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Анотацiя. В роботi послiдовно представлено метод колективних
змiнних з системою вiдлiку для класичної системи багатьох
взаємодiючих частинок у великому канонiчному ансамблi. Основна
увага придiлена деталям обчислень. Зокрема, використання
повних кореляцiйних функцiй означених для великого канонiчного
ансамблю дозволило детально дослiдити кумулянти великої
статистичної суми системи вiдлiку. Показано, що будь-який
кумулянт Mn можна представити як добуток трьох компонент:
середнього числа частинок системи вiдлiку, символ Кронекера n
хвильових векторiв, i n-частинкового структурного фактора.
Отримано функцiональний вираз для великогї статисничної суми
в якому всi величини представленi в явному виглядi. Розрахованi
координати критичної точки в наближеннi середнього поля.

Grand partition function functional for simple fluids

I.R. Yukhnovskii, R.V. Romanik

Abstract. In this paper, we will systematically present the method of
collective variables with a reference system for a classical many-particle
interacting system in the grand canonical ensemble. The emphasis will
be placed on the details of calculations. In particular, the usage of total
correlation functions defined for the grand canonical ensemble allows
us to investigate very accurately the cumulants of the grand partition
function for the reference system. It is shown that any cumulant Mn

can be expressed as a product of three components: the average particle
number within the reference system, a Kronecker’s symbol for n wave
vectors, and the n-particle structure factor.
The functional expression for the grand partition function is derived,
with all coefficients explicitly defined. The coordinates of the critical
point are computed in the mean field approximation.
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1. Introduction

The method of collective variables (CV) was developed in [1,2], and ap-
plied to description of classical equilibrium systems [3] and phase transi-
tions of the second order [4]. A more thorough review of results achieved
with the method is presented in [5]. The method was then extended
to describe the system of interacting particles in the grand canonical
ensemble. For simple fluids, the noticeable works are [6–8]. For many-
component systems see [9, 10]. The concept of a reference system (RS)
was used along with the CV method. The interaction between particles
was arbitrary divided into short-range repulsive and long-range attrac-
tive parts. The short-range repulsive part was usually considered as the
reference system. In the current work we systematically introduce the
collective variables in the grand canonical ensemble. We would like to
emphasize the following distinguishable points of this work.

• The factor of 1/
√
N is not used in the expressions for the Fourier

components of the microscopic particle density, which somewhat
simplifies the summation over N in the grand partition function
(GPF).

• We use total correlation functions defined in the grand canonical
ensemble which makes the expressions for cumulants of the refer-
ence system grand partition function much simpler compared to
ones obtained in [7,8]. This also helps avoid complications related
to explicitly performing thermodynamic limit in those expressions.

• The theory is presented in such a way that the reference system is
not specified in general but is chosen as a hard-sphere system only
to obtain numerical results for some quantities.

We obtain an explicit functional expression for the GPF of the clas-
sical many-particle interacting system with all coefficients known. The
obtained expression is analogous to the one obtained in [7] except the co-
efficients are revisited using more modern definitions for total correlation
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functions. Some properties of these correlation functions are additionally
investigated in Appendix A. We conclude the work with calculation of
the critical point coordinates in the mean-field (MF) approximation. The
obtained value for the packing fraction is the same as was obtained in [8],
thus showing that for this quantity a higher approach still needs to be
developed. The obtained value for the critical temperature is higher that
the corresponding value reported in [8], since the latter was obtained in
a non-MF approximation. Finally, the critical value calculated for the
excess chemical potential is published for the first time.

2. Problem statement

Consider a classical system of identical particles interacting via a pairwise
additive potential U(|r|), where r is the distance in the three-dimensional
space. There are two assumptions made regarding the interaction be-
tween particles. First, the interaction can be decomposed into two parts

U(rij) = Ψ(rij) + Φ(rij), (2.1)

where Ψ(rij) is responsible for the repulsion between particles - denoted
by i and j - at short distances, and Φ(rij) for the attraction at long
distances, rij ≡ |ri − rj |. Second, that the attraction part of the poten-
tial possesses a well-behaved Fourier transform. For more details on the
interaction potential, see Section 2.1.

A physical observable dependent on the particle coordinates is, in
general, a functional of the microscopic particle density defined as

n(r) =

N
∑

j=1

δ(r− rj), (2.2)

where rj is the coordinate of the j-th particle, N is the number of parti-
cles in the system, δ(...) is the Dirac’s δ-function. The quantity n(r) can
be represented in the form of a Fourier series:

n(r) =
1

V

∑

k

ρ̂ke
ikr, (2.3)

where
∑

k
=
∑

kx

∑

ky

∑

kz
, ki = 2π

V 1/3ni, i = x, y, z, ni = 0,±1,±2, . . . .
V is the system volume, so that

∫

V

n(r)dr = N.
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The Fourier component ρ̂k is of the form:

ρ̂k =

N
∑

j=1

exp(−ikrj), ρ̂k=0 = N. (2.4)

Alternatively,

ρ̂k = ρ̂c
k
− iρ̂s

k
.

ρ̂c
k

=
∑N

i=1 cos(kri), ρ̂s
k

=
∑N

i=1 sin(kri) (2.5)

Let the system be open. The probability that an open system contains
exactly N particles is given by:

p(N) =
1

Ξ

zN

N !
ZN . (2.6)

Here Ξ is the grand partition function (GPF) of the system:

Ξ =

∞
∑

N=0

zN

N !
ZN . (2.7)

where z is the activity:

z =
exp(βµ)

Λ3
(2.8)

with β being the inverse temperature, and µ the chemical potential,
Λ = (2πβ~2/m)1/2 the de Broglie thermal wavelength, ~ the Planck’s
constant, m the mass of a particle.

ZN is the configuration integral:

ZN =

∫

exp(−βUN(r1, ..., rN ))drN (2.9)

where UN is the potential energy of interparticle interaction, and the
following notation is understood drN ≡ dr1 . . . drN .

Given the GPF, all the thermodynamic properties of the system can
be obtained.

2.1. Potential energy of interparticle interaction

Based on the assumption made in (2.1), the potential energy of the
interparticle interaction can be written in the form:

UN(rN ) = ΨN(rN ) + ΦN (rN )

=
1

2

N
∑

i=1

N
∑

j=1

i6=j

Ψ(rij) +
1

2

N
∑

i=1

N
∑

j=1

i6=j

Φ(rij) (2.10)
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where the following notation is introduced r
N ≡ r1, . . . , rN . Here

ΨN =
1

2

N
∑

i=1

N
∑

j=1

i6=j

Ψ(rij) (2.11)

is the potential energy of the short-range repulsive interaction, and

ΦN =
1

2

N
∑

i=1

N
∑

j=1

i6=j

Φ(rij) (2.12)

is the long-range attractive counterpart.
One approach to separation the long- and short-range interaction is

to choose Ψ(r) as the hard-sphere (HS) potential

Ψ(r) =

{

∞, r ≤ σ,
0, r > σ

(2.13)

where σ denotes the hard-sphere diameter.
Then Φ(r) can be chosen so that it possesses a potential well at r > σ,

e.g.

Φ(r) =

{

0, r ≤ σ
UMorse(r), r > σ,

(2.14)

using the Morse potential

UMorse(r) = ε{exp{[−2(r −R0)/α]} − 2 exp{[−(r −R0)/α]}} (2.15)

with ε being the characteristic energy of the potential, R0 the coordinate
ot the minimum, and α the effective range of action. In what follows,
we develop a general approach to deal with the system of interacting
particles. Particular forms of the reference system and attractive part of
the potential are chosen to obtain some numerical and graphical results.

In general we assume that the attractive part of the interaction po-
tential possesses a well behaved Fourier component Φ̂k such that:

Φ(r) =
1

V

∑

k

Φ̂keikr =
1

(2π)3

∫

dkΦ̂keikr, (2.16)

and

Φ̂k =

∫

Φ(r)e−ikrdr. (2.17)
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In such a case, the potential energy of the attractive interaction can be
written in terms of ρ̂k:

ΦN (rN ) =
1

2

N
∑

i=1

N
∑

j=1

i6=j

Φ(rij)

=
1

2

N
∑

i=1

N
∑

j=1

i6=j

1

V

∑

k

Φ̂keik(ri−rj)

=
1

2V

∑

k

Φ̂kρ̂kρ̂−k − N

2V

∑

k

Φ̂k. (2.18)

Note, that in our approach we put Φ(0) = 0, see (2.14), thus

1

V

∑

k

Φ̂keikr|r=0 =
1

V

∑

k

Φ̂k ≡ Φ(0) = 0

and the second term for ΦN vanishes

ΦN (rN ) =
1

2V

∑

k

Φ̂kρ̂kρ̂−k. (2.19)

2.2. The Grand Partition Function with a reference system sin-
gled out

The GPF is now written as

Ξ =
∞
∑

N=0

eβµN

N !Λ3N

∫

exp
(

−βΨN (rN ) − βΦN (rN )
)

drN . (2.20)

Let’s consider a system characterized only by the repulsive part of the
interaction potential as a reference system (RS). The GPF for the RS
system is

Ξ0 =

∞
∑

N=0

1

N !

exp(βµ0N)

Λ3N

∫

exp
(

−βΨN(rN )
)

drN (2.21)

where µ0 is the RS chemical potential. Now, the GPF is expressed as

Ξ = Ξ0

∞
∑

N=0

exp(βµ0N)

N !Λ3N
×

×
∫

exp
(

−βΦN (rN )
)

Ξ0
exp
(

β(µ− µ0)N − βΦN (rN )
)

drN .
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Taking into account (2.19) and (2.4), the second exponent under the
integral can be expressed in terms of ρ̂k:

exp
(

β(µ− µ0)N − βΦN (rN )
)

= exp

(

hρ̂0 −
1

2

∑

k

α(k)ρ̂kρ̂−k

)

.

(2.22)
Here the following notations were introduced:

h = β(µ− µ0); α(k) =
βΦ̂k

V
. (2.23)

Let’s define the set of collective variables ρk = ρc
k
− iρs

k
via the

following expressions:

ρ̂ck =

∫

ρckJ(ρ− ρ̂)(dρ),

ρ̂s
k

=

∫

ρs
k
J(ρ− ρ̂)(dρ),

ρ̂0 =

∫

ρ0J(ρ− ρ̂)(dρ) = N. (2.24)

Here

J(ρ− ρ̂) = δ(ρ0 − ρ̂0)

′
∏

k

δ(ρck − ρ̂ck)δ(ρsk − ρ̂sk), (2.25)

(dρ) = dρ0

′
∏

k

dρckdρsk. (2.26)

The ’prime’ sign over the product means that the wave-vector takes on
values only from the upper semi-space of the reciprocal space, i.e. kz > 0,
and k 6= 0.

The collective variables ρk possess the following properties:

ρ−k = ρ∗k; ρck = ρc−k; ρsk = −ρs−k. (2.27)

Equations (2.24) can be written in a more concise form

ρ̂k =

∫

ρkJ(ρ− ρ̂)(dρ). (2.28)

Valid is also a more general equality

f(ρ̂k) =

∫

f(ρk)J(ρ− ρ̂)(dρ), (2.29)
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where f is some function of ρ̂k. Applied to (2.22), it leads

exp
(

β(µ− µ0)N − βΦN (rN )
)

= exp

(

hρ̂0 −
1

2

∑

k

α(k)ρ̂kρ̂−k

)

=

∫

exp

(

hρ0 −
1

2

∑

k

α(k)ρkρ−k

)

J(ρk − ρ̂k)(dρ). (2.30)

And for the GPF one has:

Ξ = Ξ0

∫

exp

(

hρ0 −
1

2

∑

k

α(k)ρkρ−k

)

J(ρ)(dρ) (2.31)

where the Jacobian function is defined as

J(ρ) =
1

Ξ0

∞
∑

N=0

zN0
N !

∫

exp
(

−βΨN (rN )
)

J(ρ− ρ̂)drN

= 〈J(ρ− ρ̂)〉RS . (2.32)

Here z0 = exp
(

βµ0/Λ3
)

is the activity of the reference system, and the
average value over the reference system is defined as

〈. . . 〉RS = Ξ−1
0

∞
∑

N=0

zN0
N !

∫

exp
(

−βΨN(rN )
)

. . . drN . (2.33)

3. The Jacobian of transformation

Let’s rewrite the expression for the Jacobian (2.32) using the integral
representation for δ-functions:

δ(ρ0 − ρ̂0)

′
∏

k

δ(ρc
k
− ρ̂c

k
)δ(ρs

k
− ρ̂s

k
) =

∫

exp

(

2πi
∑

k

(ρk − ρ̂k)ωk

)

(dω),

where ωk is a variable conjugate to ρk

ωk =
1

2
(ωc

k
+ iωs

k
), (3.1)

(dω) = dω0

′
∏

k

dωc
k
dωs

k
. (3.2)
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The Jacobian can now be expressed as

J(ρ) =
1

Ξ0

∞
∑

N=0

zN0
N !

×

×
∫

exp

(

−βΨN (rN ) + i2π
∑

k

(ρk − ρ̂k)ωk

)

(dω)drN

=

∫

exp

(

i2π
∑

k

ρkωk

)

J̃(ω)(dω) (3.3)

where the following notation is introduced

J̃(ω) =
1

Ξ0

∞
∑

N=0

zN0
N !

∫

exp

(

−βΨN (rN ) − i2π
∑

k

ωkρ̂k

)

drN . (3.4)

The expression for J̃(ω) can be expanded into a cumulant series to give

J̃(ω) = exp





∑

n≥1

Dn(ω)



 (3.5)

where

Dn(ω) =
(−i2π)n

n!

∑

k1,...,kn

Mn(k1, . . . ,kn)ωk1
. . . ωkn . (3.6)

The cumulants Mn are calculated by the following formula:

Mn(k1, . . . ,kn) =
1

(−i2π)n

(

∂n ln J̃(ω)

∂ωk1
. . . ∂ωkn

)

ωki
=0

(3.7)

The calculation of the cumulants Mn is the objective of the next Sec-
tion 4.

The Jacobian J(ρ) is now expressed as

J(ρ) =

∫

exp



i2π
∑

k

ρkωk +
∑

n≥1

Dn(ω)



(dω)

=

∫

exp

(

i2π
∑

k

ρkωk+

+
∑

n≥1

(−i2π)n

n!

∑

k1,...,kn

Mn(k1, . . . ,kn)ωk1
. . . ωkn



 (dω)
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The partition function is now written as

Ξ = Ξ0

∫

exp

[

hρ0 −
1

2

∑

k

α(k)ρkρ−k

]

(3.8)

× exp

(

i2π
∑

k

ωkρk+

+
∑

n≥1

(−i2π)n

n!

∑

k1,...,kn

Mn(k1, . . . ,kn)ωk1
. . . ωkn



 (dω)(dρ)

4. Cumulants

4.1. Calculation of cumulants

Let’s calculate Mn(k1, . . . ,kn) based on Eqs. (3.7), (3.4). To simplify
notation for the average value defined in (2.33), the subscript 0 will be
used to indicate RS

〈. . . 〉0 ≡ 〈. . . 〉RS

For the first cumulant one gets:

M1(k) =
1

(−i2π)

∂ ln J̃(ω)

∂ωk1

∣

∣

∣

∣

ωki
=0

= 〈ρ̂k〉0 (4.1)

For the second cumulant:

M2(k1,k2) =
1

(−i2π)2
∂2 ln J̃(ω)

∂ωk1
∂ωk2

∣

∣

∣

∣

ωki
=0

= 〈ρ̂k1
ρ̂k2

〉0 − 〈ρ̂k1
〉0〈ρ̂k2

〉0

Continuing this procedure, for the next cumulants one gets:

M3(k1,k2,k3) = 〈ρ̂k1
ρ̂k2

ρ̂k3
〉0 (4.2)

−
∑

l=

{

1,2,3
1,3,2
2,3,1

}

〈ρ̂kl1
ρ̂kl2

〉0〈ρ̂kl3
〉0

+2〈ρ̂k1
〉0〈ρ̂k2

〉0〈ρ̂k3
〉0

ICMP–23–01E 11

M4(k1,k2,k3,k4) = 〈ρ̂k1
ρ̂k2

ρ̂k3
ρ̂k4

〉0
−

∑

l=







1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1







〈ρ̂kl1
ρ̂kl2

ρ̂kl3
〉0〈ρ̂kl4

〉0

−
∑

l=

{

1,2,3,4
1,3,2,4
1,4,2,3

}

〈ρ̂kl1
ρ̂kl2

〉0〈ρ̂kl3
ρ̂kl4

〉0

+2
∑

l=



















1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



















〈ρ̂kl1
ρ̂kl2

〉0〈ρ̂k3
〉0〈ρ̂k4

〉0

−6〈ρ̂k1
〉0〈ρ̂k2

〉0〈ρ̂k3
〉0〈ρ̂k4

〉0 (4.3)

The expressions in the right-hand sides of (4.1)-(4.3) can be called cu-
mulant averages of ρ̂k, since they remind formulae for cumulants ex-
pressed via non-central moments. In other words, if 〈ρk1

. . . ρkn
〉 are

considered non-central moments (of a probability distribution), then
Mn(k1, . . . ,kn) can be considered as cumulants (semi-invariants) and
the relationships between them are known [11].

As per our knowledge, the generic expression for cumulant average
is not found so far, however, Mn can be derived for any n based on
generating functional ln J̃(ω) by virtue of (3.7).

4.2. Cumulants Mn(kn) expressed via Fourier components of

the total correlation functions ĥ(n)(kn)

In this subsection, explicit expressions for cumulants Mn are presented
in terms of the Fourier components of total correlation functions ĥ(n).
See Appendix A for the definition and some properties of total correla-
tion functions. The calculation of the first two cumulants is presented in
details in Appendix B.

M1(k) = ρĥ(1)(k) = 〈N〉0δk (4.4)

M2(k1,k2) = ρĥ(1)(k1 + k2) + ρ2ĥ(2)(k1,k2)

= 〈N〉0δk1+k2
(1 + ρĥ(2)(k1)). (4.5)
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M3(k1,k2,k3) = ρĥ(1)(k1 + k2 + k3)

+ ρ2
∑

l=

{

1,2,3
1,3,2
2,3,1

}

ĥ(2)(kl1 + kl2 ,kl3)

+ ρ3ĥ(3)(k1,k2,k3)

= 〈N〉0δk1+k2+k3

[

1 + ρ(ĥ(2)(k1) + ĥ(2)(k2) + ĥ(2)(k1 + k2)))

+ρ2ĥ(3)(k1,k2)
]

. (4.6)

M4(k1, . . . ,k4) = ρĥ(1)(k1 + . . . + k4)

+ ρ2
∑

l=







1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1







ĥ(2)(kl1 + kl2 + kl3 ,kl4)

+ ρ2
∑

l=

{

1,2,3,4
1,3,2,4
1,4,2,3

}

ĥ(2)(kl1 + kl2 ,kl3 + kl4)

+ ρ3
∑

l=



















1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



















ĥ(3)(kl1 + kl2 ,kl3 ,kl4)

+ ρ4ĥ(4)(k1, . . . ,k4); (4.7)
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M4(k1, . . . ,k4) = 〈N〉0δk1+k2+k3+k4

×













1 + ρ

4
∑

l=1

ĥ(2)(kl) + ρ
∑

l=

{

1,2
1,3
1,4

}

ĥ(2)(kl1 + kl2)

+ρ2
∑

l=



















3,4
2,4
2,3
1,4
1,3
1,2



















ĥ(3)(kl1 ,kl2) + ρ3ĥ(4)(k1,k2,k3)



























.

The expression in the square brackets next to the δ-function for
M4(kn) can be also written in a form where it depends only on k1,k2,k3,
but does not depend on k4. Let’s write for M4:

M4(k, . . . ,k4) = 〈N〉0δk1+k2+k3+k4
m4(k1,k2,k3) (4.8)

Then

m4(k1,k2,k3) = 1

+ ρ

( 3
∑

l=1

ĥ(2)(kl) +
∑

l=

{

1,2
1,3
2,3

}

ĥ(2)(kl1 + kl2) + ĥ(2)(k1 + k2 + k3)

)

+ ρ2
(

∑

l=

{

1,2
1,3
2,3

}

ĥ(3)(kl1 ,kl2) +
∑

l=

{

1,2,3
1,3,2
2,3,1

}

ĥ(3)(kl1 + kl2 ,kl3)

)

+ ρ3ĥ(4)(k1,k2,k3) (4.9)

This should be true for any n: a cumulant Mn can be written in such
a way, that dependence on kn will be present only in δk1+...+kn , and
other part, let’s denote it by mn, will depend only on k1, . . . ,kn−1, or
mn = mn(kn−1)

Mn(kn) = 〈N〉0δk1+...+knmn(kn−1). (4.10)
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A few first mn are expressed via total correlation functions ĥ(n) as follows:

m1 = 1. (4.11)

m2(k) = 1 + ρĥ(2)(k). (4.12)

m3(k1,k2) = 1 + ρ
(

ĥ(2)(k1) + ĥ(2)(k2) + ĥ(2)(k1 + k2)
)

+ρ2ĥ(3)(k1,k2) (4.13)

and the expression for m4 is given by (4.9). It is seen from (4.12) that
m2(k) is the structure factor (see e.g Eq. (3.6.10) in [12]). By analogy,
mn can be considered as the n-particle structure factor.

Expressions (4.4)-(4.7) for cumulants obtained in this work can be
compared with corresponding expressions presented in other works. In [8]
(see Appendix B therein), and in [13] (see Eq. (3.7) therein), the expres-
sions for M2 through M4 were presented in a similar form, but different
permutations of wave-vector values were not accounted for. For example,
it was considered that ĥ(2)(k1) + ĥ(2)(k2) + ĥ(2)(k1 + k2) = 3ĥ(2)(k1).
In [6] (see Eqs. (2.6), (2.10), and (2.11) therein), the expressions for
Mn(kn) were presented in a more complicated form, possibly due to the
fact that correlation functions were defined in the canonical ensemble.

In [9] the expressions analogous to (4.4)-(4.7) were written for cumu-
lants of multicomponent system.

There are a few interesting properties to note about general expres-
sion for mn. First, that the number of all terms contributing to mn is
equal to the Bell number Bn [14, 15]. Second, if the terms are grouped
by the powers in ρ then the number of terms at the k-th power in ρ is
the Stirling number of the second kind S(n, k) [14, 16].

4.3. Explicit expressions for cumulants as functions of wave-
vector and packing fraction

To start with, one can use an explicit equation for the structure factor
of hard-spheres system. For example, let’s use Eq. (3) from [17] for the
structure factor as a function of wave-vector and packing fraction η in
the Percus-Yevick approximation

M2(k,−k)/〈N〉0 = m2(k), (4.14)

m2(k) = (1 − ρc(k))−1, (4.15)

where c(k) is the Fourier component of the direct correlation function:

c(k) = −4πσ3

∫ 1

0

dss2
sin(skσ)

skσ
(A + Bs + Cs3) (4.16)
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The parameters A, B, and C are functions of η:

A = (1 + 2η)2/(1 − η)4

B = −6η(1 + η/2)2/(1 − η)4

C = (1/2)η(1 + 2η)2/(1 − η)4. (4.17)

In Figure 1 m2 is shown as a function of k · σ at different values of η. In
Figure 2 m2 is shown as a function of η at k = 0.

Figure 1. Cumulant m2 as a function
of kσ at different values of packing
fraction η. 1 - η = 0.05, 2 - η = 0.1,
3 - η = 0.15, and 4 - η = 0.2.

Figure 2. Cumulant m2 as a func-
tion of packing fraction η at k =
0

The formulas for M3(k,−k, 0) and M4(k,−k, 0, 0) can be obtained
from M2(k,−k) based on the recurrence relations for n-particle distri-
bution functions gn found in [18] (see Eq. (A8) therein). Such formulas
were obtained in [8] (see Appendix B therein) and in our notation they
read:

m3(k,−k) = m2(0)

[

m2(k) + η
∂m2(k)

∂η

]

, (4.18)

m4(k,−k, 0) = m2(0)

[

m2(k)m2(0) + 3ηm2(0)
∂m2(k)

∂η

+ηm2(k)
∂m2(0)

∂η
+ η2

∂m2(0)

∂η

∂m2(k)

∂η

+η2m2(0)
∂2m2(k)

∂η2

]

(4.19)
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Figure 3. Cumulant m3 as a function
of kσ at different values of packing
fraction η. 1 - η = 0.05, 2 - η = 0.1,
3 - η = 0.15, and 4 - η = 0.2.

Figure 4. Cumulant m3 as a func-
tion of packing fraction η at k =
0

Figure 5. Cumulant m4 as a function
of kσ at different values of packing
fraction η. 1 - η = 0.05, 2 - η = 0.1,
3 - η = 0.15, and 4 - η = 0.2.

Figure 6. Cumulant m4 as a func-
tion of packing fraction η at k =
0
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In Figure 3 m3 is shown as a function of k · σ at different values of
η. In Figure 4 m3 is shown as a function of η at k = 0. In Figure 5 m4

is shown as a function of k · σ at different values of η. In Figure 6 m4 is
shown as a function of η at k = 0.

4.4. Cumulants at ki = 0

At ki = 0 cumulants are expressed via the average number of particles
in the reference system. Here the final expressions are presented. They
are obtained directly from (4.1)–(4.3) by substituting ki = 0 and using
ρ̂0 = N . Some alternative methods to calculate them are presented in
Appendix C.

M1(0) = 〈N〉0; (4.20)

M2(0, 0) = 〈N2〉0 − 〈N〉20 = 〈(N − 〈N〉0)2〉0; (4.21)

M3(0, 0, 0) = 〈N3〉0 − 3〈N2〉0〈N〉0 + 2〈N〉30
= 〈(N − 〈N〉0)3〉0; (4.22)

M4(0, 0, 0, 0) = 〈N4〉0 − 4〈N3〉0〈N〉0 + 12〈N2〉0〈N〉20
−3〈N2〉20 − 6〈N〉40

= 〈(N − 〈N〉0)4〉0 − 3〈(N − 〈N〉0)2〉20. (4.23)

4.5. Cumulants as functions of packing fraction for the hard-
spheres system

For the system of hard spheres the cumulants mn can be found explicitly
as functions of the packing fraction η based on a given equation of state

PV

NkT
= f(η) (4.24)

where f(η) is a function of the packing fraction only. The structure factor
at zero wave-vector value is found via

m2 = S(0) = kT

(

∂ρ

∂P

)

T

. (4.25)

From here one has
1

m2
= f(η) + η

∂f(η)

∂η
. (4.26)
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For example, in [13], the following expressions were obtained based on
the equation of state by Carnahan and Starling [19] for HS:

m2 =
(1 − η)4

(1 + 2η)2 − 4η3 + η4
,

m3 =
(1 − η)7(1 − 5η − 20η2 − 4η3 + 5η4 − η5)

((1 + 2η)2 − 4η3 + η4)3
,

m4 = (1 − η)10(1 − 26η − 35η2 + 408η3 + 758η4 + 28η5 −
−114η6 − 40η7 + 37η8 − 10η9 + η10)((1 + 2η)2 − 4η3 + η4)−5.

Note that here the signs for the term 4η3 in m3 and for 408η3 in m4 were
corrected.

5. Grand partition function in the representation of

collective variables

The grand partition partition function is now written as

Ξ = Ξ0

∫

exp

[

hρ0 −
1

2

∑

k

α(k)ρkρ−k

]

(5.1)

× exp

(

i2π
∑

k

ωkρk

+
∑

n≥1

(−i2π)n

n!

∑

k1,...,kn

Mn(k1, . . . ,kn)ωk1
. . . ωkn





× (dω)(dρ)

This expression was obtained in [7] (see Eq.(2.16) therein).
The next step in calculation is to integrate over ωk with k > B. This

integration can be performed with Gaussian measure, i.e. the expressions
in the exponent is restricted to the powers of ω not higher than 2. Let
us denote the result of this integration by ΞG. Then the grand partition
function takes the form:

Ξ = Ξ0ΞGΞL (5.2)

Here ΞL denotes long-wave contributions to the GPF and is the object of
our further investigation in this paper. The expression for ΞL is following
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(see also Eq.(3.5) in [7]):

ΞL =

∫

exp






hρ0 −

1

2

∑

k

k≤B

α(k)ρkρ−k






(5.3)

× exp






i2π

∑

k

k≤B

ωkρk

+
∑

n≥1

(−i2π)n

n!

∑

k1,...,kn
ki≤B

M̃n(k1, . . . ,kn)ωk1
. . . ωkn







× (dω)NB (dρ)NB

Here M̃n denote renormalized cumulants Mn due to integration over
k > B, and

(dω)NB (dρ)NB =







∏

k

k≤B

dωc
k
dρc

k
dωs

k
dρs

k






dω0dρ0 (5.4)

In the approximation of the 4th basic measure density, ΞL is ex-
pressed as:

ΞL =

∫ (

1 + D4 +
1

2
D2

4 + . . .

)

W4(ρ;ω)(dρ)NB (dω)NB , (5.5)

where the measure density W4(ρ;ω) is

W4(ρ;ω) = exp











hρ0 −
1

2

∑

k

k≤B

α(k)ρkρ−k + i2π
∑

k

k≤B

ωkρk+

+
4
∑

n=1

(−i2π)n

n!

∑

k1,...,kn
ki≤B

M̃n(k1, . . . ,kn)ωk1
. . . ωkn











. (5.6)

and the following notation is introduced:

D4 =
∑

m>4

(−i2π)m

m!

∑

k1,...,km
ki≤B

M̃n(k1, . . . ,km)ωk1
. . . ωkm (5.7)
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The quantity NB is the number of variables to be integrated over.
It is equal to the number of values that the wave vector takes on in the
sphere of radius B in reciprocal space. Let’s assume that the wave-vector
values are distributed uniformly, then

NB =
B3

6π2
V. (5.8)

To derive this equation, consider the following arguments. If we had a
simple cubic lattice of spacing c in real space, the first Brillouin zone of
it would be a simple cubic lattice in the reciprocal space with spacing
2B′, where B′ = π/c. The number of values taken by wave vector in this
zone would be NB = V/c3 = V (B′/π)3. Under our assumption, the wave
vector values are distributed uniformly. Hence, the sphere of volume Ω
in reciprocal space must contain the same number of wave vector values
as a cube of the same volume Ω. Since Ω = (2B′)3 = 4

3πB
3, one finds

that B′3 = π
6B

3 and, therefore, arrives at Eq. (5.8).
In the current investigation the following approximations are to be

applied.
Approximation 1. D4 is neglected in the expression (5.5) for ΞL;
Approximation 2. The difference between renormalized values of cu-

mulants M̃n and original cumulants Mn is ignored, so that:

M̃n(kn) ≈ Mn(kn) (5.9)

Approximation 3. The dependence of cumulants Mn on the wave
vectors ki is neglected, except for the dependence via δ-functions

Mn(kn) ≈ Mn(0n)δk1+...+kn (5.10)

where the following notation is used for simplicity: kn ≡ k1, . . . ,kn.
With these approximations applied, one arrives at the following ex-

pressions:

ΞL =

∫

W4(ρ;ω)(dρ)NB (dω)NB , (5.11)

and

W4(ρ;ω) = exp











hρ0 −
1

2

∑

k

k≤B

α(k)ρkρ−k + i2π
∑

k

k≤B

ωkρk (5.12)

+
4
∑

n=1

(−i2π)n

n!
Mn(0n)

∑

k1,...,kn
ki≤B

δk1+...+knωk1
. . . ωkn











.
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See also Eqs. (3.12), (3.13) in [7].
The expression 5.12 for the 4-th measure density contains non-zero

terms in all powers of ω up to 4. Let’s eliminate the coefficient next to the
3-rd power in ω. For this, the following change of variables is performed:

ω0 = ω′
0 +

M3

(i2π)M4
(5.13)

From now on, we will understand Mn as Mn(0n) where it is not ambigu-
ous. One should remember that Mn are still dependent on the packing
fraction η. The 4-th measure density W4(ρ;ω) takes the form:

W4(ρ;ω) = exp

{

M0 + (h + M3/M4)ρ0

− 1

2

∑

k

k≤B

α(k)ρkρ−k − i2πM̃1ω0+

+i2π
∑

k

k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑

k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑

k1,...,k4

ki≤B

δk1+...+k4
ωk1

. . . ωk4











(5.14)

with

M0 = −M1M3

M4
+

M2M
2
3

2M2
4

− M4
3

8M3
4

, (5.15)

M̃1 = M1 −
M2M3

M4
+

M3
3

3M2
4

, (5.16)

M̃2 = M2 −
M2

3

2M4
. (5.17)

In (5.14) the prime at ω0 is omitted.
We also want to eliminate the term at ω0. This is achieved by the

change of variables
ρ0 = ρ′0 + M̃1. (5.18)
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The expression for W4(ρ;ω) becomes

W4(ρ;ω) = exp











M̃0 + µ∗ρ0 −
1

2

∑

k

k≤B

α(k)ρkρ−k (5.19)

+i2π
∑

k

k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑

k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑

k1,...,k4

ki≤B

δk1+...+k4
ωk1

. . . ωk4











with

M̃0 = M0 + (h + M3/M4)M̃1 −
α(0)

2
M̃2

1 (5.20)

µ∗ = h + M3/M4 + α(0)M̃1 (5.21)

In (5.19) the prime at ρ0 is omitted.
We can compare the expression (5.19) with Eq. (3.14) from [7],

Eq. (12) from [8], and Eq. (3.5) from [20].

Table 1. The zero values of the cumulant M4. M4 < 0 for ηmin < η <
ηmax.

Approximation ηmin ηmax

Percus-Yevick, compressibility equation [21] 0.037346 0.221675
Percus-Yevick, virial equation [22] 0.037673 0.233899
Carnahan-Starling [19] 0.037455 0.225572
Ree-Hoower [23] 0.037423 0.224260

The first thing to note in Eq. (5.19) is that the integral for ΞL in (5.11)
converges only for M4 < 0. The values of M4 are negative only in some
range of η. Table 1 summarizes numerical solutions for the equation
M4 = 0 in a few approximations. Thus one can conclude that the 4-th
measure density W4(ρ;ω) is applicable only in this range of packing frac-
tion η. We are going to work in range 0.04 ≤ η ≤ 0.22. The dependence
of m4 = M4/〈N〉0 on η is presented in Figure 7.
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Figure 7. Cumulant m4 = M4/〈N〉0 as a function of packing fraction η at
ki = 0. In this Figure the range of negative values for m4 is emphasized.

5.1. Integration over ω.

Let’s perform integration over ω in (5.11), using (5.19) for W4(ρ;ω).
First let’s single out the integral over ω

J(ρ) =

∫

exp






i2π

∑

k

k≤B

ωkρk +
(−i2π)2

2!
M̃2

∑

k

k≤B

ωkω−k

+
(−i2π)4

4!
M4

∑

k1,...,k4

ki≤B

δk1+...+k4
ωk1

. . . ωk4






(dω)NB

To factorize this integral, perform the following change of variables

ω̃l =
1√
NB

∑

k
k≤B

ωke−ikl, ρ̃l =
1√
NB

∑

k
k≤B

ρkeikl. (5.22)

The following relations are valid:

∑

l

ω̃lρ̃l =
1

NB

∑

l

∑

k

ωk

∑

k′

ρk′e−i(k−k
′)l =

∑

k

ωkρk, (5.23)
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∑

l

ω̃2
l =

∑

k

ωkω−k, (5.24)

NB

∑

l

ω̃4
l

=
∑

k1,...,k4

ki≤B

δk1+...+k4
ωk1

. . . ωk4
(5.25)

where the following expression for the Kronecker’s δ-symbol is used:

δk =
1

NB

∑

l

e−ikl. (5.26)

The sum over l should be understood as running over NB values in real
space corresponding to the wave-vector values k, k ≤ B.

The element of integration is changed as following:

dω0

′
∏

k
k≤B

dωc
kdωs

k = j
∏

l

dω̃l (5.27)

where j is the Jacobian of transition from ωk to ω̃l.
Since the approximation of the 4-th measure density is applicable

only when M4 is negative, we will write the following expressions using
the absolute value of this cumulant. Thus, the factorized expression for
the integral over ω is

J(ρ) = j
∏

l

∫

exp

(

i2πω̃lρ̃l −
(2π)2

2
M̃2ω̃

2
l
− (2π)4

4!
NB|M4|ω̃4

l

)

dω̃l.

If we denote the integral as

Jl(ρ̃l) =

∫

exp

(

i2πω̃lρ̃l −
(2π)2

2
M̃2ω̃

2
l −

(2π)4

4!
NB|M4|ω̃4

l

)

dω̃l (5.28)

then the result of integration can be presented in the following form

J(ρ) = j
∏

l

ea0 exp



−
∑

n≥1

an
n!

ρ̃n
l



 (5.29)

where coefficients an are found by the following formulae

an = −
(

∂n ln Jl(ρ̃l)

∂ρ̃n
l

)

ρ̃l=0

. (5.30)
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First, let’s calculate ea0

Q(M̃2,M4) ≡ ea0 =

∫ ∞

−∞
exp

(

− (2π)2

2
M̃2ω̃

2
l −

(2π)4

4!
NB|M4|ω̃4

l

)

dω̃l.

Using the following representation for the Weber parabolic cylinder func-
tion U(a, x)

U(a, x) =
2

Γ(a + 1
2 )

e−
x2

4

∫ ∞

0

t2a exp

(

−xt2 − 1

2
t4
)

dt (5.31)

one obtains:

Q(M̃2,M4) =
1

2
√
π

(

12

NB|M4|

)1/4

ey
2/2U(0, y) (5.32)

where

y =

(

3M̃2
2

NB|M4|

)1/2

. (5.33)

Now, let’s calculate a2.
For a2 the result is

a2 =

(

3

NB|M4|

)1/2

U(y), (5.34)

where

U(y) =
U(1, y)

U(0, y)
. (5.35)

For a4 the result is

a4 =
3

NB|M4|

(

3U2(y) − 3
U(2, y)

U(0, y)

)

=
3

NB|M4|
φ(y) (5.36)

where
φ(y) = 3U2(y) + 2yU(y) − 2. (5.37)

In the above equation we used the following recurrence relation for the
parabolic cylinder function U :

3U(2, y) = −2yU(1, y) + 2U(0, y). (5.38)
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The quantity J(ρ) takes the form

J(ρ) = jQ(M̃2,M4)NB (5.39)

× exp









−a2
2

∑

k
k≤B

ρkρ−k − a4
NB4!

∑

k1,...,k4

ki≤B

ρk1
. . . ρk4

δk1+...+k4









where the following equations were taken into account

∑

l

ρ̃2
l

=
∑

k

ρkρ−k, (5.40)

∑

l

ρ̃4
l

=
1

NB

∑

k1,...,k4

ki≤B

δk1+...+k4
ρk1

. . . ρk4
(5.41)

Finally, the quantity ΞL takes the form

ΞL = jQ(M̃2,M4)NB exp
(

M̃0

)

Ξ
(1)
L (5.42)

where Q(M̃2,M4) is given by (5.32), NB by (5.8), M̃0 by (5.20), and

Ξ
(1)
L is defined as follows

Ξ
(1)
L =

∫

exp






µ∗ρ0 −

1

2

∑

k
k≤B

d(k)ρkρ−k (5.43)

− a4
4!NB

∑

k1,...,k4

ki≤B

ρk1
. . . ρk4

δk1+...+k4









(dρ)NB

where µ∗ is given by (5.21), and

d(k) = a2 + α(k), (5.44)

where α(k) is given by (2.23).
Expression (5.43) is the main result of this work. In future, this ex-

pression will be subject to renormalization group transformation near
the liquid-gas critical point. In CV approach it is implemented via layer-
by-layer integration of the integral (5.43) in k-space.
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5.2. Coefficients of the effective Hamiltonian

The argument y of functions entering different expressions in the previous
subsection is itself a function of η and Bσ. Let’s show this.

y =

(

3M̃2
2

NB|M4|

)1/2

=

( 〈N〉0
NB

)1/2(
3m̃2

2

|m4|

)1/2

, (5.45)

where the following notation is introduced

m̃2 = m2 −
m2

3

2m4
. (5.46)

In the expression for y the second multiplier depends only on η. Let’s
take a look at the first multiplier. Taking into account (5.8), one has

〈N〉0
NB

=
〈N〉0
V

6π2

B3
=

〈N〉0
V

σ3 6π2

(Bσ)3
=

π

6

〈N〉0
V

σ3 36π

(Bσ)3
= η

36π

(Bσ)3
.

The quantity Bσ is dimensionless but ist value depends on how B is
selected. Based on the previous works, the condition for selecting B is
Φ̂k=B = 0. This condition impose some restrictions on the attractive
part of the interaction potential, in particular that Φ̂0 < 0. However,
section of the potential in the form of Eq. (2.14) obeys this condition
very well.

The explicit expression for the Fourier component of such potential
is the following

Φ̂k = −16πεα3

{

1

1 + k2α2

(

σ

α
+

2

1 + k2α2

)

cos(kσ)

− 1

4 + k2α2

(

σ

α
+

4

4 + k2α2

)

cos(kσ)

+
σ/α

1 + k2α2

(

σ

α
+

1 − k2α2

1 + k2α2

)

sin(kσ)

kσ

− σ/α

4 + k2α2

(

2
σ

α
+

4 − k2α2

4 + k2α2

)

sin(kσ)

kσ

}

. (5.47)

In this expression it is already taken into account that

σ = R0 − α ln(2). (5.48)

In Figure 8 the dependence of Φ̂k/(εσ3) on kσ is shown for a few
values of parameter R0/α. Values of Bσ for different R0/α are presented
in Table 2
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Figure 8. Fourier component of the
attractive part of interaction poten-
tial, Eq. (5.47), for different values
of R0/α. 1 - 2.77, 2 - 3.0, 3 - 3.5.

Figure 9. Fourier component
of the attractive part of inter-
action potential for R0/α =
3.5 (solid line) and correspond-
ing parabolic approximation,
Eq. (5.49) (dashed line).

In some particular calculations further on, the following approxima-
tion will be used for the Fourier transform at k < B

Φ̂k = Φ̂0(1 − 2b2k2) (5.49)

where

2b2 = − 1

2Φ̂0

∂2Φ̂k

∂k2

∣

∣

∣

∣

k=0

. (5.50)

Values of 2b2 along with 1/(
√

2b) (the point at which the parabolic ap-
proximation is equal to zero) are also presented in Table 2. Figure 9
shows Φ̂k together with its parabolic approximation in one picture.

At this point we can build some graphics for coefficients a2 and a4
as functions of η. First, for a2 one has

a2 =

(

3

NB〈N〉0|m4|

)1/2

U(y) =
1

〈N〉0

( 〈N〉0
NB

)1/2 (
3

|m4|

)1/2

U(y)

(5.51)
and from here it is seen that the quantity 〈N〉0a2 depends only on η and
the parameter Bσ of the interaction potential, see Figure 10

For a4 one has

a4 =
3

NB〈N〉0|m4|
φ(y) =

1

〈N〉20
〈N〉0
NB

3

|m4|
φ(y) (5.52)
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Table 2. The zero values Bσ and parameters of the parabolic approxi-
mation of the Fourier component Φ̂k for different values of R0/α.

R0/α Bσ 2b2 1√
2b

2.0 1.47 1.68 0.77
2.5 1.70 1.02 0.99
3.0 1.88 0.72 1.18
3.5 2.01 0.57 1.33
4.0 2.13 0.48 1.45
4.5 2.22 0.42 1.55
5.0 2.29 0.37 1.64

Figure 10. Quantity 〈N〉0a2 as a
function of η for R0/α = 3.5.

Figure 11. Quantity 〈N〉20a4 as a
function of η for R0/α = 3.5.

and from here it is seen that the quantity 〈N〉20a4 depends only on η and
the parameter Bσ of the interaction potential, see Figure 11

To rewrite d(k) in a useful form, let’s first consider the quantity α(k)

α(k) =
βΦ̂k

V
=

1

〈N〉0
6

π
η

ε

kBT

Φ̂k

εσ3
. (5.53)

It is seen now that the quantity 〈N〉0d(k) is a function of η, but also
depends on the parameter of the interaction potential Φ, as well as on
the temperature T .
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6. Effective Hamiltonian in the mean-field approxi-

mation

Consider the long-wave contribution ΞL to the GPF, Eq. (5.42). Let’s
calculate ΞL in the approximation when all ki = 0

Ξ
(1)
L =

∫

exp

(

µ∗ρ0 −
d(0)

2
ρ20 −

a4
4!NB

ρ40

)

dρ0. (6.1)

Since, as previously learned, d(0) ∝ 〈N〉0 and a4 ∝ 〈N〉20, it is convenient
to perform the following substitution of variables ρ = 〈N〉0ρ′0 in the the
above expression and obtain

Ξ
(1)
L = 〈N〉0

∫

exp[〈N〉0E(ρ′0)]dρ′0 (6.2)

where the following notations were introduced

E(ρ′0) = µ∗ρ′0 −
d′(0)

2
ρ′

2
0 −

a′4
4!
ρ′

4
0, (6.3)

d′(0) = 〈N〉0d(0) = a′2 +
6

π
η

ε

kBT

Φ̂0

εσ3
. (6.4)

a′2 = 〈N〉0a2, a′4 =
〈N〉0
NB

〈N〉20a4 (6.5)

The presence of 〈N〉0 in the exponent justifies the application of the
steepest-descent method for integration. The result is the following

Ξ
(1)
L = 〈N〉0 exp(〈N〉0E(ρ0,max)) (6.6)

where ρ0,max maximizes the quantity E(ρ′0) and is found from the fol-
lowing conditions

∂E

∂ρ′0
= 0;

∂2E

∂ρ′20
< 0. (6.7)

In explicit form these conditions become

µ∗ − d′(0)ρ0 −
a′4
3!
ρ′

3
0 = 0, (6.8)

− d′(0) − a′4
2
ρ′

2
0 < 0. (6.9)
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6.1. Naive approximation

In the most simple approximation, the quantity µ∗ plays the same role
as an external magnetic field in the Ising model. For Ising model it is
known that the critical point appears at the absence of the external field,
thus to find the critical point in our approximation, one condition is

µ∗ = 0.

The quantity µ∗ depends on the chemical potential, through the term
β(µ − µ0), on the temperature, through the term proportional to α(0),
and on the packing fraction η. If we assume that µ = µ0, then the
condition µ∗ = 0 will relate the temperature and η

M3/M4 + α(0)M̃1 = 0.

This is the first condition that relates these two quantities. The sec-
ond condition is obtained from the requirement that non-zero solution
exists for ρ′0:

ρ′
3
0 +

3!d′(0)

a′4
ρ′0 = 0

ρ01 = 0;

ρ02,03 = ±
√

−3!d′(0)

a′4

Since a′4 is always positive in the region 0.04 ≤ η ≤ 0.22, the solutions
ρ02 and ρ03 are real when d′(0) ≤ 0. Thus the second condition for the
critical point is

d′(0) = 0

Thus in explicit form the system of two equations relating the tem-
perature and packing fraction is as follows

m3

m4
+

6η

π

1

T ∗
Φ̂0

εσ3

(

1 − m2m3

m4
+

m3
3

3m2
4

)

= 0;

a′2 +
6η

π

1

T ∗
Φ̂0

εσ3
= 0, (6.10)

where T ∗ = kBT/ε is the reduced temperature. The equation for finding
the critical value of η is

m3

m4
− a′2

(

1 − m2m3

m4
+

m3
3

3m2
4

)

= 0. (6.11)
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Figure 12. Equation (6.11) for the critical packing fraction ηc.

Figure 12 shows this equation graphically. The numerical solution to the
equation gives the following value in the Percus-Yevick approximation

ηc = 0.1742,

or the critical value for the reduced density ρ∗ = σ3〈N〉/V

ρ∗c = 0.3327.

In the Carnahan-Starling approximation the corresponding values are

ηc = 0.1766, ρ∗c = 0.3374. (6.12)

The critical temperature is now found

T ∗
c = − 6ηc

πa′2

Φ̂0

εσ3

which for the parameters value R0/α = 3.5 is T ∗
c = 2.14 in Percus-Yevick

approximation, and T ∗
c = 2.15 in the Carnahan-Starling one. It is very

important to note that both critical density and critical temperature de-
pend on the parameters of the attractive part of potential. In particular,
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the critical temperature Tc approaches zero as the interaction potential
becomes more and more narrow (α → ∞, Φ̂0 → 0).

The solutions to the equation (6.8) for ρ′0 can be written in general
form via the discriminant of this cubic equation (via the Cardano’s for-
mulas). We are not going to do so for this simple approximation, but are
going to integrate expression (5.42) over non-zero values of k, obtain sim-
ilar equation for ρ0 but with re-normalized coefficients, and investigate
the obtained equation more closely.

6.2. Applying condition 〈N〉0 = 〈N〉
Another way to address the problem of finding the critical point coor-
dinates is to impose the condition of equality between particle numbers
averages for the reference system and the whole system

〈N〉0 = 〈N〉. (6.13)

This condition was, for example, applied in [8].
The general equation to find the average (equilibrium) number of

particles is
(

∂ ln Ξ

∂(βµ)

)

T,V

= 〈N〉. (6.14)

In the expression 5.2 for the grand partition function Ξ only ΞL depends
on the chemical potential. Taking into account its expression 5.42, as

well as the expression 6.6 for Ξ
(1)
L , we arrive at the equation

〈N〉0
(

m1 +
m2m3

|m4|
+

m3
3

3m2
4

+ ρmax
0

)

= 〈N〉. (6.15)

Applying the conditions 〈N〉0 = 〈N〉 and m1 = 1, we get

ρmax
0 = −

(

m2m3

|m4|
+

m3
3

3m2
4

)

. (6.16)

In a number of works, see e.g. [8, 20, 24], the right-hand side expression
is considered as a distinct quantity and is denoted as ∆

∆ ≡ −
(

m2m3

|m4|
+

m3
3

3m2
4

)

. (6.17)

Thus there are three conditions to be met at the critical point. The
first one, which follows from the requirements of Ising model symmetry,
is

µ∗ = 0. (6.18)
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The second one is
d′(0) = 0, (6.19)

and the third one, which follows from the requirement that ρmax
0 = 0 at

the critical point, is
∆ = 0. (6.20)

From the last condition we can immediately find the value of the critical
density. Solving the equation ∆ = 0 numerically gives us

ηc = 0.12867, ρ∗c = 0.24574 (6.21)

in the Percus-Yevick approximation, and

ηc = 0.13044, ρ∗c = 0.24913 (6.22)

in the Carnahan-Starling approximation. It worth noting that the con-
dition ∆ = 0 is equivalent to M3 = 0, and consequently to m3 = 0.

The equation for the critical temperature follows from the second
condition

T ∗
c = − 6ηc

πa′2

Φ̂0

εσ3
= −ρ∗c

a′2

Φ̂0

εσ3
. (6.23)

Its numerical values for the potential parameter R0/α = 3.5 are T ∗
c =

2.197 and T ∗
c = 2.202 in the Percus-Yevick and Carnahan-Starling ap-

proximations, respectively.
There are a few important conclusions regarding results based on the

condition 〈N〉0 = 〈N〉. First, the value of the critical density does not
depend on the parameters of the attractive part of the potential. This
consequence is very contradictory since the critical density is the same
for any form of Φ(r) at r ≥ σ, including very weak interactions. The
value of ηc does not depend on the approximation used for the grand
partition function calculation, and its mean-field value obtained in this
work is the same as the one obtained in [8].

Second, the critical temperature does depend on the parameters of
interaction, and approaches zero as the range of interaction becomes
shorter and shorter (α → ∞, Φ̂0 → 0).

In this approach we can also find the value of the chemical potential
at the critical point. From the condition µ∗ = 0 and Eq. (5.21) we get

β(µc − µ0) = −M3/M4 − α(0)M̃1 = −m3/m4 −
6η

π

ε

kBT

Φ̂0

εσ3
m̃1
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Table 3. Critical values of chemical potential for different parameters
R0/α.

R0/α β(µc − µ0) βµex
c

2.0 2.6699 4.0342
2.5 2.6228 3.9872
3.0 2.5812 3.9456
3.5 2.5453 3.9097
4.0 2.5143 3.8787
4.5 2.4877 3.8520
5.0 2.4645 3.8289
5.5 2.4444 3.8088
6.0 2.4268 3.7911

where the following notation was introduced by the analogy with
Eq. (5.16)

m̃1 = m1 −
m2m3

m4
+

m3
3

3m2
4

, (6.24)

Since m3 = 0 at the critical point, and m1 = 1, we get

β(µc − µ0) = − ρ∗c
T ∗
c

Φ̂0

εσ3
= a′2. (6.25)

The numerical values of the chemical potential difference at the critical
point are summarized in Table 3 for different interaction parameters.

The chemical potential of a system can be represented as a sum of
ideal and excess parts

µ = µid + µex.

Thus the difference β(µ − µ0) is essentially the difference between ex-
cess chemical potentials. The excess chemical potential of a hard-sphere
system in the Carnahan-Starling approximation is

βµex
0 =

8η − 9η2 + 3η3

(1 − η)3
. (6.26)

At the critical density (βµex
0 )c = 1.3644. Thus, we can calculate the

excess chemical potential of the whole system at the critical point. The
results are presented in Table 3.
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7. Conclusion

We have obtained the functional-integral representation for the grand
partition function for the classical many-particle interacting system. The
main result is presented with Eq. (5.43). This expression will be subject
to applying the renormalization group transformation near the liquid-gas
critical point in future works. In this paper, the mean-field approximation
was applied to calculate the coordinates of critical point, using a system
of hard-spheres with the Morse potential as an example.

A. Total correlation functions

A.1. Definitions

The definition of the n-particle distribution function is taken from [25]
(see Eq. (2.6.7) therein)

g(n)(rn) =
ρ(n)(r1, . . . , rn)
∏n

i=1 ρ
(1)(ri)

(A.1)

where ρ(n) is the n-particle density (see Eq. (2.6.1) in [25]), which is
defined as:

ρ(n)(rn) =
1

Ξ

∞
∑

N=n

zN

(N − n)!

∫

exp(−βUN)dr(N−n) (A.2)

Here r
n ≡ r1, . . . , rn, and dr(N−n) = drn+1 . . . drN .

Let’s introduce an hierarchy of total correlation functions. The most
widely known element of this hierarchy is the pair correlation function

h(2)(r1, r2) = g(2)(r1, r2) − 1 (A.3)

(e.g., see Eq. (2.6.8) in [25]).
Let’s express the total correlation functions in terms of the n-particle

distribution functions. Formally, one can introduce the hierarchy of total
correlation functions starting from n = 1 and on. By definition

g(1)(r) ≡ 1. (A.4)

Thus, for n = 1 one has:

h(1)(r) = g(1)(r) = 1. (A.5)
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For n = 2:
h(2)(r1, r2) = g(2)(r1, r2) − 1 (A.6)

For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3) − g(2)(r1, r2)

−g(2)(r1, r3) − g(2)(r2, r3) + 2. (A.7)

For n = 4 :

h(4)(r1, r2, r3, r4) = g(4)(r1, r2, r3, r4) − g(3)(r1, r2, r3)

−g(3)(r1, r2, r4) − g(3)(r1, r3, r4) − g(3)(r2, r3, r4)

−g(2)(r1, r2)g(2)(r3, r4) − g(2)(r1, r3)g(2)(r2, r4)

−g(2)(r1, r4)g(2)(r2, r3)

+2(g(2)(r1, r2) + g(2)(r1, r3) + g(2)(r1, r4)

+g(2)(r2, r3) + g(2)(r2, r4) + g(2)(r3, r4))

−6. (A.8)

A.2. Expressed via g(n) and h(m<n)

The total correlation functions h(n) can be expressed via g(n) and h(m<n).
Such representation for total correlation functions h(3) and h(4) was used
in [26].

For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3) − h(2)(r1, r2)

−h(2)(r1, r3) − h(2)(r2, r3) − 1. (A.9)

For n = 4:

h(4)(r1, r2, r3, r4) = g(4)(r1, r2, r3, r4) − h(3)(r1, r2, r3)

−h(3)(r1, r2, r4) − h(3)(r1, r3, r4) − h(3)(r2, r3, r4)

−h(2)(r1, r2)h(2)(r3, r4) − h(2)(r1, r3)h(2)(r2, r4)

−h(2)(r1, r4)h(2)(r2, r3)

−h(2)(r1, r2) − h(2)(r1, r3) − h(2)(r1, r4)

−h(2)(r2, r3) − h(2)(r2, r4) − h(2)(r3, r4)

−1. (A.10)

From here it’s straightforward to express g(n) via h(m), where m ≤ n
(in [27] such expressions were presented for n ≤ 3).



38 Препринт

A.3. Expressed via g(n) through g(1)

For n = 2:

h(2)(r1, r2) = g(2)(r1, r2) − g(1)(r1)g(1)(r2) (A.11)

For n = 3:

h(3)(r1, r2, r3) = g(3)(r1, r2, r3) − g(2)(r1, r2)g(1)(r3)

−g(2)(r1, r3)g(1)(r2) − g(2)(r2, r3)g(1)(r1)

+2g(1)(r1)g(1)(r2)g(1)(r3). (A.12)

For n = 4 :

h(4)(r1, r2, r3, r4) =

= g(4)(r1, r2, r3, r4)

−g(3)(r1, r2, r3)g(1)(r4) − g(3)(r1, r2, r4)g(1)(r3)

−g(3)(r1, r3, r4)g(1)(r2) − g(3)(r2, r3, r4)g(1)(r1)

−g(2)(r1, r2)g(2)(r3, r4) − g(2)(r1, r3)g(2)(r2, r4)

−g(2)(r1, r4)g(2)(r2, r3)

+2[g(2)(r1, r2)g(1)(r3)g(1)(r4) + g(2)(r1, r3)g(1)(r2)g(1)(r4)

+g(2)(r1, r4)g(1)(r2)g(1)(r3) + g(2)(r2, r3)g(1)(r2)g(1)(r4)

+g(2)(r2, r4)g(1)(r1)g(1)(r3) + g(2)(r3, r4)g(1)(r1)g(1)(r2)]

−6g(1)(r1)g(1)(r2)g(1)(r3)g(1)(r4). (A.13)

Equivalent representations for n-point correlation functions were used
in [28] in research on galaxy clustering.

To simplify notation, let’s denote (r1, . . . , rn) = (1, . . . , n). And let’s
group similar terms under summation sings. Then h(3) and h(4) can be
rewritten as

h(3)(1, 2, 3) = g(3)(1, 2, 3) −
∑

l=

{

1,2,3
1,3,2
2,3,1

}

g(2)(l1, l2)g(1)(l3)

+2g(1)(1)g(1)(2)g(1)(3). (A.14)
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h(4)(1, 2, 3, 4) = g(4)(1, 2, 3, 4) −
∑

l=







1,2,3,4
1,2,4,3
1,3,4,2
2,3,4,1







g(3)(l1, l2, l3)g(1)(l4)

−
∑

l=

{

1,2,3,4
1,3,2,4
1,4,2,3

}

g(2)(l1, l2)g(2)(l3, l4)

+2
∑

l=



















1,2,3,4
1,3,2,4
1,4,2,3
2,3,1,4
2,4,1,3
3,4,1,2



















g(2)(l1, l2)g(1)(l3)g(1)(l4)

−6g(1)(1)g(1)(2)g(1)(3)g(1)(4). (A.15)

The sums extend over all distinct argument lists in which each point
appears exactly once. E.g. g(3)(1, 2, 3) and g(3)(3, 2, 1) are not considered
distinct, and terms such as g(2)(1, 2)g(2)(2, 3) do not appear [28].

A.4. Fourier components of total correlation functions

The following generic notation is used for the Fourier components of the
total correlation function:

ĥ(n)(k1, . . . ,kn) (A.16)

=

∫

exp(−ik1r1 − . . .− iknrn)h(n)(r1, . . . , rn)dr1 . . . drn

By properly selecting the origin, it can be shown that for a homogeneous
isotropic system:

g(n)(r1, . . . , rn) = g(n)(r1 − rn, . . . , rn−1 − rn) (A.17)

and applying a proper change of variables it can be written as:

g(n) = g(n)(r1, . . . , rn−1) (A.18)

Thus,
h(n)(r1, . . . , rn) ⇒ h(n)(r1, . . . , rn−1) (A.19)

It enables us to write the following expressions for the Fourier com-
ponents ĥ(n)(kn):

1

V
ĥ(n)(kn) = ĥ(n)(k1, . . . ,kn−1)δk1+...+kn (A.20)
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where

ĥ(n)(k1, . . . ,kn−1) (A.21)

=

∫

exp(−ik1r1 − . . .− ikn−1rn−1)h(n)(r1, . . . , rn−1)dr1 . . . drn−1

In particular, for n = 1:

ĥ(1)(k) =

∫

exp(−ikr)h(1)(r)dr =

∫

exp(−ikr)dr (A.22)

1

V
ĥ(1)(k) = δk (A.23)

For n = 2:
1

V
ĥ(2)(k1,k2) = ĥ(2)(k1)δk1+k2

(A.24)

A.5. Fourier transform of the radial correlation function for
the hard-spheres system

From [17] (see Eqs. (3)-(5) therein) an explicit expression for ĥ(2)(k)
can be calculated in the Percus-Yevick approximation. Figure 13 shows
the dependency of ĥ(2)(k)/σ3 on kσ. Figure 14 shows the dependency of

ĥ(2)(0)/σ3 on packing fraction η.

Figure 13. Fourier transform of the
total correlation function ĥ(2)(k)/σ3

as a function of kσ. 1 - η = 0.05, 2 -
η = 0.1, 3 - η = 0.15, and 4 - η = 0.2.

Figure 14. Fourier transform of
the total correlation function
ĥ(2)(k)/σ3 as a function of pack-
ing fraction η at k = 0
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A.6. Some recurrence relations for correlation functions

In this section, some recurrence relations for the total correlation func-
tions h(n) will be derived. Let’s use equations for the n-particle density
from [18] (Eq. (A7) therein):

∂ρ(n)

∂ρ

∣

∣

∣

∣

T

=

=
nρ(n) +

∫

{ρ(n+1)(r1, . . . , rn+1) − ρ(n)(r1, . . . , rn)ρ(1)(rn+1)}drn+1

(1/V )
∫

ρ(1)(r1)dr1 +
∫

{ρ(2)(r1, r2) − ρ(1)(r1)ρ(1)(r2)}dr1

which is rewritten in terms of the n-particle distribution functions as
(Eq. (A8) in [18])

∂(ρng(n))

∂ρ

∣

∣

∣

∣

T

= (A.25)

=
nρn−1g(n) + ρn

∫

{g(n+1)(r1, . . . , rn+1) − g(n)(r1, . . . , rn)}drn+1

1 + ρ
∫

{g2(r1, r2) − 1}dr1

First, consider n = 2 and rewrite (A.25) in terms of correlation func-
tions:

∂

∂ρ

(

ρ2h(2)(r1, r2) + ρ2
)

= (A.26)

=
2ρ(h(2)(r1, r2) + 1)

1 + ρĥ(2)(0)

+

∫ (

h(3)(r1, r2, r3) + h(2)(r1, r3) + h(2)(r2, r3)
)

dr3

1 + ρĥ(2)(0)

Then apply the following Fourier transformation to the above equation:

F2(. . . ) =

∫∫

e−ik1r1−ik2r2 . . . dr1dr2 (A.27)

As a result, after some algebraic manipulations, the following relations
between ĥ(3) and ĥ(2) are obtained:

ĥ(3)(k1,k2, 0) = 2ĥ(2)(0)ĥ(2)(k1,k2) +
∂ĥ(2)(k1,k2)

∂ρ
(1 + ρĥ(2)(0)),

ĥ(3)(k,−k) = 2ĥ(2)(0)ĥ(2)(k) +
∂ĥ(2)(k)

∂ρ
(1 + ρĥ(2)(0)). (A.28)
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Similarly, the relations between ĥ(4) and ĥ(3) are following:

ĥ(4)(k1,k2,k3, 0) = 3ĥ(2)(0)ĥ(3)(k1,k2,k3)

+
∂ĥ(3)(k1,k2,k3)

∂ρ
(1 + ρĥ(2)(0)),

ĥ(4)(k1,k2, 0) = 3ĥ(2)(0)ĥ(3)(k1,k2)

+
∂ĥ(3)(k1,k2)

∂ρ
(1 + ρĥ(2)(0)) (A.29)

The relations (4.18) and (4.19) for cumulants follow directly from (A.28)
and (A.29), respectively.

B. Cumulants calculation

For the sake of simplicity, in this Appendix we will omit the subscript
0 at the notation for averages, 〈. . . 〉0 ⇒ 〈. . . 〉, and also will understand
ΨN ≡ ΨN (rN ).

B.1. n = 1

M1(k) = 〈ρ̂k〉. (B.1)

〈ρ̂k〉 = Ξ−1
0

∞
∑

N=0

zN0
N !

∫ N
∑

j=1

exp(−ikrj) exp(−βΨN)drN

= Ξ−1
0

∞
∑

N=0

zN0
N !

∫

exp(−ikr′)
N
∑

j=1

δ(r′ − rj) exp(−βΨN)drNdr′

=

∫

exp(−ikr′)

〈

N
∑

j=1

δ(r′ − rj)

〉

dr′ (B.2)

It can be shown that (see Eq (2.5.11) and p.40 in [25])

〈

N
∑

j=1

δ(r′ − rj)

〉

= ρ(1)(r′) (B.3)

where ρ(1)(r) is the equilibrium singe-particle density.
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For a homogeneous system (uniform fluid):

ρ(1)(r) =
〈N〉
V

(B.4)

Thus

〈ρ̂k〉 =
〈N〉
V

∫

exp(−ikr′)dr′ = 〈N〉δk. (B.5)

M1(k) = 〈N〉δk. (B.6)

B.2. n = 2

M2(k1,k2) = 〈ρ̂k1
ρ̂k2

〉 − 〈ρ̂k1
〉〈ρ̂k2

〉. (B.7)

〈ρ̂k1
ρ̂k2

〉 =

= Ξ−1
0

∞
∑

N=0

zN0
N !

∫ N
∑

i=1

exp(−ik1ri)

N
∑

j=1

exp(−ik2rj) exp(−βΨN)drN

Let’s single out the term with i = j:

〈ρ̂k1
ρ̂k2

〉 = Ξ−1
0

∞
∑

N=0

zN0
N !

∫

[

N
∑

i=1

exp(−i(k1 + k2)ri)

+

N
∑

i=1

exp(−ik1ri)

N
∑

j=1

j 6=i

exp(−ik2rj)






exp(−βΨN)drN

The first term is 〈ρ̂k1+k2
〉 and thus is equal to 〈N〉δk1+k2

. Let’s rewrite
the second term via δ-functions:

〈ρ̂k1
ρ̂k2

〉 = 〈N〉δk1+k2

+ Ξ−1
0

∞
∑

N=0

zN0
N !

∫

e−ik1r
′

e−ik2r
′′

×
N
∑

i=1

N
∑

j=1

j 6=i

δ(r′ − ri)δ(r′′ − rj) exp(−βΨN)drNdr′dr′′

= 〈N〉δk1+k2

+

∫∫

e−ik1r
′

e−ik2r
′′

〈

N
∑

i=1

N
∑

j=1

j 6=i

δ(r′ − ri)δ(r′′ − rj)

〉

dr′dr′′
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From [25] (see Eq (2.5.13) and the last paragraph on p.40 therein) it
follows

〈

N
∑

i=1

δ(r′ − ri)
N
∑

j=1

j 6=i

δ(r′′ − rj)

〉

= ρ(2)(r′, r′′) (B.8)

where ρ(2)(r′, r′′) is the equilibrium 2-particle density, or just the pair
density

〈ρ̂k1
ρ̂k2

〉 = 〈N〉δk1+k2
+

∫∫

e−ik1r
′

e−ik2r
′′

ρ(2)(r′, r′′)dr′dr′′.(B.9)

Taking into account the definition (A.1) of the n-particle distribution
function g(n), and the relationship between ρ(n) and g(n) for a homoge-
neous system

ρ(n)(rn) = ρng(n)(rn) (B.10)

where ρ = 〈N〉/V is the particle density, one arrives at

〈ρ̂k1
ρ̂k2

〉 = 〈N〉δk1+k2
(B.11)

+ ρ2
∫∫

e−ik1r
′

e−ik2r
′′

g(2)(r′, r′′)dr′dr′′.

Here g(2)(r′, r′′) is called the pair distribution function. Taking into ac-
count the definition (A.3) for the pair (total) correlation function h(2),
one has

〈ρ̂k1
ρ̂k2

〉 = 〈N〉δk1+k2
+ ρ2

∫∫

e−ik1r
′

e−ik2r
′′

h(2)(r′, r′′)dr′dr′′

+
〈N〉2
V 2

∫∫

e−ik1r
′

e−ik2r
′′

dr′dr′′. (B.12)

The last term is equal to 〈N〉2δk1
δk2

. For isotropic system h(2)(r′, r′′) =
h(2)(|r′ − r

′′|), and the second term becomes

〈N〉2
V 2

∫∫

e−ik1r
′

e−ik2r
′′

dr′dr′′ =

∣

∣

∣

∣

∣

Change of variables:

r=r
′−r

′′; R=r
′′

r
′=R+r; r

′′=R

dr′dr′′=drdR

∣

∣

∣

∣

∣

=
〈N〉2
V 2

∫

exp(−i(k1 + k2)R)dR

∫

exp(−ik1r)h
(2)(r)dr

=
〈N〉2
V

ĥ(2)(k1)δk1+k2
= 〈N〉ρĥ(2)(k1)δk1+k2

. (B.13)

One arrives at the final expression for 〈ρ̂k1
ρ̂k2

〉:

〈ρ̂k1
ρ̂k2

〉 = 〈N〉δk1+k2
+ 〈N〉ρĥ(2)(k1)δk1+k2

+ 〈N〉2δk1
δk2

.

ICMP–23–01E 45

And for the cumulant M2 the final expression is

M2(k1,k2) = 〈N〉δk1+k2
(1 + ρĥ(2)(k1)) (B.14)

The quantity 1 + ρĥ(2)(k) is equal to the static structure factor of
the uniform fluid (see [25], Eq. (3.6.10)):

S(k) = 1 + ĥ(2)(k) (B.15)

M2(k1,k2) = 〈N〉δk1+k2
S(k1). (B.16)

The structure factor is related to the thermodynamic properties via the
following relationship (see Eqs. (2.6.12), (3.5.14), and (3.6.11) in [29]):

S(0) = 1 + ρĥ(2)(0) = ρχT /β =
〈N2〉 − 〈N〉2

〈N〉 , (B.17)

where χT is the isothermal compressibility. Thus for k1 = k2 = 0:

M2(0, 0) = 〈N2〉 − 〈N〉2 (B.18)

C. A method of calculation for cumulants at ki = 0

It follows from (3.7) and (3.4), that

Mn(0, . . . , 0) =
1

(−i2π)n
∂n ln〈exp(−i2π

∑

k
ωkρ̂k)〉0

∂ωn
0

∣

∣

∣

∣

ωki
=0

=
∂n ln Ξ0

∂(βµ0)n
=

∂n−1〈N〉0
∂(βµ0)n−1

=
∂n−1M1(0)

∂(βµ0)n−1

=
∂Mn−1(0, . . . , 0)

∂(βµ0)
. (C.1)

Then from (2.33) one derives

∂〈N〉0
∂(βµ0)

= 〈N2〉0 − 〈N〉20, (C.2)

∂〈N2〉0
∂(βµ0)

= 〈N3〉0 − 〈N2〉0〈N〉0, (C.3)

∂〈N3〉0
∂(βµ0)

= 〈N4〉0 − 〈N3〉0〈N〉0, (C.4)
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and so on, to give in general:

∂〈Nn〉0
∂(βµ0)

= 〈Nn+1〉0 − 〈Nn〉0〈N〉0. (C.5)

Thus the equation for M2(0, 0) is obtained immediately

M2(0, 0) =
∂〈N〉0
∂(βµ0)

= 〈N2〉0 − 〈N〉20

= 〈(N − 〈N〉0)2〉0. (C.6)

Explicit calculation for M3(0, 0, 0) leads to

M3(0, 0, 0) =
∂

∂(βµ0)

(

〈N2〉0 − 〈N〉20
)

= 〈(N − 〈N〉0)3〉0. (C.7)

And for M4(0, 0, 0, 0) :

M4(0, 0, 0, 0) =
∂

∂(βµ0)

(

〈N3〉0 − 3〈N2〉0〈N〉0 + 2〈N〉30
)

= 〈(N − 〈N〉0)4〉0 − 3〈(N − 〈N〉0)2〉20. (C.8)
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D. Notation

The list of notations used throughout the work follows.
r - the coordinate in three-dimensional space;
r ≡ |r| - the absolute value of r.
k - the wave vector in the reciprocal space.
k ≡ |k| - the absolute value of the wave vector k.
δ(...) - the Dirac’s δ-function.
δ... - the Kronecker’s δ-symbol.
V - the volume.
N - the number of particles.
ρ - the particle density.
η - the packing fraction.
n(r) - the microscopic particle density.
ρ̂k - the Fourier component of the microscopic particle density.
ρk, ρ0 - the collective variables.
Ξ - the grand partition function.
z - the activity.
µ - the chemical potential.
Ξ0, z0, µ0 - the grand partition function, activity, and chemical po-

tential of the reference system, respectively.
ZN - the configuration integral.
β - the inverse temperature.
Λ - the de Broglie thermal wavelength.
ρ(n)(rn) - the equilibrium n-particle density.
g(n)(rn) - the n-particle distribution function.
h(n)(rn) - the n-particle total correlation function.

ĥ(n)(kn) - the Fourier component of the n-particle total correlation
function.

U(rij) - the full pairwise interaction potential between two particles
i and j at distance rij .

UN (rN ), UN - the potential energy of the interparticle interaction.
Ψ(rij) - the repulsive part of the full interaction potential.
ΨN (rN ), ΨN - the potential energy of the short-range repulsive in-

teraction.
Φ(rij) - the attractive part of the full interaction potential.
ΦN (rN ), ΦN - the potential energy of the long-range attractive in-

teraction.
σ - the hard-sphere diameter.
J(ρ− ρ̂) - the Jacobian for tranformation from ρ̂k to ρk.
ωk, ω0 - the variables conjugate to collective variables ρk, ρ0.
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Mn(kn), mn(kn−1) - the cumulants (semi-invariants).
J(ρ) - the Jacobian J(ρ− ρ̂) averaged over the reference system.
J̃(ω) - the part of Jacobian J(ρ) dependent on ωk.

Abbreviations

The following abbreviations were used throughout the work.
GPF - Grand Partition Function.
HS - Hard Spheres.
MF - Mean Field.
RS - Reference System.
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