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Amwnoraitisi. B poboTi mocaimoBHO IpeacTaBIeHO METOJ, KOJEKTUBHIX
3MIHHAX 3 CHCTEMOIO BIIJIIKy [UIsi KJIACHYIHOI CHCTEMH 0ararbox
B3a€MO/III0YNX YACTUHOK y BEJUKOMY KaHOHIYHOMY aHcamOji. OcHOBHA
yBara IpuJijeHa JeTajsM OOYUCIeHb. 30KpeMa, BUKOPUCTAHHS
MMOBHUX KOPEJANHNX (DYHKIIH 03HAUEHUX JIjIs BEJIUKOTO KAHOHITHOTO
aHcaMOJII0  JIO3BOJIMJIO JETAJBHO JIOCTIIUTA KyMYJISHTH BEJIHKOL
cratucTudHol cymu cucrtemu Bimiky. [lokazamo, 1o Oyab-sikuit
KyMysssHT O, MOXKHA TPEACTABUTU K JOOYTOK TPHOX KOMIIOHEHT:
CEpPeHBOr0 4YHCJIa YACTUHOK CHCTeMH Bi/uiiky, cumBosl Kponekepa n
XBHJIBOBUX BEKTOPIB, i N-4aCTUHKOBOTO CTPYKTYPHOIO (haKTOopa.

OrpumMano (QyHKI[OHAJIBHUNA BUPa3 Jjis BEJUKOIT CTATHCHUYHOI CyMU
B SKOMY BCI BEJIMYMHU TPEJICTaBJeHI B gBHOMY BUIIAAl. Pozpaxosami
KOODIMHATY KPUTUIHOI TOYKN B HAOJIMKEHHI CEPEIHBOTO TIOJISI.

Grand partition function functional for simple fluids
LR. Yukhnovskii, R.V. Romanik

Abstract. In this paper, we will systematically present the method of
collective variables with a reference system for a classical many-particle
interacting system in the grand canonical ensemble. The emphasis will
be placed on the details of calculations. In particular, the usage of total
correlation functions defined for the grand canonical ensemble allows
us to investigate very accurately the cumulants of the grand partition
function for the reference system. It is shown that any cumulant 2,
can be expressed as a product of three components: the average particle
number within the reference system, a Kronecker’s symbol for n wave
vectors, and the n-particle structure factor.

The functional expression for the grand partition function is derived,
with all coefficients explicitly defined. The coordinates of the critical
point are computed in the mean field approximation.
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1. Introduction

The method of collective variables (CV) was developed in [11[2], and ap-
plied to description of classical equilibrium systems [3] and phase transi-
tions of the second order [4]. A more thorough review of results achieved
with the method is presented in [5]. The method was then extended
to describe the system of interacting particles in the grand canonical
ensemble. For simple fluids, the noticeable works are [6HS]. For many-
component systems see [9[I0]. The concept of a reference system (RS)
was used along with the CV method. The interaction between particles
was arbitrary divided into short-range repulsive and long-range attrac-
tive parts. The short-range repulsive part was usually considered as the
reference system. In the current work we systematically introduce the
collective variables in the grand canonical ensemble. We would like to
emphasize the following distinguishable points of this work.

e The factor of 1/v/'N is not used in the expressions for the Fourier
components of the microscopic particle density, which somewhat

simplifies the summation over N in the grand partition function
(GPF).

e We use total correlation functions defined in the grand canonical
ensemble which makes the expressions for cumulants of the refer-
ence system grand partition function much simpler compared to
ones obtained in [7,[8]. This also helps avoid complications related
to explicitly performing thermodynamic limit in those expressions.

e The theory is presented in such a way that the reference system is
not specified in general but is chosen as a hard-sphere system only
to obtain numerical results for some quantities.

We obtain an explicit functional expression for the GPF of the clas-
sical many-particle interacting system with all coefficients known. The
obtained expression is analogous to the one obtained in [7] except the co-
efficients are revisited using more modern definitions for total correlation
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functions. Some properties of these correlation functions are additionally
investigated in Appendix [Al We conclude the work with calculation of
the critical point coordinates in the mean-field (MF) approximation. The
obtained value for the packing fraction is the same as was obtained in [§],
thus showing that for this quantity a higher approach still needs to be
developed. The obtained value for the critical temperature is higher that
the corresponding value reported in [8], since the latter was obtained in
a non-MF approximation. Finally, the critical value calculated for the
excess chemical potential is published for the first time.

2. Problem statement

Consider a classical system of identical particles interacting via a pairwise
additive potential U(|r|), where r is the distance in the three-dimensional
space. There are two assumptions made regarding the interaction be-
tween particles. First, the interaction can be decomposed into two parts

Ul(rij) = ¥(rij) + ®(r4j), (2.1)

where W(r;;) is responsible for the repulsion between particles - denoted
by i and j - at short distances, and ®(r;;) for the attraction at long
distances, 7;; = |r; — r;|. Second, that the attraction part of the poten-
tial possesses a well-behaved Fourier transform. For more details on the
interaction potential, see Section 2.1}

A physical observable dependent on the particle coordinates is, in
general, a functional of the microscopic particle density defined as

N

n(r) = Zé(r —rj), (2.2)

Jj=1

where r; is the coordinate of the j-th particle, NV is the number of parti-
cles in the system, 4(...) is the Dirac’s d-function. The quantity n(r) can
be represented in the form of a Fourier series:

n(r) = % > ™, (2.3)
k

where ) = >, Zky Dok ki = %ni, i=x,y,2,n; =0, £1,£2,....
V is the system volume, so that

/V n(r)dr = N.
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The Fourier component py is of the form:
N

p =y _exp(—ikr;), pr=o = N. (2.4)

j=1
Alternatively,
P = 5 — id
e N s N .
p = N costkrs), i = 0, sin(ke) (2.5)

Let the system be open. The probability that an open system contains
exactly N particles is given by:

p(N) = = 4N (2.6)
Here Z is the grand partition function (GPF) of the system:
o N
_ z
N=0
where z is the activity:
exp(Bu)

with 8 being the inverse temperature, and p the chemical potential,
A = (27Bh?/m)"/? the de Broglie thermal wavelength, % the Planck’s
constant, m the mass of a particle.

Zn is the configuration integral:

In = /exp(—ﬂUN(rl, oy ry))drY (2.9)

where Uy is the potential energy of interparticle interaction, and the
following notation is understood dr’ =dr; ...dry.

Given the GPF, all the thermodynamic properties of the system can
be obtained.

2.1. Potential energy of interparticle interaction

Based on the assumption made in (2.IJ), the potential energy of the
interparticle interaction can be written in the form:

UN(I‘N) = \I/N(PN)+(I)N(PN)
N

_ %Z S () + %Z So(y)  (210)

i=1j=1 i=1 j=1
i#j i#]
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where the following notation is introduced r™¥ =ry,...,ry. Here

1 N N
Uy = 52 Z\If(rij) (2.11)
=1 j=1
i#]

is the potential energy of the short-range repulsive interaction, and

(N
by = 52 Z@(mj) (2.12)
=1 j=1
i
is the long-range attractive counterpart.
One approach to separation the long- and short-range interaction is
to choose ¥(r) as the hard-sphere (HS) potential

oo, r<o,
\I’(r)={ 0. r>o (2.13)

where o denotes the hard-sphere diameter.
Then ®(r) can be chosen so that it possesses a potential well at r > o,
e.g.
0, r<o
(I)(T) - { U]WOT‘SE(T)7 r>o, (214)

using the Morse potential

Untorse(r) = e{exp{[=2(r — Ro)/a]} — 2exp{[—(r — Ro)/al}} (2.15)

with e being the characteristic energy of the potential, Ry the coordinate
ot the minimum, and « the effective range of action. In what follows,
we develop a general approach to deal with the system of interacting
particles. Particular forms of the reference system and attractive part of
the potential are chosen to obtain some numerical and graphical results.
In general we assume that the attractive part of the interaction po-
tential possesses a well behaved Fourier component dy such that:

1 £ _ikr 1 T _ikr
d(r) = Van(ek = W/dk@ke kr (2.16)
k

and
Py = /@(r)e_ikrdr. (2.17)
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In such a case, the potential energy of the attractive interaction can be
written in terms of py:

N 1 N N
On(r?) = §ZZ‘P(W)

i=1 j=1

z‘;éj

- g k)

=1 j= 1
i#]

1 - N -
= — Py pxp-k — — Py. 2.18
2Vzk: KPKOk 2Vzk: k (2.18)
Note, that in our approach we put ®(0) = 0, see (ZI4), thus

1 . 1 .
72 oo = & Y bk =(0) =0
k k

and the second term for ®, vanishes

(I)N(I‘N) = Z(i)kﬁkﬁ_k. (2.19)
k

2.2. The Grand Partition Function with a reference system sin-
gled out
The GPF is now written as
X eBuN

NIASN
=0

(1]
|

/exp(—B\I/N(rN) — BeN(x™))dr". (2.20)

Let’s consider a system characterized only by the repulsive part of the
interaction potential as a reference system (RS). The GPF for the RS
system is

— = 1 exp(BuoN)
o = NN exp(—B¥ N (r"N))dr" (2.21)
N=0
where p is the RS chemical potential. Now, the GPF is expressed as

- exp ﬂuoN
= = “OZ T NIASN

X/exp(—ﬁj’N(r )

—0

exp(B(n — po) N — B (™)) dr?.
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Taking into account (ZI9) and (24)), the second exponent under the
integral can be expressed in terms of py:

. 1 L
exp(B(p — po)N — BN (rY)) = exp (hpo —3 Z Oé(k)PkPk> :
k
(2.22)
Here the following notations were introduced:
Bdi

el (2.23)

h=B(n—po); ak) =

Let’s define the set of collective variables px = pi — ipy, via the
following expressions:

b = [ eidlo ap).
b = [ rdte- )

po = [ o0Io-p)dn) =N (2.24)
Here ,
J(p = p) = d(po — po) [ [ 6(rk — A%)S(pi — A2, (2.25)
k
(dp) = dpo | [ dpidpi. (226)
k

The ’prime’ sign over the product means that the wave-vector takes on
values only from the upper semi-space of the reciprocal space, i.e. k, > 0,
and k # 0.

The collective variables py possess the following properties:

P—k =Pk Pk =Pl Pk =Pl (2.27)
Equations (2Z:24]) can be written in a more concise form
Px = /PkJ(p — p)(dp). (2.28)

Valid is also a more general equality

o) = / F(pi) (0 — P)(dp), (2.20)
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where f is some function of py. Applied to [2:22)), it leads

exp(B(p — po)N — BN (rV)) = exp (hﬁo —~ % > a(k)ﬁkﬁ_k>
k
= /GXP (hpo - % Z Oé(k)PkPk> J(px — px)(dp). (2.30)
k

And for the GPF one has:

=—5, / exp<hpo—§§a< Prep— k> 3(p)(dp) (2.31)

where the Jacobian function is defined as

Jp) = = N'/exp(—B\IJN(rN))J(p—ﬁ)drN

Zo 520
= (J(p—0))rs- (2.32)

Here zg = exp (Buo / A3) is the activity of the reference system, and the
average value over the reference system is defined as

(- RS_:O_IZ N|/exp —BUN(N)) ... dr?. (2.33)

3. The Jacobian of transformation

Let’s rewrite the expression for the Jacobian (Z32)) using the integral
representation for J-functions:

5(po — o) [T 80k — )5 (oi, — i) = / exp <2mz<pk - mm) (dw),
k k

where wy is a variable conjugate to pk

1 .
wk = §(wﬁ +iwy), (3.1)

!/
(dw) = dwg H dwy dwy,.. (3.2)
k
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The Jacobian can now be expressed as

e P\

Ip) = Ei o X
N=0
X /exp (—B\I/N(rN) +i27 Z(pk - ﬁk)wk> (dw)dr™
K
= /exp <i2w2pkwk>§(w)(dw) (3.3)
k

where the following notation is introduced

\;S Z Nl/exp( BYN(r _127Tzk:wkﬁk>drN. (3.4)

The expression for 3 (w) can be expanded into a cumulant series to give

[I]|

‘;5 = exp Z D, ( (3.5)
n>1
where
(—i2m)"™
D, (w) = n! Z m, (k17 akn)wkl Wk, (3 6)
ki,....kn

The cumulants 9,, are calculated by the following formula:

Mok, ) = — <8nln‘;’(“’)> (3.7)
k, =0

(—i2m)" \ Owy, ...0w,

7

The calculation of the cumulants 9%, is the objective of the next Sec-
tion [l
The Jacobian J(p) is now expressed as

Jlp) = /exp 127TZ PrWik + Z Dy ( (dw)
n>1
= /exp <i2ﬂ'2pkwk+

k

—i2m)"
+Z Z M, (ka, .. Ky )wk, - wk, (dw)

n>1 ! Ki,....kn
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The partition function is now written as

1
E=5 /exp [hpo B Z a(k)prp—x (3.8)

X exp <i27r Z Wk P+

k

+ZM Z My (ks Kn)wig - wie, | (dw)(dp)

n!
n>1 ki,....kn

4. Cumulants

4.1. Calculation of cumulants

Let’s calculate 9, (ky,...,k,) based on Eqs. (B7), (34). To simplify
notation for the average value defined in (2:33)), the subscript 0 will be
used to indicate RS

(o= (- ns

For the first cumulant one gets:

1 dlnJ(w)

M%) = iam)  d,

For the second cumulant:

1 nJ(w)

M (ki ka) = (—i27)2 Owy, Owx,

= (D1 Pk2)0 — (Pk1 )0 Pk )0

u)ki =0

Continuing this procedure, for the next cumulants one gets:

S)ﬁfﬁ’(klvk%k3) = <[)k1[)k2/3k3>0 (42)
= > b, Py )0, o
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Ma(ky, ko, k3, ka) = (P, PisPis ks )0
= D (i ot o

T
——
D =
(RNE
NN
o
N——

<ﬁkzl ﬁkz2 >0<ﬁk13 ﬁkz4 )o

- I
—N
=
N M
vt
[RENIS
——

&
Ao

(P, P, )0{Pes )0 (Pres )0

[CYR RN

%ﬁk2 )0{Pxs)0(Prs)o (4.3)

The expressions in the right-hand sides of [@I))-([3) can be called cu-
mulant averages of pg, since they remind formulae for cumulants ex-
pressed via non-central moments. In other words, if (px, ...pk,) are
considered non-central moments (of a probability distribution), then
M, (ki,...,k,) can be considered as cumulants (semi-invariants) and
the relationships between them are known [I1].

As per our knowledge, the generic expression for cumulant average
is not found so far, however, 9,, can be derived for any n based on
generating functional In J(w) by virtue of (&7).

4.2. Cumulants 21, (k™) expressed via Fourier components of
the total correlation functions h(") (k")

In this subsection, explicit expressions for cumulants 9, are presented
in terms of the Fourier components of total correlation functions R
See Appendix [A] for the definition and some properties of total correla-
tion functions. The calculation of the first two cumulants is presented in
details in Appendix [Bl

My (k) = ph') (k) = (V)b (4.4)

Mo(ki, ko) = phM(ky +ka) + p2h? (ki, ko)
(N)o0k, 41, (1 + ph® (ky)). (4.5)
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mg(kl, kQ, kg) = pil(l)(kl + kQ + kg)
+ p2 Z 3(2) (kll + kl2 3 kl%)
1,2,3
12{173,2}
2,3,1
+ Pgﬂ(g) (k17 k27 k3)
= (N)odic tieaiea | 1+ (AP (k1) + 2 (k) + 5 (k1 + K2)))

+p2ﬁ(3)(k1,k2)} . (46)

9ﬁ4(k1, e ,k4) = piL(l)(kl + ...+ k4)
h® (ki, + ki, + ki, ki)

_|_
bl\.’)
SN

[
o oiviv
NN
o
———t

}AL(2) (kll + klz ) kl3 + kl4)

_|_
bl\.’)
i &

™o o

T
—N
=
QO
——

}Al(g) (kll + kl2 ) kls ) kl4)

+
boa
g

B bo Wi
=== NN W
DN QO QO

W N ==

+p4ltl’(4)(k17" '7k4); (47)
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The expression in the square brackets next to the J-function for
M4 (k™) can be also written in a form where it depends only on ki, ko, k3,
but does not depend on k4. Let’s write for 94:

My(k, ..., ka) = (N)oOk; +ko+ks+ksMa(ki, ko, ka) (4.8)
Then

my(ki, ko, k3) =1

3
+ p( S P&+ DY APk, + ki) + 5P (kg + ke + kg))

=1 {
+ P2 ( Z }Al(g) (kll 5 klz) + Z 6(3) (kll + klz ) kl%))
l:{%:g}
2,3
+ p*h M (k1, ko, ks) (4.9)

This should be true for any n: a cumulant 9%, can be written in such
a way, that dependence on k, will be present only in dx,+. tx,, and
other part, let’s denote it by m,, will depend only on k;,...,k,_1, or
m, =m, (k" 1)

M (k™) = (N0 +... 41, M (K" 7). (4.10)
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A few first m,, are expressed via total correlation functions h(™ as follows:

my = 1. (4.11)
my(k) = 1+ ph? (k). (4.12)

my(ki, ko) = 14 p(h@ (k1) +h? (ko) + 1P (ki + ko))
+02h®) (k1 ky) (4.13)

and the expression for my is given by ([@3). It is seen from ({I2) that
ma(k) is the structure factor (see e.g Eq. (3.6.10) in [12]). By analogy,
m,, can be considered as the n-particle structure factor.

Expressions (£4)-(@7) for cumulants obtained in this work can be
compared with corresponding expressions presented in other works. In [§]
(see Appendix B therein), and in [13] (see Eq. (3.7) therein), the expres-
sions for My through M, were presented in a similar form, but different
permutations of wave-vector values were not accounted for. For example,
it was considered that h(® (ki) + A (ky) + h® (ky + ks) = 303 (ky).
In [6] (see Egs. (2.6), (2.10), and (2.11) therein), the expressions for
M., (k™) were presented in a more complicated form, possibly due to the
fact that correlation functions were defined in the canonical ensemble.

In [9] the expressions analogous to ({4)- (1) were written for cumu-
lants of multicomponent system.

There are a few interesting properties to note about general expres-
sion for m,. First, that the number of all terms contributing to m, is
equal to the Bell number B,, [14,[15]. Second, if the terms are grouped
by the powers in p then the number of terms at the k-th power in p is
the Stirling number of the second kind S(n, k) [14}16].

4.3. Explicit expressions for cumulants as functions of wave-
vector and packing fraction

To start with, one can use an explicit equation for the structure factor
of hard-spheres system. For example, let’s use Eq. (3) from [I7] for the
structure factor as a function of wave-vector and packing fraction 7 in
the Percus-Yevick approximation

gﬁg(k, —k)/<N>0 = mg(k), (414)
ma(k) = (1 pe(k)) ™, (4.15)
where ¢(k) is the Fourier component of the direct correlation function:

in(sk
o2 sin(sko)

1
c(k) = —47703/ dss (A4 Bs + Cs®) (4.16)
0
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The parameters A, B, and C are functions of 7:

A= (1+42n)*/(1-n)*
B =—6n(1+n/2)%/(1—-n)*
C = (1/2)n(1 +2n)*/(1 —n)*. (4.17)

In Figure [l m, is shown as a function of k - o at different values of 1. In
Figure Bl my is shown as a function of n at k£ = 0.

1.09 m2

0.84
0.74
0.6
0.59
0.4

0.3

0.2+

0.1+

Figure 1. Cumulant ms as a function
of ko at different values of packing
fractionn. 1 - n =0.05,2-n=0.1,
3-171=0.15,and 4 - n =0.2.

Figure 2. Cumulant ms as a func-
tion of packing fraction n at k =
0

The formulas for M3(k, —k,0) and My (k,—k,0,0) can be obtained
from My (k, —k) based on the recurrence relations for n-particle distri-
bution functions g, found in [I8] (see Eq. (A8) therein). Such formulas
were obtained in [8] (see Appendix B therein) and in our notation they
read:

malie, k) = ma(0) [mafi) + 72 (1.18)
ma(k,—k,0) = ma(0) {mg(/{)mg(o) + 3yms(0) 6n:92n(k)
Fma (k) 811*(;277(0) o 611(19277(0) 611;;277(/{)
2
+n2m2(0)827;§k)] (4.19)
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07
0.6
0.5
04
03] 7
0.2

0.1

0

-0.1

Figure 3. Cumulant m3 as a function
of ko at different values of packing
fraction n. 1 - n =0.05, 2 - n = 0.1,

3-1n1=0.15,and 4-n=0.2.

Figure 5. Cumulant my as a function
of ko at different values of packing
fraction n. 1 - n =0.05, 2 - n = 0.1,

3-n=0.15,and 4 - n =0.2.

0.8+

0.6

0.44

0.2

01 U 03 04 05 06 07

Figure 4. Cumulant m3 as a func-
tion of packing fraction i at k =
0

0.8
0.6
044

0.2

Figure 6. Cumulant my as a func-
tion of packing fraction n7 at k =
0
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In Figure Bl ms is shown as a function of k - o at different values of
7. In Figure [ m3 is shown as a function of n at k = 0. In Figure Bl my
is shown as a function of k - o at different values of 7. In Figure [6l m4 is
shown as a function of n at k = 0.

4.4. Cumulants at k; =0

At k; = 0 cumulants are expressed via the average number of particles
in the reference system. Here the final expressions are presented. They
are obtained directly from (LI)-(E3]) by substituting k; = 0 and using
po = N. Some alternative methods to calculate them are presented in
Appendix [C]

M1 (0) = (N)o; (4.20)

M2(0,0) = (N?)o — (N)§ = (N — (N)0)?)o; (4.21)
M3(0,0,0) = (N3 —3(N?)o(N)o+ 2(N)3

= (N = {(N))*)o; (4.22)

M4 (0,0,0,0) (NY)o — 4(N3)o(N) + 12(N?)o(N)2
—3(N?)§ — 6(N)g

= ((N=(N)o)*o = 3((N = (N)o)*)5.  (4.23)

4.5. Cumulants as functions of packing fraction for the hard-
spheres system

For the system of hard spheres the cumulants m,, can be found explicitly
as functions of the packing fraction n based on a given equation of state

PV

NET f(m) (4.24)

where f(n) is a function of the packing fraction only. The structure factor
at zero wave-vector value is found via

my = S(0) = kT (g—lﬂ)T. (4.25)

From here one has ) ()
— = f() + 5L

-~ 3 (4.26)
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For example, in [I3], the following expressions were obtained based on
the equation of state by Carnahan and Starling [I9] for HS:

(1—n*
(1+2n)2 —4n3 +n*’

mo =

(1 —n)"(1 =59 —20n% — 41 + 5n* — n°)
((1+2n)2 —4n® +n*)? ’

m3 =

my = (1—n)'1 —26m — 359% + 408> + 758" + 28,° —
—114n5 — 4007 4 370% — 100° + %) ((1 + 21)? — 4n® + n*)~°.

Note that here the signs for the term 473 in mz and for 40873 in m, were
corrected.

5. Grand partition function in the representation of
collective variables

The grand partition partition function is now written as

- - 1
== :O/exp [hpo —5 ; a(k)pxp—x (5.1)

X exp <i2ﬂ' Z Wk Pk

k
—i2m)"
+Z% Z mn(klv"'vkn)wkl...wkn
n>1 ki,....kn
% (dw)(dp)

This expression was obtained in [7] (see Eq.(2.16) therein).

The next step in calculation is to integrate over wy with k > B. This
integration can be performed with Gaussian measure, i.e. the expressions
in the exponent is restricted to the powers of w not higher than 2. Let
us denote the result of this integration by Zg. Then the grand partition
function takes the form:

[1]
[1]

0EGEL (5.2)

Here =, denotes long-wave contributions to the GPF and is the object of
our further investigation in this paper. The expression for =y, is following
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(see also Eq.(3.5) in [7]):

— 1
B = /exp hpo — B Z a(k)prp—x (5.3)

+ ZM Z E)itn(kl,...,kn)wkl CoaWk,

Here 95?,1 denote renormalized cumulants 9, due to integration over
k > B, and

(dw)V2 (dp)N? = | ] dwidpdwidps | dwodpo (5.4)
k
k<B

In the approximation of the 4th basic measure density, Z; is ex-
pressed as:

1
=L = / (1 + D4+ §Dz +.. ) Wa(p;w)(dp)NE (dw)™", (5.5)
where the measure density Wy(p;w) is

1

Wa(p;w) = exp § hpo — 3 Z a(k)pxp—x + 27 Z wWkPk+

k k
k<B k<B

L (—i2n) -
FY = N Mk, kWi Wi, (5.6)

Dy = Z ﬂ Z f,fnn(kl, ceey km)Wkl s Wk, (57)
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The quantity Np is the number of variables to be integrated over.
It is equal to the number of values that the wave vector takes on in the
sphere of radius B in reciprocal space. Let’s assume that the wave-vector
values are distributed uniformly, then

B3

No =5

(5.8)
To derive this equation, consider the following arguments. If we had a
simple cubic lattice of spacing ¢ in real space, the first Brillouin zone of
it would be a simple cubic lattice in the reciprocal space with spacing
2B’, where B’ = w/c. The number of values taken by wave vector in this
zone would be Ng = V/c® = V(B’/m)3. Under our assumption, the wave
vector values are distributed uniformly. Hence, the sphere of volume 2
in reciprocal space must contain the same number of wave vector values
as a cube of the same volume Q. Since Q = (2B’)* = 37B%, one finds
that B> = ZB% and, therefore, arrives at Eq. (5.8).

In the current investigation the following approximations are to be
applied.

Approximation 1. Dy is neglected in the expression (5.5) for Zp;

Approzimation 2. The difference between renormalized values of cu-
mulants 9, and original cumulants 91, is ignored, so that:

My, (k™) ~ M, (k™) (5.9)

Approximation 3. The dependence of cumulants 9%, on the wave
vectors k; is neglected, except for the dependence via d-functions

fmn(k") ~ Wn(On)(Slirerkn (510)

where the following notation is used for simplicity: k™ = ky,..., k.
With these approximations applied, one arrives at the following ex-
pressions:

=1 = [ Walpie)(de) ¥ (d)™, (5.11)
and
1 .
Wy(p;w) = exp{ hpo— 3 Z a(k)pxp—x +i27 Z Wk Pk (5.12)
k;B k;B
L (—i2m)n
+> o M (07) > Gkt Wi - Wi,
n=1 : K1, kn,
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See also Egs. (3.12), (3.13) in [7].

The expression [5.12] for the 4-th measure density contains non-zero
terms in all powers of w up to 4. Let’s eliminate the coefficient next to the
3-rd power in w. For this, the following change of variables is performed:

M3
/
= — 5.13
“o = w0t T, (5.13)
From now on, we will understand 9t,, as 9,,(0™) where it is not ambigu-
ous. One should remember that 9, are still dependent on the packing
fraction 7. The 4-th measure density Wy (p;w) takes the form:

Wy(p;w) = exp {9ﬁ0+(h+93?3/9ﬁ4)p0

1 oo
—3 Z a(k)prp—x — 127Miwo+

k
k<B
. —i2m)? -
+i27 Z wkpk + %Dﬁg Z WKW_k
k;B k;B
(—i2m)?
+T9ﬁ4 Z 6k1+,,,+k4wk1 .. .wk4 (5.14)
' Mgt
with MM M MZ M
My = ——— 2 205 8 5.15
’ my 23 8y (5:15)
~ MMs M3
My =My — , 5.16
! Yo, 32 (5.16)
- M2
My = My — 2—9354 (5.17)

In (5I4) the prime at wp is omitted.
We also want to eliminate the term at wgy. This is achieved by the
change of variables

po = py+ M. (5.18)
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The expression for Wy (p;w) becomes
- . 1
Wa(p;w) = exp Mo+ p*po — 3 > alk)pep-x (5.19)
k;B
. —i2m)? <
+12m Z wk Pk + ( o1 ) N, Z WkW_k
k;B k;B
(—i2m)*
+ 0 Ny Z 5k1+,,,+k4wkl coL Wiy
: ki,..., ky
k;<B
with 0
Mo = Mo + (b + Mz /MM, — %zﬁti (5.20)
w* = h+Mz/My + a(0)M, (5.21)

In (B19) the prime at pg is omitted.

We can compare the expression (5I9) with Eq. (3.14) from [7],
Eq. (12) from [8], and Eq. (3.5) from [20].

Table 1. The zero values of the cumulant 9t,. M, < 0 for Ny, < n <

Tmax-

Approximation

Tmin Tlmax
Percus-Yevick, compressibility equation [2I] | 0.037346 | 0.221675
Percus-Yevick, virial equation [22] 0.037673 | 0.233899
Carnahan-Starling [19] 0.037455 | 0.225572
Ree-Hoower [23] 0.037423 | 0.224260

The first thing to note in Eq. (&.19) is that the integral for =y, in (5.11))
converges only for My < 0. The values of My are negative only in some
range of 7. Table [[] summarizes numerical solutions for the equation
M, = 0 in a few approximations. Thus one can conclude that the 4-th
measure density Wy (p;w) is applicable only in this range of packing frac-
tion 7. We are going to work in range 0.04 < n < 0.22. The dependence
of my = My /(N ) on n is presented in Figure [7]
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0.05 4

-0.05+

-0.104

Figure 7. Cumulant my = 94 /(N )¢ as a function of packing fraction n at
k; = 0. In this Figure the range of negative values for my is emphasized.

5.1. Integration over w.

Let’s perform integration over w in (G.I1)), using (BI9) for Wy(p;w).
First let’s single out the integral over w

. (—i27)? -
J(p) = exp | i2m Z wkpk + Mo Z WKW _x
k k

2!
k<B k<B
(—2277)4 Ng
+ 41 My Z 6k1+...+k4wk1 e Wky (dw)
' ky,.... kg
k; <B

To factorize this integral, perform the following change of variables

- 1 —ikl = L ikl
o = E wxe X o= E pre . (5.22)
vVNp - vVNp ”
k<B

k<B

The following relations are valid:

> ap = NLB SN we > e TN =N ", (5.23)
1 1 kK K
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G =) wrw i, (5.24)

NB Z(:Jfl = Z 5k1+___+k4wk1 cee WKy (525)

where the following expression for the Kronecker’s -symbol is used:

1 E : —ikl
= — 1 . 2
Ox Np l (S (5 6)

The sum over 1 should be understood as running over Np values in real
space corresponding to the wave-vector values k, k < B.
The element of integration is changed as following:

/
dwo ] dwides =5[] dan (5.27)
k 1

k<B

where j is the Jacobian of transition from wy to @;.

Since the approximation of the 4-th measure density is applicable
only when 901, is negative, we will write the following expressions using
the absolute value of this cumulant. Thus, the factorized expression for
the integral over w is

) - 2m)? o 2m)* B R
J(p) —JH/GXP<127TWIPI— ( 2) 93?26012 - ( 4) NB|9ﬁ4|wfl)dw1.
1

If we denote the integral as

- o~ 2m)2 - 27)4
J(p) = /exp(l?mulpl - ( 2) 9)124;.)12 - (27)

4!

NB|mt4|@;*>dal (5.28)
then the result of integration can be presented in the following form

. a an -
Jp)=j[Jeexp| =D~ (5.29)
1 !

n>1

where coefficients a,, are found by the following formulae

n = — (Lﬁ(f’l)) . (5.30)
apl =0
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First, let’s calculate e®°

~ oo 2 2 2 4
Q(DM, My) = €0 :/ exp(—%ﬁﬁgdjf - %NBDJQ@{‘) da.

— 00

Using the following representation for the Weber parabolic cylinder func-
tion U(a, x)

2 o2 [ 1
U = ———¢ 7T t2a —xt? — —t* ) dt 5.31
(a,x) I‘(a+%)e T /0 exp< x ) (5.31)

Q(Ty, M) = — 2\ g s
25 4) — 2ﬁ NB|§IR4| Y .
where
e 1/2
= =2 . 5.33
Y NB|9:R4|> (5.33)
Now, let’s calculate as.
For as the result is
3 1/2
as = | ———— U(y), 5.34
o= (wmg) U0 (5.31)
where U(Ly)
Y
Uy) = . 5.35
For a4 the result is
3 U2 y)) 3
ay = —— [ 3U2(y) — 3222 = 5.36
1= o (00 370 ) = w599
where
¢(y) = 3U%(y) + 2yU (y) — 2. (5.37)

In the above equation we used the following recurrence relation for the
parabolic cylinder function U:

3U(2,y) = —2yU(1,y) + 2U(0, y). (5.38)
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The quantity J(p) takes the form

J(p) = JQ(My, M) (5.39)

ag a4
X exp ) Z PkP—k — m Z Py -+ - Py Ok +.. +ky
ké{B kk’SB

where the following equations were taken into account

D= perx (5.40)
1 K

1
~4 .
§1 Pt = N_Bk Okt kP P (5.41)
1,

k4
k:;<B

Finally, the quantity =; takes the form
=, = jQ(My, M)V exp(iﬁto)E(Ll) (5.42)

where Q(S)ftg,DJQ) is given by (532), Np by (B3), Mo by (E20)), and

E(Ll) is defined as follows

—_ . 1
:(Ll) = /eXp wopo— 5 Z d(k)pxp—x (5.43)
»EB
a4
~ 4INp Z Pl -+ PraBy 4tk | (dp)™E

ki,....kq

kl_

where p* is given by (5.21)), and
d(k) = az + a(k), (5.44)

where a(k) is given by ([2.23)).

Expression (543)) is the main result of this work. In future, this ex-
pression will be subject to renormalization group transformation near
the liquid-gas critical point. In CV approach it is implemented via layer-
by-layer integration of the integral (5.43)) in k-space.
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5.2. Coefficients of the effective Hamiltonian

The argument y of functions entering different expressions in the previous
subsection is itself a function of n and Bo. Let’s show this.

~ 1/2 ~ 1/2
() (<N>o)”2 (0 " )
Np|9My| Np ma| ’

where the following notation is introduced

2
lﬁg = my — 2m—n134 (546)

In the expression for y the second multiplier depends only on 7. Let’s
take a look at the first multiplier. Taking into account (B.8]), one has

(N)o  (N)obr®  (N)o 5 67> (N 5 36m 367

Ng V. BS V " (Bop 6V ° (Bop TBop
The quantity Bo is dimensionless but ist value depends on how B is
selected. Based on the previous works, the condition for selecting B is
@k: B = 0. This condition impose some restrictions on the attractive
part of the interaction potential, in particular that $y < 0. However,
section of the potential in the form of Eq. (ZI4]) obeys this condition
very well.

The explicit expression for the Fourier component of such potential
is the following

. 1 o 2
— 3
o, = —l6mrea {1 Tiea? (a + g k2a2) cos(ko)
1 o 4
- (T4 = k
1+ k2a? <a tir k2a2> cos(ko)
o/a o 1- k2a?\ sin(ko)
1+ k202 \a 14+ k2a2 ko
o/a o 4—k*a?\ sin(ko)
- | 2= . 5.47
4+k2a2< a+4+k2a2 ko (5.47)

In this expression it is already taken into account that
0= Ro— aln(2). (5.48)

In Figure B the dependence of ®;/(¢0) on ko is shown for a few
values of parameter Ry/a. Values of Bo for different Ry/« are presented
in Table
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ko

Figure 9. Fourier component
Figure 8. Fourier component of the of the attractive part of inter-
attractive part of interaction poten-  action potential for Rp/a =
tial, Eq. (B4), for different values 3.5 (solid line) and correspond-
of Ro/a. 1-2.77,2-3.0, 3 - 3.5. ing parabolic approximation,

Eq. (B49) (dashed line).

In some particular calculations further on, the following approxima-
tion will be used for the Fourier transform at k < B

By = (1 — 20%k2) (5.49)
where )
1 920
2 = | (5.50)
20y Ok* |

Values of 2b% along with 1/(1/2b) (the point at which the parabolic ap-
proximation is equal to zero) are also presented in Table 2 Figure
shows @, together with its parabolic approximation in one picture.

At this point we can build some graphics for coefficients as and a4
as functions of n. First, for as one has

2= (m)mw - (%)/ (|n?_4|)1/2U(y)
(5.51)

and from here it is seen that the quantity (IV)pas depends only on 1 and
the parameter Bo of the interaction potential, see Figure 10
For a4 one has

3 1 (N)o 3

NaMyolmal *¥) = (M2 N Tma] *¥) (5.52)

ay =
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Table 2. The zero values Bo and parameters of the parabolic approxi-
mation of the Fourier component @y, for different values of Ry/a.

Ro/a | Bo [ 207 | %
20 | 147|168 0.77
2.5 | 1.70 | 1.02 | 0.99
30 | 188|072 1.18
35 | 201057 1.33
40 |213]048 | 1.45
45 | 222042 | 155
50 | 229|037 1.64

351 N>y 0.9 <N>02a4

259 0.6

0.5

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

Figure 10. Quantity (N)oaz as a  Figure 11. Quantity (N)2a4 as a
function of n for Ry/a = 3.5. function of n for Ry/a = 3.5.

and from here it is seen that the quantity (N)3a4 depends only on n and
the parameter Bo of the interaction potential, see Figure [I1]
To rewrite d(k) in a useful form, let’s first consider the quantity (k)

a(k)zﬁ(i)k: 1 6 ¢ &
V.~ (Nyor kgl cod

(5.53)

It is seen now that the quantity (N)od(k) is a function of 7, but also
depends on the parameter of the interaction potential ®, as well as on
the temperature T'.
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6. Effective Hamiltonian in the mean-field approxi-
mation

Consider the long-wave contribution =5, to the GPF, Eq. (&.42). Let’s
calculate =y, in the approximation when all k; = 0

—(1 * d(o) a4
:(L) = /exp(u PO — TP% - 4!NBP3 dpo. (6.1)

Since, as previously learned, d(0) o« (N)¢ and a4 o (N)3Z, it is convenient
to perform the following substitution of variables p = (N)gpf, in the the
above expression and obtain

=0 = o [ esplV)eB(ph)ldeh (6:2)
where the following notations were introduced

o dl(o) /2_a_£1 14

E(po) = wpo = =0 = 3P0, (6-3)
6 3 ‘i)o

d = (N)od =al —_ ) . A4

(0) = (N)od(0) = ah + =5 (6.4)
N

d = (NYoas, = ‘200 (Ny24, (6.5)

Np

The presence of (N)g in the exponent justifies the application of the
steepest-descent method for integration. The result is the following

=1 = (N)o exp((N)o E(po,max)) (6.6)

where po max maximizes the quantity F(p}) and is found from the fol-
lowing conditions

oF 0’E
=0 —5 <0. (6.7)
I 9’
In explicit form these conditions become
* / aﬁ; /3
p = d0)po = 5700 =0, (6.8)
ail /2
— d/(O) — ?p < 0. (6 9)
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6.1. Naive approximation

In the most simple approximation, the quantity p* plays the same role
as an external magnetic field in the Ising model. For Ising model it is
known that the critical point appears at the absence of the external field,
thus to find the critical point in our approximation, one condition is

wt=0.

The quantity pu* depends on the chemical potential, through the term
B — 1o), on the temperature, through the term proportional to a(0),
and on the packing fraction 7. If we assume that pu = g, then the
condition p* = 0 will relate the temperature and n

M3 /My 4 a(0)D; = 0.

This is the first condition that relates these two quantities. The sec-
ond condition is obtained from the requirement that non-zero solution
exists for pf:

p/3+ 3!d/(0) /

0 aﬁl Po— 0
po1 = 0;
3!d’'(0
p02,03 = 4/ — ,( )
a
4

Since a)) is always positive in the region 0.04 < n < 0.22, the solutions
po2 and po3 are real when d’(0) < 0. Thus the second condition for the
critical point is

d'(0)=0

Thus in explicit form the system of two equations relating the tem-

perature and packing fraction is as follows

6n 1 & 3
ms + ui 0 1— moms n m32 _ O;
my wT*eo3 my 3m3
677 1 (i)o
! 9 6.10
2T T g8 ’ ( )

where T* = kpT /¢ is the reduced temperature. The equation for finding
the critical value of 7 is
3

ms / moms ms
— — 1-— — | =0. 6.11
%2 ( my + 3m§> (6.11)
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T
0.20

Figure 12. Equation (61T for the critical packing fraction 7.

Figure[[2lshows this equation graphically. The numerical solution to the
equation gives the following value in the Percus-Yevick approximation

Ne = 0.1742,
or the critical value for the reduced density p* = o®(N)/V
pn = 0.3327.
In the Carnahan-Starling approximation the corresponding values are
ne = 0.1766, pl = 0.3374. (6.12)
The critical temperature is now found

61,

c

/ 3
Ay EC

which for the parameters value Ro/a = 3.5 is T = 2.14 in Percus-Yevick
approximation, and T = 2.15 in the Carnahan-Starling one. It is very
important to note that both critical density and critical temperature de-
pend on the parameters of the attractive part of potential. In particular,
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the critical temperature T, approaches zero as the interaction potential
becomes more and more narrow (o — 00, dy — 0).

The solutions to the equation (6.8) for pj, can be written in general
form via the discriminant of this cubic equation (via the Cardano’s for-
mulas). We are not going to do so for this simple approximation, but are
going to integrate expression (0.42) over non-zero values of k, obtain sim-
ilar equation for pg but with re-normalized coefficients, and investigate
the obtained equation more closely.

6.2. Applying condition (N)y = (N)

Another way to address the problem of finding the critical point coor-
dinates is to impose the condition of equality between particle numbers
averages for the reference system and the whole system

(N)o = (N). (6.13)

This condition was, for example, applied in [§].
The general equation to find the average (equilibrium) number of

particles is
Oln=
— = (N). 6.14

<3(ﬁu)):r,v W (644

In the expression 5.2 for the grand partition function Z only Z; depends
on the chemical potential. Taking into account its expression [(.42] as

well as the expression [6.6] for E(Ll), we arrive at the equation

3
mams ms max
N — = (N). 6.15
(N)o (mr-+ T2 4 25 4 ) = () (6.15)
Applying the conditions (N)g = (N) and m; = 1, we get

3

max moms m
pg = — < ] + 3—m32) : (6.16)

In a number of works, see e.g. [8/20,24], the right-hand side expression
is considered as a distinct quantity and is denoted as A

3
o moms ms
A=-— — . 6.17

( mal 31‘“421) (6.17)

Thus there are three conditions to be met at the critical point. The
first one, which follows from the requirements of Ising model symmetry,
is

wt=0. (6.18)
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The second one is

d'(0) =0, (6.19)
and the third one, which follows from the requirement that p§'®* = 0 at
the critical point, is

A =0. (6.20)

From the last condition we can immediately find the value of the critical
density. Solving the equation A = 0 numerically gives us

1. = 0.12867, p: = 0.24574 (6.21)
in the Percus-Yevick approximation, and
N = 0.13044, p: = 0.24913 (6.22)

in the Carnahan-Starling approximation. It worth noting that the con-
dition A = 0 is equivalent to 93 = 0, and consequently to mz = 0.
The equation for the critical temperature follows from the second

condition R )
_6ne @0 _ _pc Po (6.23)

T = .
ay 03 ah o3

c

Its numerical values for the potential parameter Ry/a = 3.5 are T =
2.197 and T} = 2.202 in the Percus-Yevick and Carnahan-Starling ap-
proximations, respectively.

There are a few important conclusions regarding results based on the
condition (N)y = (V). First, the value of the critical density does not
depend on the parameters of the attractive part of the potential. This
consequence is very contradictory since the critical density is the same
for any form of ®(r) at r > o, including very weak interactions. The
value of 7, does not depend on the approximation used for the grand
partition function calculation, and its mean-field value obtained in this
work is the same as the one obtained in [§].

Second, the critical temperature does depend on the parameters of
interaction, and approaches zero as the range of interaction becomes
shorter and shorter (a — oo, ®g — 0).

In this approach we can also find the value of the chemical potential
at the critical point. From the condition p* = 0 and Eq. (521]) we get

= 6n ¢ do _
Blie — po) = —M3 /My — a(0)My = —m3/my — omn_e Zo
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Table 3. Critical values of chemical potential for different parameters
Ro/a.

Ro/a | B(pe — po) | Bpe*
2.0 2.6699 1.0342
2.5 2.6228 3.9872
3.0 2.5812 3.9456
3.5 2.5453 3.9097
4.0 2.5143 3.8787
45 2.4877 3.8520
5.0 2.4645 3.8289
5.5 2.4444 3.8088
6.0 2.4268 3.7911

where the following notation was introduced by the analogy with

Eq. G.16)

momz  m3

mp =my — 6.24
! ! my 3m3’ (6.24)
Since mz = 0 at the critical point, and m; = 1, we get
- P (i)O o
Blpe — po) = T g %2 (6.25)

The numerical values of the chemical potential difference at the critical
point are summarized in Table [3] for different interaction parameters.

The chemical potential of a system can be represented as a sum of
ideal and excess parts

= ‘Lle + ILLCX.

Thus the difference S(u — pp) is essentially the difference between ex-
cess chemical potentials. The excess chemical potential of a hard-sphere
system in the Carnahan-Starling approximation is

pox = 91— 9 + 3n°
0 (1-n)?

At the critical density (Buf*). = 1.3644. Thus, we can calculate the
excess chemical potential of the whole system at the critical point. The
results are presented in Table Bl

(6.26)
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7. Conclusion

We have obtained the functional-integral representation for the grand
partition function for the classical many-particle interacting system. The
main result is presented with Eq. (.43]). This expression will be subject
to applying the renormalization group transformation near the liquid-gas
critical point in future works. In this paper, the mean-field approximation
was applied to calculate the coordinates of critical point, using a system
of hard-spheres with the Morse potential as an example.

A. Total correlation functions

A.1. Definitions

The definition of the n-particle distribution function is taken from [25]
(see Eq. (2.6.7) therein)

(n)
(n) (. _ P (rla"'7rn)
g (I‘ ) - H?:l P(l)(ri) (A].)

where p(™) is the n-particle density (see Eq. (2.6.1) in [25]), which is
defined as:

(n)(ny — — o~ _ (N—n)
P = 2 N§:n: T /exp( BUN)dr (A.2)
Here r" =rq,...,r,, and drN—n) = =drpy1...dry.

Let’s introduce an hierarchy of total correlation functions. The most
widely known element of this hierarchy is the pair correlation function

WP (r1,r5) = g (r1, 1) — 1 (A.3)

(e.g., see Eq. (2.6.8) in [25]).

Let’s express the total correlation functions in terms of the n-particle
distribution functions. Formally, one can introduce the hierarchy of total
correlation functions starting from n = 1 and on. By definition

gV(r)=1. (A.4)
Thus, for n = 1 one has:

AV (r) = gW(r) = 1. (A.5)
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For n = 2:
W (ry, 1) = g® (r1,12) — 1 (A.6)
For n = 3:
A3 (ry,ra,r3) = ¢®(r1,r9,13) — gP(r1,12)
—g@(r1,r3) — gP(ra,r3) +2. (AT)
Forn=4":
A (ry, v r3,rs) = gW(r1,ra,13,14) — g (r1, 12, 13)

—g®(r1,ra,14) — g (r1,13,14) — ¢® (r2, r3,14)
—9(2)(11, r2)9(2) (r3,ra) — 9(2)(11, 1‘3)9(2)(1“% ry)
(2)(r1 r1)g? (rz, r3)
+2(g®) (r1,r2) + ¢@(r1,13) + 9 (r1,14)
+9P (r2,13) + 9P (r2,14) + @ (r3,14))
—6. (A.8)

A.2. Expressed via ¢(™ and h(m<m)

The total correlation functions A(™ can be expressed via ¢() and h("<").
Such representation for total correlation functions ~(®) and h*) was used
in [26].

For n = 3:
h(3)(r1,r2,r3) = g(S) (ri,ro,r3) — K2 (ri,r2)
—h®(ry,r3) — h®(ra,13) — 1. (A9)
For n = 4:
K@ (ri,ro,r3,r4) = g(4) (ri,r2,r3,14) — K3 (ri,ra2,r3)

—h®(ry,ra, r4) 3 (ry,rs,rs) — K (rg, r3,ry)

—h®)(ry,12)h ) (r3,14) — B (r1, 13) 0 (r2, 14)

—h®? (rl,r4) (rg r3)

—h(2)(r1,r2) ( ,T3) — h(2)(r171‘4)
(2)(1‘271‘3) h(2) (ro,ry) — h(2)(r3,r4)

—1. (A.10)

From here it’s straightforward to express ¢() via h("™), where m < n
(in |27] such expressions were presented for n < 3).
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A.3. Expressed via ¢ through ¢(*)

For n = 2:
h® (r1,r2) = gP(r1,12) — g (r1)g™W (r2) (A.11)
For n = 3:
) (ri,r2,13) = 9(3)(1‘171‘27 r3) — 9(2) (1‘171‘2)9(1)(1‘3)
—gP(r1,13)g"M (r2) — 9 (r2,13)9™ (r1)
+29W(r1)g™ (r2)g™ (r3). (A.12)
Forn=4:

AW (r1,r,13,14) =
= 9(4) (rla ro,rs, r4)
(r1,12,13)g™ (rs) — 9 D (r1,r2,14)g" (r3)
(r1,r3, 1‘4) (1‘2) g (1‘271‘3=1‘4)9( )(1‘1)
(r1,12)g® (rs,r4) — g (r1,13)9" (r2,14)
(1“171“4)9(2)(1“2 1“3)
9P (r1,12)gM (r3)g™M (ra) + g (r1,13)9M (r2) g™ (ra)
ri,14)g" (r2)g" (r3) + 9 (r2, 13)g" (r2)9 (r4)
ra,14)g"M (r1)g™M (r3) + 9 (rs,14) g™ (1r1)g (r2)]
—69(r1)g™ (r2)g™ (r3) g (ra). (A.13)
Equivalent representations for n-point correlation functions were used
in [28] in research on galaxy clustering.
To simplify notation, let’s denote (r1,...,r,) = (1,...,n). And let’s
group similar terms under summation sings. Then h(®) and A*) can be
rewritten as

h(g)(15273) = g(B)(172,3)_ Z 9(2)(11712)9(1)(13)

+290 (1) (2)9 (3

~

(A.14)
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h9(1,2,3,4) = 91,234 — > g0, b, 13)g" ()

—691 (1) (2)g™M (3)g™M) (4). (A.15)

The sums extend over all distinct argument lists in which each point
appears exactly once. E.g. ¢©®(1,2,3) and ¢(* (3,2, 1) are not considered
distinct, and terms such as g(®(1,2)g(®(2,3) do not appear [28].

A.4. Fourier components of total correlation functions

The following generic notation is used for the Fourier components of the
total correlation function:

(k... k) (A.16)
= /exp(—ik1r1 _. = iknrn)h(”) (r1,...,rp)dry ... dry,

By properly selecting the origin, it can be shown that for a homogeneous
isotropic system:

g(") (r1,...,rp) = g(") (r1 —Tpy...,Tpoq1 —Tp) (A.17)
and applying a proper change of variables it can be written as:
g™ = g™ (ry, .. rpq) (A.18)

Thus,
A ey, ) = A (e, ) (A.19)

It enables us to write the following expressions for the Fourier com-
ponents 2™ (k™):

éﬁm) (") = ™ Ky, K1)t ke (A.20)
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where
A (ky,. .. Kp_1) (A.21)
= /exp(—iklrl — ... ikn_lrn_l)h(") (I‘l, . ,rn_l)drl .. .dl‘n_l

In particular, for n = 1:

A (k) = / exp(—ikr)h ™M (r)dr = / exp(—ikr)dr (A.22)
Lo
—hW (k) = 6, (A.23)
-
For n = 2: 1
SR (e, k) = A ()i (A.24)

A.5. Fourier transform of the radial correlation function for
the hard-spheres system

From [I7] (see Eqs. (3)-(5) therein) an explicit expression for h(® (k)
can be calculated in the Percus-Yevick approximation. Figure [I3] shows
the dependency of h(?)(k)/o® on ko. Figure [dlshows the dependency of
h(0)/o® on packing fraction 7.

Figure 13. Fourier transform of the  Figure 14. Fourier transform of
total correlation function () (k)/o®  the total correlation function
as a function of ko. 1 -7 =0.05,2-  h®(k)/o® as a function of pack-
n=0.1,3-n=0.15,and4-7=0.2. ing fractionnat k=0
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A.6. Some recurrence relations for correlation functions

In this section, some recurrence relations for the total correlation func-
tions A" will be derived. Let’s use equations for the n-particle density
from [I8] (Eq. (A7) therein):
dpm)
op | N
”P(") + f{P(nH)(rl, cesTpy) — P(") (re,... arn)p(l)(rnJrl)}drnJrl

- (1/V) [ pW(r1)dry + [{pP® (r1,r2) = pO)(r1)pM (r2) }dry

which is rewritten in terms of the n-particle distribution functions as
(Eq. (A8) in [I8])

d(pmg™)
ap 7
- np"tg™ + p* [{g"FD(r1,. .. rhp1) — g™ (r1, .. 1) Fdrg
1+ p [{g?(r1,r2) — 1}dry

First, consider n = 2 and rewrite (A.25) in terms of correlation func-
tions:

- (A.25)

0
% (p2h<2> (r1,r2) + pz) - (A.26)
~ 2p(hP(ry,r0) +1)
1+ ph®(0)
J (h®(r1,r2,v3) + B (r1,13) + hP (13, 13)) drs

1+ ph(®(0)

+

Then apply the following Fourier transformation to the above equation:

]:2(. . ) = // e—ik1r1—ik2r2 NN dI‘ldI'Q (A27)

As a result, after some algebraic manipulations, the following relations
between h(3) and h(?) are obtained:

Oh® (ky,ks)

h® (k1 ke, 0) = 203 (0)h?) (ky, k) + 5
p

(1+ ph(0)),

oh® (k
L k)

h® (k, —k) = 202 (0)h ) (k) 5
0

(14 phP(0)). (A.28)
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Similarly, the relations between 2(*) and 23 are following:

A (ky, ko, ks,0) = 30 (0)h®) (ky, ky, ks)
Oh® (ki ko, k .
;o PRk k) he)),
dp
A9 (ky,ky,0) = 30 (0)h®) (k1, ko)
Oh® (kq, ko)

o (14 phP(0)) (A.29)

The relations ([@I8]) and [@I9) for cumulants follow directly from (A28
and (A29)), respectively.
B. Cumulants calculation

For the sake of simplicity, in this Appendix we will omit the subscript
0 at the notation for averages, (...)o = (...), and also will understand

\IJN = \I’N(I‘N).

B.1. n=1
My (k) = (px) (B.1)
o) ZN N
) = =t ]\Oﬂ/Zexp —ikr;) exp(—B¥ y)dr

o0

— %
= ;! Z ]\3' /exp —ikr’) 5(r’ —r;) exp(—BY x)dr™V dr’

= /exp —ikr’ <26 r' —r; > (B.2)

It can be shown that (see Eq (2.5.11) and p.40 in [25])

N
<_Z 5’ rj>> = p () (B.3)

where p(l)(r) is the equilibrium singe-particle density.
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For a homogeneous system (uniform fluid):

N)

Doy &
pP(r) = A (B.4)
Thus

(px) = ~—+ /exp(—ikr')dr' = (N)dx (B.5)
[0 (k) = (V)| (B.6)

B.2. n=2
Mz (k1, k) = (Pk, Prz) — (Piy ) Pk )- (B.7)

</3k1/3k2> =

=5y /Zexp (—ikyr;) Zexp —ikor;) exp(—f¥ n)dr

Let’s single out the term with i = j:

o 1 e 2 al .
(P fz) = Eo Z %/ lz exp(—i(ky + ka)r;)
N=0""" i=1

N N
+ Z exp(—ik;r;) Z exp(—ikar;) | exp(—B¥ n)dr
i=1 =1
i

The first term is {Pk, 1x,) and thus is equal to (N)dk, +k,. Let’s rewrite
the second term via J-functions:

<ﬁk1ﬁk2> = <N>6k1+k2

-1 Zév —ikir’  —ikor”
+ = — e e

X 226 v —1;)8(r" — ;) exp(—BY y)dr" dr'dr”
i=1 j=1

J#i

= <N>6k1 +ko

N N
+ //e—lklr —ikor”’ <ZZ r _rz (I‘ —r7)>dr dr”

i

[y
N
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From [25] (see Eq (2.5.13) and the last paragraph on p.40 therein) it

follows
N N
N S R
i=1 j=1
i

where p)(r/,r") is the equilibrium 2-particle density, or just the pair
density

(M Pra) = (N)0k 4k +// e iar’g—ikar” (2) (1 1) 4y’ dr'(B.9)

Taking into account the definition (ATl of the n-particle distribution
function ¢(™, and the relationship between p(™ and ¢(") for a homoge-
neous system

pM (&™) = p"g™ (x") (B.10)
where p = (N)/V is the particle density, one arrives at
(Prifro) = (N)0k;+ke (B.11)

+ p2 // efiklr'efikgr”g(Q)(r/,r//)dr/dr//'

Here ¢(® (r/,r") is called the pair distribution function. Taking into ac-
count the deﬁmtion (A3) for the pair (total) correlation function h(?,
one has

<ﬁk1 ﬁk2> — <N>5k1+k2 + p2 // e—ik1r’e_ik2r//h(2) (I‘I, r”)dr'dr”

N 2 . ’ . "
+ <Vi //e_‘klr e ke gy dr”, (B.12)

The last term is equal to (N)2dy, dx,. For isotropic system h(?) (r/, 1) =
R (|r' —1"|), and the second term becomes

// —ikir’ 71k2r dr/dr//:

Change of variables:
I‘:I"*t‘”; R=r"

r'=R+r; r’=R
dr’dr”’ =drdR
= Vz /exp( i(k; +k2)R dR/exp —ik;r)h ) (r)dr
(N)?5 (2) P (2)
= Th (k1)6k1+k2 = <N>ph (k1)5k1+k2' (Bl?’)

One arrives at the final expression for (fy, k., ):

<ﬁk1 ﬁk2> = <N>6k1 +k, T+ <N>pib(2) (k1)6k1 +k, T <N>26k1 51(2'
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And for the cumulant 9t the final expression is

Ma (k1 ka) = (V)0 11, (1 + ph? (k1)) (B.14)

The quantity 1 + piL(Q) (k) is equal to the static structure factor of
the uniform fluid (see [25], Eq. (3.6.10)):

S(k) =1+ h? (k) (B.15)

Mo (K1, ko) = (N, 416, S (K1) (B.16)

The structure factor is related to the thermodynamic properties via the
following relationship (see Eqs. (2.6.12), (3.5.14), and (3.6.11) in [29)]):

S(0) = 1+ ph!?(0) = pxr/B = (B.17)

where xr is the isothermal compressibility. Thus for k; = ky = 0:

[9M2(0,0) = (V) — (N)?] (B.18)

C. A method of calculation for cumulants at k; = 0
It follows from B.1) and (3.4, that

1 0" Infexp(—i27 3y wiefi))o
(—izm) oy 0
0", 9" NN)y 9"l (0) 1

O(Buo)™  9(Buo)" 1 O(Buo)"?

M, (0,...,0) =

_ 0M,1(0,...,0)
=T W (©
Then from ([233) one derives
IN)o _ o a2
HN?o s o
O _ (4o — (N (Mo, ()
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and so on, to give in general:

O{N™)g
d(Bro)

Thus the equation for M2 (0, 0) is obtained immediately

= (N"")o — (N")o(N)o. (C.5)

9(N)o

P00 = gy ~ Vo~ (Vs
= (N =(N)o)*)o (C.6)
Explicit calculation for 93(0,0,0) leads to
Wy(0,0.0) = g (Vo — (V)
= (N = (N)o)*)o (€7
And for 9,4(0,0,0,0) :
2M4(0,0,0,0) = a(ﬁi}m) ((N®)o = 3(N?)o(N)o + 2(N)3)
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D. Notation

The list of notations used throughout the work follows.

r - the coordinate in three-dimensional space;

r = |r| - the absolute value of r.

k - the wave vector in the reciprocal space.

k = |k| - the absolute value of the wave vector k.

(...) - the Dirac’s §-function.

d... - the Kronecker’s §-symbol.

V' - the volume.

N - the number of particles.

p - the particle density.

1 - the packing fraction.

n(r) - the microscopic particle density.

Pk - the Fourier component of the microscopic particle density.

Pk, po - the collective variables.

= - the grand partition function.

z - the activity.

u - the chemical potential.

Zo, 20, fo - the grand partition function, activity, and chemical po-
tential of the reference system, respectively.

ZnN - the configuration integral.

[ - the inverse temperature.

A - the de Broglie thermal wavelength.

p™ (r"™) - the equilibrium n-particle density.

g™ (™) - the n-particle distribution function.

R(™ (x™) - the n-particle total correlation function.

() (k™) - the Fourier component of the n-particle total correlation
function.

U(ri;) - the full pairwise interaction potential between two particles
i and j at distance 7;;.

Un(rY), Uy - the potential energy of the interparticle interaction.

U(r;;) - the repulsive part of the full interaction potential.

Uy (rY), Uy - the potential energy of the short-range repulsive in-
teraction.

®(r;;) - the attractive part of the full interaction potential.

O (rYN), &y - the potential energy of the long-range attractive in-
teraction.

o - the hard-sphere diameter.

J(p — p) - the Jacobian for tranformation from px to px.

wk, wo - the variables conjugate to collective variables pk, po.
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M, (k"), m, (k" 1) - the cumulants (semi-invariants).
J(p) - the Jacobian J(p — p) averaged over the reference system.
(

J(w) - the part of Jacobian J(p) dependent on wy.

Abbreviations

The following abbreviations were used throughout the work.

GPF - Grand Partition Function.
HS - Hard Spheres.

MF - Mean Field.

RS - Reference System.
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