temperature goes to zero.

2In contrast, the results for the S = 1/2 pyrochlore-lattice Heisenberg antiferro-
magnet of N = 32 sites [41] reflect the thermodynamic limit only for T > 0.7, well
above the temperature of the high-temperature peak of ¢(T"). Therefore, the finite-
lattice results for the hyperkagome case allow a reliable discussion of thermodynamic
properties for much lower temperatures down to T = 0.2.

ICMP-24-02E 15

An important general message that can be taken from Fig. 6 is that
the entropy-method and finite-system numerical data (and even simple
Padé approximants for x) favour the assumption of a gapless spectrum
with finite x( around 0.1.

It is worthy to put our results for the hyperkagome lattice in the con-
text of prior work for the kagome and pyrochlore lattices. Concerning
¢(T) (the upper panels of Figs. 2 and 6), its features at least at inter-
mediate temperatures and above, are quite similar to what is known
for the kagome-lattice and also the square-kagome-lattice case (a peak
at T' = 0.67, a shoulder of two times smaller height at 7" = 0.1-0.25
[51, 59]), but differ from those for the pyrochlore-lattice case, where only
one maximum in ¢(7T), but no additional low-temperature feature such
as peak or shoulder was found [41, 60]. Concerning x(T) (the lower pan-
els of Figs. 2 and 6), it resembles the maximum of x(T') for the finite-size
kagome lattices [51] and for the infinite kagome lattice analyzed by the
entropy method [38]. In contrast, for the pyrochlore lattice we have sev-
eral scenarios, none of which can be excluded to date [41, 60, 61].

To further discuss similarities between the hyperkagome-lattice
Heisenberg antiferromagnet and the kagome-lattice one and differences
to the pyrochlore-lattice one, we compare in Fig. 3 the finite-temperature
Lanczos method data for ¢(T) and x(T) for the hyperkagome-lattice
case with the kagome-lattice and pyrochlore-lattice cases. We have to re-
mark here that the energy scale is different for the pyrochlore (each site
has six neighbors) and the kagome or hyperkagome (each site has four
neighbors) and one may rescale T — T'/z and x — xz so that different
lattices, with 2 = 4 and z = 6, can be compared, but the conclusions
below remain unchanged. Namely, Fig. 3 illustrates a good agreement
above about T" = 0.25 for the specific heat (top panel) and even for
all temperatures for the uniform susceptibility (bottom panel) for the
hyperkagome-lattice and kagome-lattice Heisenberg antiferromagnets. In
contrast, the pyrochlore-lattice Heisenberg antiferromagnet shows differ-
ent temperature profiles ¢(T') and x(7T'), also after rescaling. Thus, we
may conclude that the three-dimensional hyperkagome lattice is closer
to highly frustrated two-dimensional lattices (kagome, square-kagome)
than to the three-dimensional pyrochlore lattice. However, it is worth
noting the difference: For the kagome lattice the low-temperature peak
of ¢(T") moves to higher temperatures with increasing N [51], opposite
to what is observed for the hyperkagome lattice (recall the top panel
of Fig. 2). Thus, for the kagome lattice one yields a low-temperature
shoulder of the main peak in the thermodynamic limit [62].

High-temperature series expansions offer important insight into simi-
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larities and differences between the hyperkagome-lattice, kagome-lattice
and pyrochlore-lattice cases. The high-temperature series expansions
for ¢ coincide for the hyperkagome and kagome lattices up to °, but
differ for the pyrochlore lattice already in terms proportional to 32.
Likewise, the high-temperature series expansions for y coincide for the
hyperkagome-lattice and kagome-lattice cases up to 3%, but differ for
the pyrochlore-lattice case already in terms proportional to 3. Such
distinctness in high-energy processes can be traced back to the building
blocks of these lattices (triangle for hyperkagome and kagome, but tetra-
hedron for pyrochlore) and shortest closed loops beyond, i.e., decagon
for hyperkagome and hexagon for kagome and pyrochlore.

4. Summary and outlook

In the present paper, we consider the S = 1/2 hyperkagome-lattice
Heisenberg antiferromagnet — a benchmark frustrated quantum spin-
lattice model. Using finite-lattice calculations and high-temperature se-
ries expansion up to 16th order [17] complemented by plausible assump-
tions about low-temperature properties we have obtained the tempera-
ture dependence for the specific heat and the uniform susceptibility, see
Figs. 2 and 6. Our main findings are as follows: We observe a two-peak
profile for ¢(T') at T ~ 0.021—0.033 and 7" =~ 0.669, and find evidence
in favour of gapless excitations which implies the maximum of x(T') at
T =~ 0.118—0.194 and finite y at 7' = 0 around 0.1. As a byproduct, we
can restrict the ground-state energy to eg € [—0.440, —0.435], which pro-
vides self-consistency of the entropy-method calculations. We have found
that the thermodynamics of the three-dimensional hyperkagome-lattice
Heisenberg antiferromagnet is quite similar to the two-dimensional
kagome-lattice one, but differs from that of the pyrochlore lattice.
Future work on thermodynamics may be related to application of uni-
versal and specific tools to tackle the problem. Evidently, the S = 1/2
hyperkagome-lattice Heisenberg antiferromagnet can be studied by the
rotation-invariant Green’s function method for obtaining approximate
thermodynamic and dynamic quantities on an equal footing. Similar
studies for the quantum kagome-lattice and pyrochlore-lattice Heisen-
berg antiferomagnets were reported in Refs. [34, 35]. Moreover, the
hyperkagome-lattice Heisenberg antiferromagnet represents a flat-band
system, since the one-magnon energy spectrum has dispersionless (flat)
bands. The flat-band states may be relevant at high fields and low tem-
peratures and their dominant contribution to thermodynamics can be
elaborated by special methods of flat-band systems, see Refs. [48, 49].
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