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Amnorariss. 3ampornoHoBaHO TEOPito (ha30BOIr0O MEPEXOLY IEPIIOTO POILY
Ha OCHOBI 4eTBipHOI Oa3ucHOl rycTuHu Mipu. [Tokaszamo, mo cTpubox ry-
CTUHU TIiJT 9ac i30TepMIiTHOrOo Iporecy (Hha30BOro mepexo/ry MepIioro po-
JIy Tapa-pijanHa MouInHaEThHCS 1 BiTOYBAETHCS Y HOBOBUHUKITIH TBOd a3Hil
crcTeMi MizK MaTepUHCHKOIO (a3010 mapu Ta KpaIieio piauHu. Y MOBOIO
3apOKeHHs HOBOI (as3u y GopMi Kpalui piiuHA € BUHUKHEHHS i [Ti-
€10 30BHINTHBOI'O TUCKY CUTYAIll PIBHUX WMOBIPHOCTEI, 110 JIOPIBHIOIOTH
1/2, nyist HAfGiaBIT HMOBIpHUX cTaHIB mapm 1 HAGLIbIT HIMOBIPHUX CTaHIB
pigmau. Teopis mobygoBaHa 3 MEPHINX MPUHITAINB: 33 AI0THCS TOTEHIT-
aJIl B3a€MOJIi1l MiXK JacTUHKaMu cuctemu. [Ipororumnom s MipKyBaHb
€ i3orepma BaH 1ep Baasbca. 3aiiicHeHO mmoeTamnHi pO3paxyHKU BEJIAKOL
CTATUCTUIHOI CyME y B3a€MHO OB’ si3aHUX (pa30BUX MMPOCTOPAX, BiJITO-
BIZIHO 10 MaJUX MapaMeTpiB MPUTAMAHHUM JIIOUAM CHJIAM.

First-order phase transition based on quartic basic density
measure

LR. Yukhnovskii, V.O. Kolomietz, I.M. Idzyk

Abstract. The theory of the first-order phase transition based on the
quartic density measure is proposed. It is shown that the jump of densi-
ty during the isothermal process of the vapor-liquid phase transition
of the first order starts and occurs in a newly arisen two-phase system
between the parent phase of vapor and the droplet of liquid. The condi-
tion of a new phase nucleation in the form of a liquid droplet is the
appearance under the high external pressure of equal probabilities 1/2 for
the most probable vapor states and the most probable liquid states. The
theory is developed from the first principles: the potentials of interaction
between particles are set. The van der Waals isotherm is a prototype for
consideration. According to small parameters inherent in active forces,
respective phase spaces are chosen. A staged calculation of the grand
partition function in mutually connected phase spaces is performed.
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1. Introduction

The wide-spread phenomenon of the first order phase transitions remains
topical nowadays. Brilliant ideas and papers by van der Waals [11[2] and
by the authors of the classical nucleation theory [3H5], the computer sim-
ulations within the Monte Carlo and molecular dynamics methods [6H],
as well as the experimental efforts in the nucleation science have formed
a firm basis for establishing a potentially more and more precise statis-
tical theory of those events. The collective variables method was very
effective in describing the Ising model [9HIT]. In the present paper, we
propose a compound method for calculating the grand partition function
aiming on description of the first order phase transitions (FOPT).

Problem statement. Initial arguments. The grand partition function
E(T,V,u). Consider an isothermal quasistatic process of compressing
the vapor system persisting from the beginning of the FOPT to the end,
where the vapor transit into an equilibrium liquid phase. The potential
energy Uy (ry,...,ry) of the system of N interacting particles consists
of a sum of attraction potentials ®(r;;), let’s say of the van der Waals
type, and of the potentials of a short-range repulsive interaction ¢(r;;),
such as the interaction between hard spheres. The function ®(r) has a
Fourier transform

D(r) = %Z‘i(k)eik'r, and min ®(k) = ®(0) < 0.
Kk

This condition means that expanding the integrand of = in series over
i)(k) the most important are series of the polarization diagrams, which
summation leads to substituting a screened potential for ®(r). The radius
of screening becomes the radius of effective interactions of the attractive
forces.

Since the hard-sphere-like potential and the attraction potential of
van der Waals-type produce parameters that inversely depend on the
density, the calculation of = is carried out within an extended phase
space, consisting of the Cartesian subspace of individual particle coordi-
nates for description of a short-range repulsion [in what follows referred
to as the reference system (RS)], and of the subspace of collective vari-
ables py for a description of a long-range attractions. The subspace of
Pk is the subspace of values connected with the modes
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of the operator N(r) of the number of particles
L s ikr _
N(I‘):V;pke r—;é(r—ri).

The overloading of the phase spaces is removed by introducing products
of the corresponding generalized functions, which forms the Jacobian of
transition from the Cartesian’s phase space to the phase space {pk} of
the collective variables (CV). After integration in the Cartesian phase
space, = is reduced to a functional integral over the set {px }. The analysis
of the Euler equations shows that the maximum of the integrand in =
is achieved for px = 0 for all k # 0 and pg = p§'®* # 0 for k = 0. As
a result, the calculation of Z in {pk} space splits into two macroscopic
tasks [LOLI3LI4]: (i) integration over all variables px with k # 0 and (ii)
doing single integral of the Landau type [I5LI6] with respect to pg. The
integrations over the CV for all k # 0 was reduced to the typical Ising
problem. To get it the third semiinvariant 2t3(n) of the RS has been
taken equal to zero.

From the latter two steps of integration in the Cartesian and in the
{px}, k # 0 spaces two important concepts had been got:

e the universal quantity for the dimensionless critical density

N wod
ncr = <7>Cr X T - 0, 13044 (11)

N is the number of particles, V' is the volume, ¢ is the diameter of
a hard sphere, modeling the size of a particle. The values of o for
different systems are represented in Table [T}

e an expression for A which is the mean density (MD) parameter,
A = —(93125 + %931352), ¢ = 9313/|9ﬁ4|, Mo, M3, N, the semi-
invariants of the RS [I3\[14] and the linear dependence of A on the

density
A= (- n). (12)

Tle

It seems to be obligatory to introduce the Ising model in the tasks
connected with phase transition phenomena and with the calculation of
the partition function =. Because in that case we get the right expres-
sions, connected with the renormalization group symmetry, the right
values for the critical indexes, for the thermodynamical functions etc.
Calculation of the Ising model in the CV phase space consist of two
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Table 1. The effective hard sphere diameter o and the critical tempera-
ture T, for several systems [13][14].

System | T, °C T.,°C | 00, A | 0,A | 0/oo | e/kp, K
(exp.) (this (exp.)
work)
CO-CO | —140.23 | —138.46 | 3.76 3.37 | 0.898 100.2
Ar-Ar | —122.65 | —123.27 | 3.405 | 3.14 | 0.922 119.8
Kr-Kr —63.1 —67.84 3.6 | 3.367 | 0.935 171
Xe-Xe 16.62 16.84 4.1 3.71 | 0.905 221
05-O5 | —118.84 | —110.8 3.58 3.18 0.89 117.5
N3-Ng | —147.05 | —150.02 | 3.698 | 3.365 | 0.91 95.05

successive basic density measures: the critical — non-Gaussian one, con-
taining a polynomial function of degree four in the indeterminate px
in the exponent for description of the renormalization group symmetry
events, and the limiting Gaussian-density measure to get in summary a
stable thermodynamics. Here, exhaustive results have been reached. All
thermodynamic functions, critical exponents, critical temperature have
been calculated starting from the first principles [I1LI7,[18]. Some of
them are demonstrated in Table
Finally, following the calculations, we have obtained:

(ks (1.3)

where Zo is the partition function of the RS, Zy,, 4 is the result of the
integrations over {px}, k # 0 [I7HI9]. For =’ in [25H27] we have obtained
explicit expressions.

Calculations in Cartesian and in {px}, k # 0, phase spaces do not
affect the chemical potential. The chemical potential p or the general-
ized chemical potential p*(A), where A is the mean density parameter,
is present in the calculation of the Landau-type integral over the macro-
scopic variable pg. Here the main events of the first order phase transition
process are located.

~

/

—
i
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—
i

(1]

X Zpos =g X

2. The single integral over py,. The most probable tra-
jectories

Now, we start to solve the last task, the calculation of =,, which is the
objective of the present paper. One has the following initial form for
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EPO IELIEI

Epo = €xp [Nu*(l - A)} /exp[NE(po)]dpo,
E(po) = 11" po + Dpf — Gpp. (2.1)

The coefficients D and G were calculated in detail in [9L[10,[14] while
solving a problem of the Ising model:

) ©0)]  af™ 1 1 N )
D= —\ G == ay'"’,

where d™)(0) and aff”) are the values of the coefficients d(k) and a4
in the initial Hamiltonian after integration over pyx in n, consecutive
block systems (consisting of N, ) = N/s*"~ lattice sites), which is be-
ing performed till in the resulting expression for the block Hamiltonian
H,,_(px) the values of the correlation lengths calculated both in the quar-
tic and in the Gaussian basic density measures mutually coincide; the
sum ), B, 1 /d(k) arises from the displacement transformation and
the integration over py, 0 < k < B/s""; B is the point, where ®(B) = 0;
s is the factor of dividing the initial Brillouin zone B into layers (the
optimal value s = so = 3,58) [9L[10]. Here we use the resulting values of
G and D for s = sg, D = Dot?, G = Goyr¥ and Dy ~ 1.19, Gy ~ 1.67,
v =~ 0.605.

In the characteristic function kT In=(T,V, ) = VP(T, ) at a fixed

Table 2. The critical indexes of the Ising model; The renormalization
group symmetry of vapor-liquid system belongs to the same universality
class the Ising model.

Valu- | Collective variables method Field High
es model p* model p° theories | temperature
L7 18] 1920} [21L22] | series [23I124]

v 0.605 0.637 0.630 0.638

o 0.185 0.088 0.110 0.125

B 0.303 0.319 0.325 0.312

¥ 1.210 1.275 1.241 1.250

Aq 0.463 0.525 0.498 0.50
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temperature and (N) = N = const, the differential dP(T, u) is a com-
plete differential of p [12].

Due to the factor N in the exponent of the integrand in (2II), to
solve the integral we use the method of steepest descend, showing the
most probable trajectories of evolution of the process.

The quasi-static process of the isothermal compression of vapor will
move along the most probable thermodynamic trajectories. So we have
to look for the values of py providing the maximum of F(pg) in (21):

oF 0’FE
— =0 —= <0. 2.2
dpo g 22)

That leads to the equation
p* = —2Dpy +4Gp3; 2D —12Gpg > 0 (2.3)

or in a standard form p + Vpo+W =0, V + 3p2 < 0, with the discrim-
inant

w2 V3
=— 4+ — 24
Q=—7+5 (2.4)
where V = 25, W = —2£-. The first item in @Q is always positive, the

second one is always negatlve therefore there can be three cases QQ > 0,
Q <0,and Q = 0.

At @ > 0 equation (IZZI) has one real and two complex-conjugated
roots. Q > 0 means, that ¥~ ’ and ‘%’ > /Q. The real solution

along with Cardano method equals

i L (2.5)
(1)

The quantities p* and p,~’ change on the boundaries (see Fig. [I)

§ 2D 2 D\ /2
W2 a=G(3G) Wz o=(32). e

We get similar results for 7' > T, but without any restriction on u*,
here always @ > 0.
In case Q =0

2 3
(%) =— <%) and p* = =+a, po = =%b, (2.7)

we get the points of bifurcation of the solutions in a plane (u*, po).
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a
Q<0
b d b/2 df b O
0,10 0052 0p l 005 ‘ 0,10
-a
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Figure 1. The most probable thermodynamic trajectories py'®* = p)

P01s P025 P03 |pél)| > b, |po,] < b,i=1,2,3, either as a functions of
variable ¢, or of the chemical potential p*. The curve between the points
(=b, —a) and (—b/2,a) corresponds to the solution ppa = b cos “"22”, the
curve between (b,a) and (b/2,—a) corresponds to po1 = bcos %, the
curve between (—b/2,a) and (b/2, —a) corresponds to pp3 = bcos %4”.
The main maxima are denoted by bold lines, the relative maxima —
by thin lines; pps describes unstable states; u* = acosp, 0 < ¢ <,
b= (35)2 ~ 72 0 = GV® ~ /2 d = (§5)Y/? ~ 77/2. We shall
call points —d, d, u* = 0 as the van der Waals points.

When @Q < 0 equation (Z2]) has three real roots. It is more advan-
tageously to write them in a trigonometric form, putting in 23): r =

\/ =V3/27; cosp = —Q—VZ, then we get pg = 2/ cos %2"”, n=20,1,2, or
44T

3 )
w=acosp,0<p<m, (2.8)

2
po1 = bcos%, po2 = bcos s W, po3 = bcos

that is an important relation between u* and ¢.

Here, we get a new explicit expression (Z3)) for the generalized chem-
ical potential u*(po) = p*(pi®*), which is of great significance in our
consideration.

The initial expression for p* is realized while integrating over all
pk for k # 0, and analyzing the Ising-like model behavior inside the

system. Then, pu* was equal to: pu* = p — g — & + %é(O)(l — A), where
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Table 3. The values of po1, poz, pos and of E(pg) (in 2II)) and of u*(po)
at the nodal-points of the argument ¢; ¢ = 0,7/2, 7.

¢ [ porle) | po2(@) | pos(e) [ p* (@) = =2Dpo + 4Gpg
P01 £02 P03
0 b -3 % a a —a
/2 d —d 0 0 0 0
T % b —% —a —a

¢ [ E(po) = 1" (po)po + Dpy — Gpg
Po1 P02 P03
0 Db? —%Db2 —%Db2
/2 %Dd2 = ng2 %Dd2 = ng2 0
m —%Db2 Db? —%Db2

&= M3/|My|, A = =M€ — %93?3{2, My, M3, M, are the values of
cumulants of the RS (we have taken them at k = 0), yo is the chemical
potential of the RS. To take into account the Ising model we have to put
M3(n) = 0. We get the universal value for the critical density
Ny 7od
e = (=) —— = 0.14044,
K (V) 6
(N/V). is the experimental value of the critical density of particular sys-
tem, o is the diameter of a hard sphere of the particle of that particular

system (see Table[) [13]. It was proved [I3l19] that A|,—, = 0, and for

N xo®

A = A(n) it is rigorously linear dependence A = nl—c(n — 1)y M= e
As a result of searching for the most probable trajectory at @ < 0,
w* transforms into
w* :acoscp:asin[g —go}, (2.9)
0< ¢ <m —a < p* <a. The main values of the roots (Z8) are in the
following intervals: for po1(¢): 0 < ¢ < 7, and for ppa(p): 5 < o < .
From (Z9) we see that between 0 < ¢ < 7 and —a < p* < a, there is a
full mutual correspondence:

m ot 1 (u )2 ‘u
- —p=aresin— =— — ——|— | —--, |—
2 a a

and for

v ~ T B
a‘<1,(p~2 —.
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In [23) we have
" = —2Dp 1 4G ()P, (2.10)

Here, we can be quite close to the results of applying the Monte Carlo
methods [6,].

It is worthly to investigate the behavior of the roots (2.8]) in the
expressions (ZI)) for F(pg) and for the exp N(FE(pg)). In Table 2] the
values of po1, poz2, pos, 1*(¢) and E(pg) in nodal points of the argument
©=0,5,m 0 <@ <7 (see Fig.[) are given.

Only the expression (2.I)) is of great importance in the analysis of
the phase transition events. It is important to investigate zeros of the
function E(pp) in order to know the limiting areas of the validity of
the obtained solutions (Z3)), (Z8). For the zeros of E(pp) = 0 we have
equation

1 po + Dpg — G = 0, (2.11)

with one — the trivial — root py = 0, it is the straight — line perpen-
dicular to the abscissa p* = 0 (see Fig. 2)). The three another roots of
(ZII) arise from the equation u* + Dpg — Gp3 = 0 or in a standard form

o +pho+q =0, (2.12)

where p = —D/G, ¢ = —p* /G with the discriminant R:

3 2 *\2
e _ 1 3, L)
R=o+ T = 27(D/G) +ti o (2.13)

and solutions, at R < 0:

(P)1,2,3 = 23/r cos %m = 2fcos %m, n=0,1,2, (2.14)
— /3 _ 3 __49 _ W
where 7 = \/—p?/27 = \/(D/G)*1/27, cosp=—o - = s D7
f=+(1/3)D/G; f/b=1/V2 and
pt= ngcos ®. (2.15)

The function f*(p) is a curve of the boundary values of the chemical
potential, according to R = 0,

- §Df < f(p) < %Df- (2.16)

Table M contains the nodal points of 1 2.3 = 2f cos Lgm, n=0,1,2.
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Table 4. The nodal points of p1, p2, p3.

¥ ﬁlvn:O ﬁQvnzl /337”:2
0 2f —/ —f
/2 V2d —/2d 0

m f —2f f

In Fig.2lthe limiting curves of the area of the positive values of E(po),
as well as the curves of the maximal values of E(p) and the rectangular
R =0 for p; 23 and = 0 for pp1,02,03 are demonstrated.

In Fig. Blwe demonstrate the volumetric pictures for E(pg) (left) and
for exp NE(pg) (right).

In Fig. Bl only the positive part of E(p) is seen. The abscissa u* =0
divides the parts of pp; and ppe to the main and relative maxima. One

u

B Q>0

(3>0 @ 0=0

Q=0 a/\2 Q<0

Q<0

Po By 2 Vb Ld o 0 S df o A% ol

-a/\2
-a

Figure 2. The curves of zero-values of E(p) (solid lines): (—2f, —\%) <

/31 < (_fv\/ig)v (_fvﬁ) < ﬁQ < (fa\_/_%)v (fa\_/_%) < /33 < (2fa%) — the
boundary lines of the positive values of F(pg); and of the maximal values
of E(p) (bold lines) as functions of u*(p) on the interval 0 < ¢ < 7. The
bold thick lines represent the main maxima of pg; and pge, the bold
thin lines — the relative maxima (2, —a) < po1 < (b,a); (=b,—a) <
poz < (—%,a). The area of the unrealized states is shaded. Therefore,
the contribution of the relative maxima to E(p) may only be considered
ifd < po1 < fand —d > po2 > —f. The states of E(pp3) for all values of
po3 = bcos %4” (—2,a) > po3 > (4, —a) are unrealizable and may be
excluded from the investigations.
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05  -0.25 0 0.25 0.5
-o.oogg% T =

0,002 5— |- {ee—r— : —_— -

Figure 3. The volumetric pictures for exp N E(pg). A confirmation of the
results given in Fig. 2 The curves for pg; are marked with the dashed
curve.

may make sure that the behavior of those maxima with the increasing
N is different the main maximum part grow rapidly up, the growing of
relative maximum is weak.

Summing up the investigations of E(pg) and of exp NE(py) we can
say following. The trajectory pgs doesn’t play any role in the process of
the FOPT, and we can investigate only the behavior of E(po1, po2) and of
exp N E(po1, po2) as a behavior of a two phase system. In the TL N — oo,
V — oo, N/V = const the principal meaning in the exp N E(po1, po2) is
connected only with the main values of pg1 and of ppa.

So in the TL values of the integrals

oo 0
/ .exp(NE(po))dpo and / --.exp(NE(po))dpo
0 —00

will be contributed from the main values of trajectories pp1 and pp2
respectively. Both of these integrals are functions of ¢ or u*/a, along
[(212). The influence of pp3 can not be taken into consideration.
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3. Investigation of the envelope of curves (2.8) in the
region Q < 0

Continue to study equations for the envelope in case T' < T, and @ < 0:

oo

PV
— =InZ=Np*(1—-A)+In / exp[NE(po)]dpo, (3.1)
0lnZ,,
_ N = 2
i 0 (52)

w* is treated as a parameter in these equations.
Let us consider in detail the equation (3:2). Taking into account ([BII)

and (Z1) we get

(oo}

I poexp(NE(po))dpo
= =A. (3.3)
[ exp NE(p)dp

— 00

On the left hand we have the mean value of pg, the equations (B2,
B3) take on the form

{po) = A. (3.4)

Fig.[J) shows, that at big values of N, N > 10°, the main values of po1
and poa coincide with the mean values (po). As a result for all expressions

ST e e
7 S i S

Figure 4. The curves for (po) direct from B3] (solid line) and the most
probable p®*-functions of u* = —2DA+4GA? at different values of N.
The arcs 1-2 and 3-4 (dashed lines) correspond to the absolute maxima
of exp[NE(po)]. The absolute maxima of exp N E(pg) one obtains only
at po = po2(w), § < < mand at po = po1(p), 0 < ¢ < 5. Overshooted
parts — the dashed lines — correspond to the relative maxuna of pgrax
(see Fig.[0). In the TL they are needless and may be dropped. Here (a)
N = 1000, (b) N = 5000, (c) N = 10000, (d) N = 100000.
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in BI) and 33), as well as in the initial one (2.1), one may state that
for large NV the following equalities take place

A = (po) = Py ma", (3.5)

where pg™* means the main maxima of p i*** and py3®* (see Fig. ).
So in Flg Hwe can see, that for N > 105 the curves (pg) and pJ'a*(u*)
behave the same way and the following equalities take place:

pe(A) = p*((po)) = 1™ (P5"™),
E(A) = E({po)) = E(pg"™). (3.6)

Here po1 = pg™** for 0 < o < 3, 1> p*/a > 0, and for po2 = py™*
we have § <o <m, 0> p*/a> —1.

We bear in mind that the maxima of the integrand in (B3] go along
the lines p = pg2 and p = pg1 and that the curve pp2, —b < pp2 <
—b/2 corresponds to the vapor phase and the curve po1, b/2 < po1 < b,
corresponds to the liquid phase.

Formula (33]) may be written in the form:

_ dgt i

S 3.7
/Cg + K ( )
where

0 %)

Iy = / Po eXP(NE(po dpo, /po exp NE Po)}dpo,
—00 0
0
Kg = /exp(NE(po))dpm Ki Z/GXP[NE(PO)}dPo-
— o0 0

In the limit of a very large NV the mean values of pg; and pgs coinside
with the main maximal values of pji** and pf&*™, as it is shown in Fig. [l
In the TL, practically for N > 105 we find:

NE(poz) VT (po1) VT

Iy = poze NI I = pore™ ¥ T
5 [E(po2)| 5 E(po1)l
™
Ky = GXP[NE(POQ)]NL ;
L 7|E(Poz)|_
K= exp[NE(pm)]# . (3.8)
L %|E(P01)|_
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For MD parameter A in formula (3.4]) we write:
A= Po2Wg + por1Wi , A= Ag + Ay, (39)

where Ay = poowg, A = porw;.

w, — cg exp(N E(po2)) _ Ky
* cgexp(NE(po2)) + crexp(NE(por)) Ko+ K’
crexp(NE(po1)) K

, (3.10)

u}l = =
cgexp(NE(po2)) + crexp(NE(po1))  Kg+ K
0 = (|E(po2))~V?; e1 = |E(po1)|~Y/?, wy +w; = 1. The functions w,
and w; are positive simple functions of ¢ in the area 5 < ¢ < 7 — for
poz and 0 < ¢ < § — for po1, they play the role of probabilities of either
vapor or liquid state, respectively.
For N — oo the functions wg, and w; become the Heaviside step
functions

1 for —b<pg < —d, %<g0§7r
wg=4¢ 0 for —d<p02<—%, 0<p<3 ,
3 for po2 = —d, p=73
(3.11)
0 for %§p01<d, s<ep<m
w; = 1 for d<po1<b, §>¢=>0
3 for  po=d, p=3

And the expression (B3] is been completely proved.

Now how we should deal with the nonstabile trajectory pos in ex-
pressions [BI)—((X). Table Bland especially Figs. Bl and ] show that the
contribution of po3 into the values of u*(A) or E(A) is always negative.
The area of influence of pg3 in the integral (B3] is located inside of the

expressions
b/2

[ e EGm)dpn
—b/2

and in the integrals B8] of expressions

0
/ ...exp NE(po)dpo
b/2
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Figure 5. Probabilities (8:10) of the vapor and liquid states as functions
of the angle ¢, ¢ = arccos ‘fl—*, a = Gb3, in dependence on the number of
particles N. Transformation of the curves wy, and w; into the Heaviside
step function as N increases is clearly seen. The point w, = w; = 1/2 is
of fundamental importance as a point of equal probabilities and of tran-
sition from the main maximum of the vapor phase to the main maximum
of the liquid phase.

inside the Z, and K, and in

b/2
/ exp(N E(po))dpo
0

inside the Z; and K;. Here everywhere E(po) is always negative. In any
way of evaluating those integrals, taking into consideration the numbers
in TableBland Figs.BlandB, we get the quantities of type exp(—N Db?/16)
which rapidly tend to zero at large N, and are equal zero in TL.

Moving from those results to future we do not to take into account
the influence of the nonstable trajectory pos.

The probabilities along the main maxima tend to unity and along the
relative maxima tend to zero. We turn special attention to the point ¢ =
7/2. Here wy = w; = 1/2, u* = 0. This is a qualitatively new moment for
the whole study at T' < T, at this point the probability of appearance
of the vapor state equals the probability of appearance of the liquid one.
Simultaneously, for the probability curves this is a point of transition
from vapor-phase-probability curve to the liquid-phase-probability curve
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and vice versa. The main maxima of

2
P02 =bcosso+ i

= —d and polzbcosg =d

us
2

e

terminate on the line p* = 0.
In case @ > 0 we have two single solutions

o8] = 10§ >,
and two different dependencies on density:

1
P = n_(ng —ne) and 5y =no(py” +1), when pi’ < b,

1
pgl) = 77—(77[ —n.) and n = nc(pgl) +1), when pgl) >b.  (3.12)

At the points —b and b there are smooth transitions from the area @ > 0
to the area Q < 0, and p (=b) = poa(—b) = —b, p" (b) = po1 (b) = b,
and along @II): po2(—b) = ;-(11g(=b) = 11c), po1(b) = 7= (m(b) — ne). At
those points wy(—b) = 1, w;(—b) = 0; wi(b) = 1, wy(b) = 0. Then in
B.3):

Ag(_b) = wg(_b)p02(_b) =—=b, Ab) = wi(b)po1(b) = b.

In general for Agy(po) and A;(po) from [B9) and BII) we get the
following dependencies on densities

1
Ay = wgn—(ng =), Mg =ne(poz +1) and

C

1
A= wzn—(m =), m="Nc(por +1). (3.13)

(&
So likely to the case @ > 0, at @ < 0 we have two trajectories of density,

one Ay is for the vapor and another A; is for the liquid.

Taking into account ([3.9) and (BI13) for the mean density (MD) pa-
rameter A we have the following

A= gy + o = 10) = - () = ) (314)

c Tle

because wy + w; = 1.
Inside the area Q < 0, we have the mean density

() = wgng + win;. (3.15)
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Figure 6. Curves for the mean density parameter A(p) = A g(0) + A ()
and curves Ay = wgpo2 and A; = wypo1; po2 = bcos “" ; po1 = bcos £ z,

wy () + wi(ep ) 1. The region 0 < ¢ < 7 is d1V1ded into two parts:
for 5 < ¢ < 7w the main maximum corresponds to vapor phase po2;
for 0 < ¢ < 5 the main maximum corresponds to liquid phase po;.
Bold lines correspond to the main maxima (compare Fig. [I]), thin lines
correspond to the relative maxima. In the TL a phase transition occurs
along the line p* = a cos p|,—r /2 = 0 between the points Ay = —d/2 and
A; = d/2 (independent of the magnitude of N ). In the TL, only bold

lines remain, while thin lines (as well as the relative mazima) disappear

(see Fig.[4).

Now about the densities 1, and 7; at the limiting points Ay, = —d/2
and A; = d/2.
Along the considerations (BI1)-BI4]) and formula (I3,

wyng = (Ag +wg)ne, wim = (A + wi)ne
during the FOPT, when A, = —%d, A= %d the densities for n, and

will be:
1 _( 1d+1) 1 —(1d—|—1)
2779— D) 5 Ne s 277l— 2 D) Ne -
It means, that

Nglay=—d/2 =Nl —d),  mla=as2 = nc(l+d) (3.16)

like at the van der Waals points Ay = —d, Ay =0and A; =0, A; =d.
As it follows in the process of pressing the vapor along the intervals
Ag=—d=+ Ay =—-2: A =d+ A =%, the densities of the vapor
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do not change. The droplet of liquid is arising. The corresponding work
is performed due to the change of the chemical potential u* as well as
a two-phase system vapor-liquid appears, a first-order phase transition
occurs.

Here we face the following specific peculiarity: the function A, given
in B3], is in fact the envelope of the maxima ppo and pg1, which we
have found in (Z8); the function A is the mean density, and as a sum
A = Ay, + A is zero at the point of equal probabilities wy =w; =1/2
(hereA = g,qug,poz— —d; and A; = £, w; = 1, po1 = d), the
mean density given by ([B.I4)) is equal to 7. The dens1t1es Ng = Ne(1—d)
and 7, = 7.(1+d) remain unchanged up to the end of the transition from
vapor to liquid (or vice versa). It happens because the point A, = —%d
corresponds to the end of the main maximum of a vapor phase

o+ 2T
= bcos
pOQ(‘P) o=m/2 3 p=m/2

=—d

(the probability of further motion along the relative maximum of pgp2 in
accordance with 33), @I0) is zero), the point A; = 1d corresponds
here to the beginning of the main maximum of a liquid phase

p01(90)‘<p:7r/2 = bcos% =d.

In TL for ¢ > 7/2 we have w; = 0, and for ¢ < 7/2, it is w, = 0. At
arbitrary N at the point ¢ = 7/2,

wlp) =1/,

o=m/2

both of the thermodynamic states have the same probability wy = w; =
1/2 (see Fig ). But they are disconnected:

1 1
Agl_gpp=—=d, A = —d.
gl—as2 5% 1lay2 5
Along ([BI3]) between those points there must be a jump of density
Ndj2 — N—dj2 = 2dnc.
The vertical segment 4. _dip Fig.Blinks the points of the vapor —
liquid first-order phase tran51t10n The Heaviside point 1/2 on the curves

for w, and w; (see Fig. Bl transforms into two points A; = (1/2)d and
Ay = (—1/2)d on the vertical segment of the curve for A in Fig. [@
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In formulas B8), 339) A, and A; are composed from products of
the probabilities w, and w; given in [B.9) and the quantities ppz and
po1 given in (28). These pairs of quantities w, and w;, po2 and pe1
come from different sources. The roots pp2 and pg; are the coordinates
of maxima (see formula ([Z2))) of the function E(pp) in the integral 21]).
The probabilities wy and w; follow from equations B.1)), (B:2) for the
envelope.

As it is clearly seen from Fig. @ for any finite N the points —d for A,
and d for A; are not reachable. That can happen only in the thermody-
namical limit N — oo, V' — oo, N/V = const.

But for all curves wy, and w; at any value of IV there is one common
point, the point of mutual intersection w; = wy = 1/2. This is the
point of equal probability of being at either vapor, pge2, or liquid, po1,
thermodynamical trajectory.

From the “density” point of view, the points —%d and —d for Ay, the
points %d and d for A; are the same. They can not be seen in the “mean
density — temperature” theory.

But what is different about them? The chemical potentials p* , /2
and p* g p /2 and p; are different. The combinations of their differences
describe the work of arising a nucleus of new phase inside the maternal
phase. In our problem this nucleus is a droplet of liquid inside the vapor
phase. The moment of arise of the droplet means the real beginning of
the FOPT.

The functions A, and A; along (3.9)) characterizes distribution of the
densities inside the MD parameter A, their curves are shown in Fig.
In the thermodynamic limit (TL) w, and w; become the Heaviside step
functions. This means that the probabilities for the processes along the
main mazima (Fig. [1) tend to unity while the probabilities along the
relative mazima tend to zero. We pay special attention to the point w, =
wy = %, 1 = 0 which refer to the endpoint of the main maxima pgs = —d
and pg1 = d. The latter are reached in the FOPT simultaneously.

4. The generalized chemical potentials p7(Ay, A;) and
17 (Ag, Ay) and their role in the droplet formation

Recall the expressions (). Here we have to take into account all previ-
ous results, with the following restriction: the two phase system appears
and exists only in the thermodynamical limit. In this case the equalities
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B4) take place:

<p> = Pmax = A,
A = wgpo2 +wipor = Dy + Ay (4.1)

Due to that, in the last item in (B)) we may write

In / exp(NE)dp = NE(A) = N[u*(A)A + DA% — GAY]

— 0o

(without taking into account In[x/N|E|]).
The whole expression ([ZI)) takes the form:

In=,, = NE(A) = Nup*(A), (4.2)

E(A) = " (A)+DA2—GA*,  p*(A) = —2DA+AGA3, E(A) = " (A).

In the critical region pu* ~ 7°/2, and the expressions DA% — GA* ~ 737,
Therefore, for the sake of simplicity in our following calculations for £(A)
we use £(A) ~ p*(A), and for the equation of state P,V = ONE(A)
we write:

P,V ~ONp*(A), —b< A<D, (4.3)

where A equals (L)), A = A, + A,. Fig. [Mrepresents plots of the curves
E(A), E(A) and p*(A). The form of the isotherm in {3 is likely to
that in the van der Waals theory.

We have got the situation of ) < 0 with a compound argument A
in ([@J)), consisting of two different thermodynamical trajectories: po2(p)
describing evolution of vapor and po1(y) describing evolution of liquid.
Both are functions of the single variable ¢. The equations (31]) and (3:2)
for the envelop describe probabilities of the system to evolve as pge and
po1- The probabilities are also functions of ¢. The arguments ¢ and p*
are tightly connected by the expression (2.9]).

Initially we have a vapor. Then we were continuously isotermally
press on vapor. We move along a single trajectory pél) for p* < —a,
given in (Z0)), here everywhere > 0. Then we come to the point
pél) = —b, ¥ = —a, the point of the bifurcation, and while continue
to press, we go inside the area () < 0 along the trajectory of the main
maximum of pga(¢) with the aim to reach the endpoint pgps = —d. In
the area @ < 0 going along the curve pge, we have to compensate the
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Figure 7. Plots of the functions £(A), u*(A) and E(A), A = nic(n —Ne)
inside the rectangular @ = 0. It is clear, that £(A) =~ p*(A); E(A) =
p*(A)A + DA? — GA* = —DA? + 3GA*; exp NE(A) plays the role of
density measure of the distribution of A. The main points b, f,d, d/2 are
given. Obviously, in the region (—b/2,—a;b/2,a) the function E(A) is
negative and in TL the contribution of pgs is zero. Shaded areas are not
subject to consideration (see Figs. 21 and B]).

inner work (the reaction of the system in form of the fluctuations of the
density of a liquid type which have been started at the point (b/2, —a))
going along the relative maximum pg; to the point (d,0). In the TL the
probability of those fluctuations is zero, they disappear, except the point
(d,0) where the probability to be a liquid is equal to the probability to
be a vapor, and is 1/2.

Let us estimate the external work of pressing on the vapor system
which take place along the isotherm p*(A), A = wgpo2 + wipor in TL.
The process begins at a “pure” vapor state wy, = 1, A = Ay (=b) = po2 =
—b and ends for A, at the end of the main maximum of pog, po2 = —d,
it means Ay = wy(—d)po2(—d) = 1/2(—d). We denote by AOut the value
of this work per one particle:

AGk = O (3, (-a/2) - i (Ag(-)] = oD |5 + 2] (wa)
here p*(A) = —2DA + 4GA3, Ay(=b) = —b, Ay(—d/2) = —d/2, b =

\/(2/3)D/B, d = \/(1/2)D/B. One has to add to this quantity the

energy that compensates the internal work of the liquid type density
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fluctuations, emerging spontaneously along the trajectory % < po1 <d
with the probability w; ~ 0 everywhere but at the point pp;1 = d the

probability is w;(d) = 3,

AR = =0 (Au(d/2)) — p* (Au(b/2))] = —Op" Ai(d/2) = iepd

(4.5)
since w;(b/2) = 0. As a result

3
Aous = AQ) + Al = (5 + V)@Dd (4.6)

The same relations at Q < 0 may be written for the process of an
isothermal stretching of the liquid to the boiling state which starts with
the formation of a bubble of vapor in the liquid phase. In this case instead
of () we have to write

3, 4 } (4.7)

AG) = Ol (A(d/2)) - i (A)] = ©Dd[ -2 + —].
out =~ O[p"(Ai(d/2)) — " (A)] 1735
Here Ay = b, wp, = 1; Ay(d/2) = d/2. We have to add to this energy
the work A((flt which compensates the internal work of the gas-type fluc-
tuations, emerging spontaneously in the liquid phase along the relative
maximum of the gas branch. Then:

4
AL+ AR = eDd(- . 4.8
out out T ( 2 3\/5) ( )
In the TL the argument A = A, of the main maximum of the

isotherm p*(A) of the vapor phase varies in the intervals —b < A < —d
and —d < A <L —% (see Figs. Bland [ and takes a broken form. The van
der Waals point A = —d becomes a turning point of the thermodynamic
trajectory of the vapor phase.

The part of the isotherm p*(A), which refers to the relative maximum
of the liquid phase, is nonzero only at the point A; = %d, since only here
w; = 1/2, po1 = d, whereas everywhere within the interval g < po1 <d
we have w; = 0.

In the TL, the work along the trajectory of the main maximum of a

vapor phase AOut in (@4 has the form:

Al =0 (u* (A)a——ia—H1" (A)A:—d) +0 (M* (A)a=—a—p" (A)A:—b) :
(4.9)
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However, one can easily make sure that

#(A)a=za =0, p*(A)a——yq = 7 DdO and p*(A)a—p = 3\/§®Dd.

Therefore the term %@Dd in expressions ([@4) and (L) can be treated
as the work necessary to reach the axis p* = 0, and the term (3/2)©Dd
in (L) describes an external work as a sum of two works along the axis
p* =0 (namely the sum of the first term of (£9) and of the term (L))
that result the creation of a nucleated liquid droplet in a vapor phase.
Moreover, the thermodynamic trajectories which leads to such creation
go along the azis p* = 0 inside the vapor phase states from the van der
Waals point A = Ay, = —d with probability 1 to the point Ay = —%d with
probability 1/2, and from the liquid phase states from the point po1 = d,
A; = 0 with probability 0 to the point A; = %d with probability 1/2.

After reaching at the line p* = 0 the state po2 = —d, Ay = —1/2d,
po1 = d, Ay = 1/2d, a phase transition starts: a droplet of liquid and two-
phase system emerge. (This is the first stage of the FOPT, announced
in the headline of the present work.)

The latent work (per one particle) of the transition of a particle
from the gas phase to the liquid phase in full agreement with (4.4)—(4.8)
equals:

A= 005 (Bajs) — 1 (B_gps) = 30D, (4.10)

The creation of a liquid droplet in a vapor phase is equivalent to
the work Ajnt spent for creation of an additional internal pressure inside
the liquid droplet, which is equal to 2a/Rq, and for the energy of the
surface tension «Sq,, where « is the surface tension coefficient, Rq, is
the radius of the emerged droplet, Sg; is the surface of the droplet, all
together gives —(a/Re)(4m/3)R3,, and, recalculated per unity volume

of the droplet,
a

Rdr '
As a result, for the balance of the performed densities of the work, after
gathering (LI0) and the first term in ([@L6) for Aoy multiplied by ny,
here n; is the density of particles in the droplet, we obtain an explicit
value of the density of the surface energy of the droplet of liquid:

Aint -

(4.11)

« 3
A = — = ——OndD. 4.12
‘ Rdr 2 " ( )

where, along (B.16)),

6
=n—s =n.(14+d)—. 4.13
= ne(1+d) (4.13)
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Then the energy of the surface tension per one particle, A, /ny, is:

a mod 1

Rar 6 n.(1+d)

Aint

ny

= —gGDd = (4.14)

When Ay = —3d, A; = 1d it is easy see that for ({I2) one can write:
—3/20dD = 12G[A A} — AA]. (4.15)

This expression describes the structure of a surface layer, the mantel
of the droplet. It’s localization is in a narrow area of ¢ = 7/2 of ar-
guments of the quantities A; and Ay, namely A;(p) for ¢ = 7/2 + 7,
Ay(p) for ¢ = m/2 —~. In TL the limit of v is zero, which means that
the mantel does not have any size, but the density of the energy of its

surface is ([EI5H)).

4.1. Equality of the vapor and liquid chemical potentials at the
jump points Ay = —d/2, A; = d/2

At that points the value of A = Ay + A; is equal to zero. This means
that the mean density 7 in the whole expressions for = = Zo, Z¢,, 1=,
has to be put equal to n = 7.. Therefore in terms of the mean density

n=ne n=nec

The mean density equals 7.. The densities of vapor and liquid in
the growing droplet remain unchanged from the beginning to the end of
the phase transition. The volume of the vapor decreases, the volume of
the droplet increases, the chemical potentials of both phases are equal,
g = fu1. As a result of the latent work of pressure, a jump-like change of
the density n; — 7y = 1.2d occurs. It occurs in all cases independent on
N: for the finite N and in the thermodynamic limit N — oo, V — oo,
N/V = const.

5. Two-phase systems

In the expressions ([£4)—(£I6]) we have prepared a picture of a two-phase
system: vapor + droplet of liquid.

In the TL the interface between those two phases is volumeless, there
is no particles inside. In result the total number of particles N consists
now of two terms N = NN, + N;, the volume equals V,; 4+ V;. The numbers
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Ny and N; as well as the volumes V; and V; do change continually.
Therefore we have to take here all quantities estimated per one particle.
In the situation ([@2]), or more simple (@3]

InZ, = 5 In=Z,, = NE(Ay, Ay) = N (Ag, Ar) (5.1)
we have to write:

PU = GM*(A(N Al)u

where v = V/N is the volume per one particle, 7 < 0,01. The indepen-
dent variable is ¢, 0 < ¢ < 7.

Taking into account the sum [BH) for A we can write down the
expressions for £(A) and p*(A) in the forms, which refer to two single
phases, the vapor phase and the liquid phase:

E(A) = Ey(Ag, A1) + E1(Ag, Ay),
where

Eq(Dg, Ar) = 115 (Ag, A) + DAZ — GAL + DAGA—
— G[2(AIA + AGAY) + 3A2AT],

(A, A)) = pf(Ay, A)) + DA? — GA} + DA,A—
— G2(ARA + AGA}) + 3AZAT);

1 (Ag, Ar) = pg(Ag, Ar) + pi (Ag, A),
15 (Ag, A) = =2DA, + AGA? + 12GA A} (5.2)
pi(Ag, A) = —2DA; + 4GA} + 12GA A}

These equalities are exact. The ends of the main maxima of po2|,—r/2 =
—d and po1|,—r/2 = d are simultaneously the starting points of the rela-
tive maxima of pge and pp1. Automatically that concerns to the quantities
Ay and A; in (52).

The dependence of yj and yj from the A, and A, is “mixed™ every
one of them possesses mixed items A;A? or AlA2 accordingly. In the
TL (Fig. B) mixed items are locahzed at the pomt p =g orpu" =0,
along (2I2) that is the point of the end of the main maximum of pos,
po2 = —d, Ay = —%d, and of the origin of the main maximum of pg; at
po1 =d, or A; = 5

The mixed product 12GA,A? in (E2) “pushes” the vapor branch
i (Ag, Ay) to the point pf = 0, Ay = —d/2. The product 12GA;A?
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Figure 8. The plots of 115 (Ag, A;) and pf (A, Ar) and of theirs items,
along (5.2)), as functions of ¢ in area @ < 0, 0 < ¢ < 7 upper row and
their main values, lower row at different N. The last items: 12GA,A?
in py(Ay, Ay and 12GAAZ in i (Ag, Ap) differ from zero only at the

= /2. Their difference @12G(A A2 AjA?) equals energy (per one
partlcle) of the mantel of the droplet The variation of the forms of
curves j;(Ag, Ar) and py(Ay, Ay) with growing N, starting from N =
10° (dashed lines) to N = 107 (solid lines) (that’s practically TL) is

given.

“pushes” (for any N) the trajectory of the liquid branch p;(Ag, A;) to
the point pf =0, A; = d/2. In the TL when pressing the vapor along the
way T > @ > /2 the probabilities of all points of the relative maxima
of the liquid branch are zero except the point, pp1 = d, where w; = 1/2.

Now we are ready to describe the whole process of the FOPT. Repeat-
ing the beginning of the previous section we start with the quasistatic
isothermal pressing of a pure vapor. The description is in the TL. The
discriminant @ > 0. The system of vapor moves along the trajectory
A =pW, A < —b, u* < —a. The equation of state

Pv=0u*(p <1>) = —2DA + 4GA3 = —2DpM +4G(pM)?,
Pv= 9[ 2D (n Me) +4G 5 (1 —1c) } (5.3)

C

n<ne(l— b), Pv/@ < —a.

Then, continue to press we come to the points of bifurcation Q = 0,
pM = poa = —b, u* = —a. Inside the region Q@ < 0 we (continue to)
move along pg2, it is described in ([@3), we come close to the point




26 IIpenpunt

po2 = —d, Ay = —%d, py = 0, p* = 0. Along that way the equation
of state is similar to (5.3]), because in TL A; =0 (A; = wypo1, w; = 0).

The situation changes dramatically at the point pgo = —d; u* = 0.
Here the probabilities are equal: wy = w; = % The system influenced by
the outer pressure bears the droplet. At the point pg; = d the A; = %d
the droplet of liquid arises, we get the two-phase system vapor + droplet
of liquid. The FOPT starts.

We are not able to describe the situation by means of the expression
Pv = Ou*(A), where A is a function of the mean density, and v is the
mean volume (per one particle). Just now in TL we have the two-phase
system, Ny and V; we refer to the vapor and N; and V; — to the liquid
droplet. These quantities change continually, and cannot be fixed. But
they are mutually connected dN, = —dN;, nydVy, = —dVin;, ny and ny
become constant.

Taking that in mind let us write down the left-hand side of (&)
for a two-phase system. We start with the initial relation PV = Po,V,
where Peyp, is the outer pressure, PV = P(V, +V, Z—;), add and subtract
(P — %)Vi, Vi is the droplet volume, n; is the density of liquid in the
droplet, ny is the vapor density, Vj, is the vapor volume. We have in mind
that
47

3

where S; is the droplets surface, S; = 47 R?, « is the surface tension, R;
is the droplets radius. Then the left-hand side of (&) can be written
down as

Vi=—R}and — — = =V, —as,

PV =P

()

g

2a «Q
+(P+ E)Vl —aSi+ZVie  (54)

For the right hand side of (B.1I) we shall do the same transformation:
we add and subtract the energy of the droplet :l:@%anlV}. Then the
last item in (54) can be reduced with the quantity ©2 Ddn,V;. In result

the equation of state along the line p = 5 is

P +(P+ 2—0‘)14 — a8 = NOu(A,A) —@%Ddzvl.

vo+ (o -1) R

Ng

(5.5)

Using expressions (0.2 we can describe the process of pressing vapor
inside the area @ < 0 in more detail then in (G.3]).

In (510 and in (50)) the expression p*(Ay4;) is a compound one. It’s
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equal zero at the points Ay = —%d, A= %d, as well as the expressions
IUJ* (Ag, Al) A_q:f%d = M?(Agv Al) A_q:f%d =0.
Al:%d AL:%d

According to Section 4, when pressing a vapor in the state p;(Ag, A;)
along the trajectory Ag, the density fluctuations of the liquid-type arise
spontaneously inside the vapor along the relative maxima of the trajec-
tory A; = wipo1. The system performs an inner work Ou; (A;A,) (per
one particle). The outer pressure has to compensate this inner work.
Therefore an additional work of the outer pressure has to be equal

- @Nl/ﬁ(Ag,Al). (5.6)

At all finite N the value of —Ou;(Ay, A;) is different from zero, (only
at the point A; = %d, Ay = —%d it equals zero). In result inside the
rectangular Q = 0 in the process of the pressing of vapor along the
trajectory A(p) = Ay(p), 5§ < ¢ < 7 (here pgy is the main trajectory,
and po1 is the relative one) for the equation PV/© = Nu*(A,, A;) in
the right side of (o)) instead of Nu*(A,, A;) one has to write:

Np*(Ag, Ar) = Nypy + Ni(py (AgAr) — mu(AgAr)), where
Ni(py —pi) =

(5.7)
= Ni[-2D(A — A +AG(AY — AF) +126G(8,A7 ~ AiA2)].

It is easy to make sure that at the point of equal probability Ay = —%d,
A= %d it is rightly:
—2D(Ag — A)) +4G(AS — A}) = ng,
12G(A A7 — AAY) = —ng.

In the right hand side of (G.)) instead of Np*(Agy, A;) we can write the
expression (.8). Then reduce in (54]) and (8] from the both sides the
following

%v — N[=2D(A, — Ay) +4G(A? — AP)]
and get an acceptable form for the two-phase system:
n; 2 _
Pl ()¢ (7430

g
= ONgu(Ag, A)) + ON12G(AGA] — NAY). (5.8)
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Figure 9. Localization of the mixed products 12A,A7 and 124;A2 as

functions of ¢ (or p*) at the point ¢ = 7, for —d < A, < —g, % <A <d

at different values of N. Their difference 12(A,A7 — AjA2) describes the
mantle around the droplet of liquid inside the vapor phase [28431].

Here the expression

i%_a - aSl = @N112G(A9Al2 — AlAg) = —g@NlDd (5.9)
1
describes the energy of the droplet.

Now concerning the events on the axis p* = 0. Here in points A; =
—%d, Ay = %d all three functions y, py, pj are zero. The latter are the
significant points of the system not only in TL but at all finite numbers
of N. Those are the points of equal probability for the system with the
arbitrary number of particles to form the agglomerations of the vapor
and of the liquid types.

Each one of the curves p5(Ag, A;) and pf (A, Ar) has on the axis
w* = 0 two points of intersection. Depending on N the former are located
inside the intervals —d < A, < —%, % < A; < d. The latter points are
Ay = —%, A= % with no respect to N. Likely to the former points the
van der Waals points A, = —d, A; = d can be reached only in TL.

Equations (£8) and (&.9) work on the very beginning of the phase-
transition process and describes the first stage of FOPT. Now we start
to describe the second stage: the jump of densities.

The vapor system experiences the latent work of pressure, let us mark
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it Arw. Per one particle Apw equals:

o 1 —2d
Arw = Pow (v — vg) = Pow——

6 ni-@ (5.10)

where vy, vy, v, are (per one particle) volumes of liquid, vapor and a
critical one, Ppw is the pressure of the latent work,

1 wod 1 nod 1 nod 1 (5.11)
Py=—=— " —=—— - Q;=———. .
T 6 T 6 a6 n(l-d)

The expression (0.10) has to coincide with that of (5.9
«

3
Apw = —=60Dd = — . 5.12
= o e (512)
Then for Py we obtain the value of the pressure, which forms the

magnitude of the latent work of pressure in (5.9)

Pw=c——a———— = %@Dnc(l — dQ)%. (5.13)

An external pressure in the form of the latent work of pressure con-
tinues to influence the system. The transition of particles from the vapor
phase to the liquid phase takes place. The volume of the vapor decreases,
the volume of the droplet increases. The vapors density remains equal
to g = n.(1 — d), the density of liquid in the droplet is also fixed,
m = Ne(l + d). When almost all vapor condenses and transits into a
growing volume of liquid, the vanishing vapor phase transforms into the
vapor bubble with the density of the surface energy

« 3
R, nQQDdG) (5.14)
inside the liquid phase. It is positive, the analogous energy of droplet
(EI0) is negative. The vapor bubble disappears and this means the end
of the first-order phase transition process.

In the TL the processes of bubble disappearance, as well as the
droplet appearance, passes the line p* = 0, and are the main parts
of the first-order phase transition process. Both phases, the liquid and
the vapor one, take place in the process of disappearance of vapor bub-
ble. With respect to the changes of density, this process passes along
the horizontal parts of isotherms j1;' (Ag, A;) and pj(Ag, A;) but in the
mutually reverse directions: from A; = id to A; = d, for liquid, and

2
from Ay = —1d to Ay =0, po2 = —d, wy(—d) = 0 for vapor.
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Figure 10. The isotherms of the equation of state, for fixed: N = 10° —
dashed lines, in TL — solid lines, (1) the start and the passage of the
process of FOPT. The black circle depict the droplet of liquid in the
vapor phase, (2) the end of the process of the FOPT. The circle depict
the bubble of vapor in a liquid phase. The bubble of vapor is all that
remains from the maternal phase of vapor after the FOPT. We use here
considerations opposite to those given in (£8). In the end, the bubble
disappears. The resulting liquid moves along the trajectory 2 to the point
d. Releasing the energy —(4/3v/3)0Dd in the reverse direction to (@)
it reaches the state p* =0, A = A; =b.

Now we shall try to single out from formulas (£I1]) and (B.I0) the
expressions, which may be related to the surface tension coefficient, and
to the expressions which determine the radii of the nuclei spheres

Let us take the ration of formulas (£I2)) and (BI5) and get

By _m _(+d)
R Tlg (l_d)'

(5.15)

Thus, during the process of FOPT the ratio of the last bubble radius to
the first droplet radius is the same as the ratio of the droplet density to
the bubbles density.

An invariant of these ratios in (£I2]) and (5I6) is the a from the
left-hand side and the quantity (3/2)Ddn.(6/7c3) from the right-hand
side. The dimension of « is [a] = Joule/m?, the dimension of R is [R]
= m. Then in expressions ({12 and (BI6) we set the following value
of the surface tension coefficient and its behavior while approaching the
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critical point 7 =0
9

E
where D = D,,_, d = /D/2G, and G = G,,, according to formula

@I). Then for Rl(min) and Rémin), i.e., the minimal values of the liquid
droplet and vapor bubble radii, we have:

o =

1 50
D6 ~ 7%, (5.16)

R(min) _ a

: nita BT oasa (5.17)

Here 7. is the universal quantity, n. = 0.130443. The radii are deter-
mined by the value of the hard-sphere diameter o (which is different for
different substances, as can be seen from Table [I) and by the value of
the parameter d = /D/2G.

The FOPT process ends with disappearance of the vapor bubble. The
work, necessary for this, equals to the value (.10 with the opposite sign,
multiplied by the volume of the bubble. Let us denote this work by A,.
Taking into account that (7o /6)n, = 04, ng = 1n.(1 +24,) =n.(1 — d)
and (B.I12)), after some manipulations we get

AR} o 12 DdO

B il s (5.18)

Ay =

The work to create the bubble A (see Fig[IQ) occurs in the process,
when A; varies from d to d/2; the disappearance of the bubble goes in
the reverse direction: A; varies from d/2 to d. Therefore we can say that
the end of the first-order phase transition occurs in the points Ay = —d
and A; = d, similar to the van der Waals theory.

The latent work of pressure is connected to the sum of three works:

1. the work for creation of the liquid droplet in the vapor phase, which
is given in formulas (.6) and (EI0), multiplied by the droplet
volume 47TRl3 /3 — this is the beginning of the phase transition;

2. the work (BI9) for vanishing the vapor bubble in the completely
formed liquid phase — this is the end of the phase transition, thus
in total:

1 1 Ddo

3. and of the work Ay, for transition of all vapor into liquid. The
latter one is the main part of the process. The transition occurs
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between the points A, = —%d A= %d along the line p* = 0:

3
A = Ou7 (A1) = 15(Ay)) = Pur = Pyo, = —=50Dd. (5.20)

However, those expressions are not commensurable. Equation (5.20)
characterizes the energy of a jump per one particle. Equations (G.19])
determine the energies of the liquid droplet and of the vapor bubble. If
the quantities given by these formulas recalculate with respect to energy
per one particle, we arrive at a “magic” characteristic © Dd, which enters
various quantities with corresponding coefficients. The numbers of par-
ticles within the “initial droplet” and within the “last bubble” are equal
to their volumes multiplied by the density of the droplet and bubble,
respectively. Thus, for the number of particles in the initial droplet and
the last bubble we have
47TR?7L (1+d)4—7“7—3 1

3 mose 32 (1+d)3’
8
maragz Vo= %'
And the works for creation of the droplet and vanishing of the bubble
per one particle according to (B.19) and (B21)) are as follows

Nl:nl

N, = (5.21)

A, = —%Dd@, Agr = ngG. (5.22)

Their sum equals zero. The latent work is given only by the expression
lawin)
At the final stage we have only a liquid phase. The latent work of
pressure is determined by the points of jump A, = —%d and A; = %d,
by the densities 7.(1 — d) and 7.(1 + d) accordingly, like from the van
der Waals points —d and d.

We have completed the whole picture of the FOPT. The investigation
of Z,, is the only one that describes the process of the first order phase
transition. Merely =,, inside the full expression (L3) depends both on
p* and the order parameters Ay, A;. The remaining = = Z¢Z;,,; in
(L3) is independent on A4, A; being a function of 7 and 7 only. During
the FOPT the order parameters A, and A; are constant: Ay, = —d/2,
A; = d/2. Their sum is equal to 0. Therefore during the FOPT, A =
ANg+A; =0, A= (n—nc)/Ne, s0n =1, = 0.14033. We have to substitute
this value of density 7 in the formula for Z" (L3)). The ultimate expression
of the grand partition function takes the form

E=E(Ag; A1) = [FoEpln=n. - Epo(Ag, Al)}Ag:—d/m (5.23)
Al:d/Q
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6. The restrictive curves of FOPT [27]

Let us consider a system of restrictive curves which follow from the
results obtained above. Recall that the vapor is continuously under the
outer pressure.

The bound of the bifurcation area BBA crosses the critical point
(r =0, n7 = n.) and two points in the vertices of the diagonal of the
rectangle @ = 0 (see Fig. [Il), the first point, u* = —a, A; = —b and
the second p* = a, A = b, a = (2/3)Db ~ 73¥, b = \/(2/3)D/G.
They accordingly correspond to the following values of densities and
pressures:

N, 6
Lo =7.(1— ), P:G—Q*A,A‘ =0
779|7b ne( ) [ VN( PIVAY) AAQL_:Bb 7T03779(1
6
mlg =ne.(1+0), P =6—3na. (6.1)
Vixea

Here a = Gb%, b= \/(2/3)D/G ~ /%, i (A A)) = —2DA;+4GA3,
A; = wi(ni/ne — 1), i = g,1, w; = 1; at 7 = 0 we have: n; = 7.,
Ay = A; = 0. So the bifurcation curve for the vapor phase 1, < 7, is:

2
—2D(ng/ne — 1) + 4G(ng/n. — 1)° = —3Db

and for the liquid phase, n; > 7,

—2D(n /5. — 1) +4G(n /1~ 1)* = Db, (62)

The bounds of the real FOPT. The restrictive curves surround
the area of the entropic processes, connected with the arising of a new
phase, in our case arising of the droplet of liquid inside the vapor. The
variables here are the chemical potential and the temperature, and new
order parameters A, and A;.

We distinguish two situations. The former is the beginning of the nu-
cleation of a droplet inside the vapor and the emergence of a two-phase
system: vapor plus droplet of liquid. We have named that process “nu-
cleation”. The latter situation is the transition of vapor into the droplet
until whole vapor disappears. Finally, the new liquid phase locates on
the vertex u* = a, A; = b. That process is called transition.

The curve surrounding the situation of “nucleation” is going through
the critical point and the points of the first zeros of uj(Ay, A;) and
i (Ag, Ar) (see Fig. [[0). In TL that are the points Ay = —d, A; = 0;
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Figure 11. (a) The restrictive curves of FOPT along the formulae (61—
(E5). The bifurcation curve 1: gets through the critical point and the
points (u* = —a, A = =b) and (p* = a, A = b), A = %(n — ).
The nucleation curve in TL is going through the critical points and the
points A, = —d, A; = 0 (for vapor) and A, = 0, A; = d — for liquid
(it coincides with the van der Waals binodal). The transition curve 3:
gets through the critical point and the points of the jump (u* = u; = 0,
Ay = —3d) and (u* = pf = 0, Ay = 3d). As functions of densities
ng = ne(1 —d) and m = n.(1 + d)). [Likely to the van der Waals theory,
the points of the spinodal 4: are (¢* = a, A = A, = —b/2) and (u* = —a,
A = A; = b/2) — but those points are unattainable in our theory (see
Fig.[0).] (b) The quantity u* is proportional to 737, the density n~ T2
therefore in the regions very near to the critical point the curves of
restrictive curve and binodal turn into lines, the difference between the
processes of pressing a vapor (and get droplets of liquid) or stretching
a liquid (and have bubbles of vapor) occur with equal probability. We
obtain effects described by Bakai in [32]: the interphase system with
droplets and bubbles.

Ay =0, A; = d (see Fig. [[0] formula BII)), Fig. B} Fig. [f). Those are
the points of van der Waals binodal.

The dependence between A4, A; and 7y, 7 is given in (3I3]). From
that we can write the equations for “nucleation” curves:

e for vapor: Ay, = —d, pu; = —2DA, + 4GA;°; = 0la,=—d
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—d= 771_6(77g - 77C)a _2D771_C(77g - 77C) =+ 4G%(77g - 776)3 =05

e for liquid: A; = d, uj = —2DA;+4GA} = 0|p,=q, d = %(m —Ne)s
—2D;- (i — 1) + 4G5 (m = 1e)* = 0.

A spinodal curve is a geometric place of the points of a jump like a
transition from the host vapor phase into a liquid phase (droplet) while
vapor is isothermally compressed. On the plot of probabilities shown on
Figs. Bl and [6] the spinodal corresponds to the crossing point for the
probabilities w, = w; = % In the thermodynamic limit it corresponds
to the point % on the Heaviside curves. The points of a jump have the
following coordinates Ay, = wgpo2 = —%d and A; = wipor = %d (see
Fig. [6l). Here the isotherm g and gy equal zero:

(i (Ag, Ay) = =2DA, + AGA] + 12GA A} =0,
pi(Ag, AY) = —2DA; + 4GA} + 12GA A2 = 0. (6.3)

This equalities may serve as the definitions of the spinodal.

Here Ay = —3d = —4,/4D/G, Ay = 1d = §/3D/G. Taking into
account (from (BI3)) the dependencies of A, and A; on densities and
that wy, = w; = 1/2, one may write for both vapor and liquid:

(-1)=-d (L-1)=a (6.4)

Ne Tl

We associate these equalities in one common expression holding some
peculiar distinguish of the phenomena. Taking into account explicit forms
of the third terms in (G3]) one can rewrite (6.3)) for the vapor part of the
spinodal and for the liquid part, respectively:

(% - )+§G(g_ ) = 2D,
—D(% - 1) + %G(% - 1)3 - —ZDd. (6.5)

In [@3)-(@EX) we have got expressions for nucleation and the transition
curves of the FOPT in a one-component system.

7. Conclusions

After obtaining the restrictive curves, the problem of the first-order phase
transition in a simple system on the example of the vapor-liquid system
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is completed. Taking the quartic density measure as a basic one, we
have finished a long chain of investigations on the single integral of the
Landau type. All considerations are made on the first principles. It seems
to be topical to make some short overview of the main steps of those
interpretations of FOPT that are made from the very beginning to the
end.

We start from the potential of interaction between two particles. Usu-
ally, the potential consists of two parts: one describes the repulsion, the
other one corresponds to attraction. Accordingly to that, the integration
of the grand partition function is made in two phase-spaces. The former
is the Cartesian phase-space over the coordinates r1, ...,y of particles
describing the behavior of a system of hard spheres which simulate the
mutual impenetrability of the particles. The latter is the phase-space
of collective variables {px} describing the long-range attractive interac-
tions. In both integrations we work in thermodynamical phase-space p,
T, V.

To describe the FOPT events, we need to work in the thermody-
namical phase-space p, T, u*, where u* (as a result of the previous two
types of integration) is the generalized chemical potential of the system.
Therefore we finish the whole work on the investigation of the single
integral of Landau type over the macroscopic variable pg.

The small parameter (N/V)o? inherent to the system of hard spheres
(HS) is proportional to the density, or the ratio o/(r), where o is the
diameter of a hard sphere, (r) is the average distance between particles.

The main characteristic phenomenon of the long-range interactions
is screening. The radius of screening r is an effective radius of the long-
range interaction (for charged particles 7o is the Debye radius which
is inversely proportional to the square root of density). Because of the
negative value of the potential 15(0), the effective attractions either in
the vicinity of the critical point or in the vicinity of the FOPT, become
as 1/r, 7o ~ (N/V)~™'/2 and ro/(r) ~ (N/V)~Y/6. The ratio ro/(r) is
inverse to the small parameter of a hard-sphere. In this case the Gaussian
density measure cannot be the basic measure [12].

It’s useful to mark, that the attraction acts on long distances, that
means on small k; the repulsion acts on short distances, that is on large k.

In {pk }-space the attractive part of the potential energy is quadratic
with respect to py:

E P(rij) — E oK) (prp—x — 1).
i Kk
i#]

On all those reasons we describe the repulsion in the Cartesian phase-
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space and the attraction in the collective variable (CV) phase space
{px} [27]. In [33], the first steps of describing both potentials of interac-
tion between particles through functions belonging to space Lo having
the Fourier transform were described. Functions of the grand canoni-
cal ensemble were investigated in two phase spaces of different sets of
collective variables.

Thanks to the works of Perkus and Jevik, Andersen and Chandler,
Week now we have complete results for the thermodynamics of the sys-
tem of hard spheres [34H38]. In works [OHTILI3L14,25H27], the method of
CV had also been entirely elaborated.

In the present article both phase spaces are connected by the Jacobian
of transition. After integration in the Cartesian phase-space over the
coordinates of individual particles, we obtain the initial expression for
the partition function in the collective variables phase-space [27]:

[1]
[1]

0=1,

where Zj is the partition function of the system of hard spheres (HS).
The HS system is the reference system in the CV phase-space, =; is the
resulting form for the partition function of the attractive interactions

1
2= /exp(hpo ) ; a(k)pxp—x + iZW;wkpk +

1, .
+> —(~i2m) k Zk M (k.. Koy )wpy - - - wi, | (dw)(dp),
1yeeesfon

n>1

here the designations are the following; h = u — o, po is the chemical
potential of the HS, a(k) = (N/V)B¢(k), (k) is the Fourier transform
of ¢(r) {wk} is the system of Fourier variables conjugated to the CV,
9N,, are semiinvariants constructed from the RS-correlation functions.
For the first two semiinvariants we have

My (k) = N6y,

My (i, k2) = (V) — (V) s + 35NN = D (B) ks
where po(k) is the Fourier transform of the binary correlation function
of the RS. The explicit formulas of the cumulants 91,, are known [39H4T].
All 9, are decreasing functions of n, their limits at k; — 0 possess wide
platos, as it is seen from the Figs. I3 and [[4] (see Appendix B).

For the potential (k) = (N/V)Bo(k) or ¢(r) which describes the
attraction between two particles, we demand its Fourier transform to
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be negative at small k, moreover ¢(k)[z—o < 0 always. The curve of
¢Z(/€) intersects the axis k in many points. We mark the first point of
intersection by B, ¢(B) = 0. For k > B the curve ¢(k) behaves with
the periodical character and is rapidly decreasing. So we assume that
the main events connected with the attraction are gathered inside the
interval 0 < k < B, and we put g?)(k:) =0 for k > B.

The curves of cumulants 9, (k1, . .., k,) are changing very slowly at
small values of k1,..., k, and have wide threshold platos at k; = 0, as it
is shown in Fig.[I4l It’s significant that the coordinate of the first zero of
d(k)|r=p = 0 is located in the middle region of platos of all cumulants.
We assume that all important events connected with attraction occur in
(1) at the platos of M, (0, ..., 0) and we put here values of all cumulants
at k; = 0. That means the solution of the problem: the great partition
function can be calculated. In the future, it is of the same interest to take
into account the terms proportional to k2 for us(k).

Since a(k)|x>p = 0 for all & > B we integrate in (1)) over px at
kE > 0, get 6(wk) at k > B, then integrate over wyx at k > B and obtain
quite suitable form of Z; for further consideration in the present work:

- 1 .
E = /exp hpo — B Z a(k)pkp—x +i2m Z Wk Pk +

k<B k<B
1
+y = —y(=i2m)" > M0, 0wk, - Wiy Ok, 1k, (dp) (dw),
n>1 Eiyeookn
k;<B
(7.1)
Here we make some definitions. We say that
1
wy(p,w) = hpo — 3 Z a(k)pxp—x + 127 Z WPk +
k<B k<B
- (—i2m)™
+ Z Z M, )wkl Wk (7.2)
m=1 ! ki,....km
i<B

is the n-th basic density measure, if all momenta

[untoon, . dp)(a)

are convergent. In [12] it was proved, that in the vicinity of the critical
point (7 = 0, n = n.) the density measure wg(p,w) is a basic one.
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Concerning the screening. Integration with the Gaussian density mea-
sure as a basic density measure automatically gathers together the po-
larisation diagrams and convert the attractive potential é(k) into the
screened form

a(k)

N -
m7 a(k)zvlw(k),

g(k) ~
x~! equals to rp, where rp is the radius of screening, which tends to
infinity at the critical point. That fact cause divergences in some dia-
grams in the expression of the partition function =; and expressions of
the distribution functions. Namely, the diagrams for = in which three
lines of g(k) come out of the vertices are divergent. To avoid divergences
we have to change the form of the basic density measure from the Gaus-
sian to the quartic one. “Quartic’ means that in the exponent of this
form we have a polynomial of degree two, three and four in the indeter-
minate of py (in general from degree two to six). In Fig. [ and in [13]
the quantities 9, (k,0,...,0) are given. The integrals of all momenta
will be convergent when M14(0, .. .,0) is negative.

The cumulant 215 has the imaginary number ¢, therefore the conver-
gence of all momenta is guaranteed by the term

(—i2m)*
BT D IMafwry - Wy Oy -
’ ki,....ka

The imaginary term

—1271'

E 9325 wkl .. .wk56k1+...+k5

influences on the form of the rectilinear radius n = 7. [42]. In this work
we do not deal with the questions about the forms of the rectilinear
radius [43] and restrict ourselves to the quartic form wy, and take the
quartic density measure as a basic one.

In [12], it was proved that the description of different events by using
the distribution functions demand to use the sixth degree density mea-
sure as a basic one, for example, phase transitions in the region near the
three-critical point of one component systems.

We leave the investigation of ws or wg for the future. Here we have
considered only one- and two-phase systems. From [I3] and Fig. [[4] it
is clear, that all cumulants 9ty,...,91; have a proper mathematical
signs. We calculate =; only for the basic density measure, assuming

E1 = [ wa(pxwi)(dp)(dw).
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Solving the problem of screening and the basic density measure, we
have to describe the situation of the renormalization group symmetry.
The latter arises in some part of the space of {px} for B, < k < B,
where B,,, = B/s"", s is the parameter of partition of the space k,
k < B into blocks, n, is the (critical) number of the last block in this
partition, k,_ = B/s"" is the limit value of k. For {px} with k > B/s"~
we are obliged to take the quartic density measure as a basic one. For
k < B/s™ the basic is the Gaussian’s density measure. To get that
situation explicitly one needs to obtain the Hamiltonian in Z; in the
Ising form. For that reason we have to put the cumulant 913(0) equal
to zero in the Hamiltonian of Inw4(pw). In result, for Z; we obtain the
Ising problem in an external field, and specific universal critical value for

the critical density
(N wod
T=\v).76

Substituting the experimental value for the critical density of a particular
physical system for (N/V). in the formula of 7., we obtain the value of
the hard core diameter of the particle of that system. In Table [] such
values are illustrated.

Going on with the investigations of =i, we obtain very important
information: we get the maximal values of wy(py) only at px = 0 for
all k£ # 0 and at pg # 0 for & = 0. That means, that the integrals
E1 = [wa(px)(dp) are split on two macroscopic problems: the integral
over py for k # 0 and a single integral over the macroscopic variable py:
21 = Z1(pk)E,,, where =, is given in ([3) and I). It is important
that the chemical potential in the whole expression of Z; is contained
only in Z,,. The integrant in ([21)) depends on 7 and p*, and at fixed 7
it is a complete differential of u* (or of ) [44]. This case is considered
in the present work.

In our calculations we have neglected the influence of the states with
very small probability. For that aim the unstable solution pg3 in Sec-
tion 3 is not taken into consideration. Analyzing Figs. Pl Bl and H that
seems to be right. As a result of this step, we are able to talk about
the probabilities. We say that in the system under the continuous action
of the outer force the FOPT starts when the probabilities to stay in a
vapour or a liquid phase are 1/2. At that moment inside the maternal
phase (vapor) the nucleus of the new phase (droplet of liquid) and two
new order parameters Ay and 4A; arise. The characteristic function of
that process is Pv/6, where v = V/N depends on p* but not on V at
fixed T'. In TL the shifts of the order parameters A, from —d to —d/2,

= 0.13044.

c
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and A; from d to d/2 cannot be explained in the P, T, n theory by
the conservations of densities. The most important here are Section 2,
where the two trajectories pp; and pg2 of the maximal positive values of
the basic density measure are found, and Section 3, where the envelope
curve in the form of probabilities of those solutions is obtained.

We didn’t take into account the unstable solution pgs, the probability
of which is small at all N, end is zero in the thermodynamic limit (TL).
It is important to say that only in TL we have the two-phase system.
Only in TL the mantle around the droplet does not have any thickness
and does not have any particles but is has the surface energy. It was
shown that the event of FOPT really occur on the horizontal part of the
isotherm. The main part of those processes is the arising of the nuclei —
the droplet of liquid inside a vapor system.

The essence in description of the phenomenon of FOPT is that the
points —d and d (see Fig.[), the points of the beginning and the end of
the horizontal part of the isotherm are not the points of the arising of
a new phase (liquid) inside the maternal phase (vapor). The nuclei of a
new phase arise at the points Ay = —1d and A; = 1d, where Ay and A,
are new order parameters. We are working in the thermodynamic space
p, T, ©* but not in the space p, 7, V, or p, 7, N. The densities at the
points A, = —%d and Ay = —d, at the points A; = %d and A; = d are
respectively the same. The values of A, and A; are different from each
other.

The generalized chemical potential p1*(Ag, A;) of a two-phase system
was rigorously divided into the potential of vapor p,(Ag, A;) and liquid
wi(Ag, Ay) in Section 5. From that we have obtained the expression for
the energy of the droplets mantel. It was shown that the mantel consists
of four layers and both neighbour phases — vapor and liquid — take their
part in its formation. In experiments of [28431] the layered structure of
the mantel was confirmed.

Note that in our consideration we start from the first principles, re-
peated and used the works and results of our predecessors and, particu-
larly, the results of van der Waals and Landau, however, here we got the
explicit expressions for all coefficients in the Hamiltonians.

In general we have finished the description of the main events occur-
ing during the phenomenon of the FOPT in the simple system. As it is
known, in equilibrium, the simple system can exist in three phases: gas,
liquid, and solid. It means that there have to be three main trajecto-
ries of the thermodynamic development, and two unstable trajectories
between them. The sixth order density measure will serve as a basic den-
sity measure. There should be the tricritical point. But the problem may
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consists of three problems of two-phase systems: gas-liquid, liquid-solid,
gas-solid. In each one of them the quartic density measure plays the role
of the basic density measure.

All these tasks can be solved after corresponding consideration of each
part of solutions given in that work. In the whole work we exploit the
fact that at fixed 7 the expression PV = #1n = is a complete differential
of p* [44].

In the formulas (3] and (E:23) only the integral in Z,, describes the
FOPT. The expression Z¢Zy,,} is constant, since it should be taken at
1n = n. = 0.14033. Therefore, in terms of the description of the FOPT,
the considerations given in the present paper are complete.

Appendix A and B would be helpful to clear the advantage of the
method of steepest descent in solving the problems of FOPT.
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Appendix A. Direct integration in the GPF

To validate the previous results of the Part 1 we do the direct inte-
gration of the Landau-type single integral over the macroscopic variable

Po

o0

—_ * ~ 1
Epo = / exp [\/N(u (po +9My) + Dpp — NGpg) dpo, (A1)

— 00

where M, = VN(1 — A), N is the mean number of particles, A, u*,
D, G are the quantities, given in the first part of the present paper,
A= (n—=mnc)/nc or n =ne(l+A), n = (N/V)(ro®/6) is the density,
o is the diameter of a hard sphere, D and G are values of the result-
ing Hamiltonian, obtained, firstly, after integration in the phase-space
of Cartesian coordinates of particles where the short-range interactions
between the hard spheres are described, and, secondly, after integration
in the phase-space of collective variables {px}, k¥ # 0 where the long-
range interactions are taken into account, u* is the generalized chemical
potential.

We put here py = \/Np{), omit the prime, mark Nu* = v, neglect
the values of the order In N in the expression for In=Z,, and write (AJ)
in the initial form

o = / exp {V(l ~A) +vpo+ NDpZ — NGpé}dpo
L oo, 1
:exp[u(l—A)+co+502u +EC4I/ —i—} (A.2)

Or

Zpy = explv(1 = A)]J,

J = / exp {Vpo + NDpj — NGPé} dpo,
L 5 1
J=Jy exp[icy/ + Ecy/ + - ] (A.3)
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Here

Jo = Jy=0 =expcy =

= / exp(NDp§ — NGpg)dpo = 2/6Xp{NDp3 - NGpé}dpo,
e 0
co = (InJ),—o,

2
©= Jio(%)uzo B [%(%)2} v=0"
0*InJ 10% 1 93T 0J 1 027 0%
A= (T )= o P ooy P 0t

1 /0J\20%]

(55

1 ,0JN\20°J 1 /0J\4
+6531(5,) Fz 57 (5) =

10%T 1 02T 02
= (G 3z )y (A-4)

Odd derivatives are zero. Calculation of ¢y may be fulfilled using
parabolic functions: After substitutions

NGt =S g S g1
Po=9 POToNG T s ANG
ND ND
NDp: = s=2zs, z= >1
= aNG VNG
one gets
1T a1
Jo = > 2 s =
0 42NG0/ Vs

2 24 1-3 1
V0= 271 e - of )

Finally Jy equals

Jo = \/%\/%e’igz{u 1':’ +0(Z—14)}, (A.5)
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and for cg, neglecting the term ~ In N, we have

ND?
Co = e . (AG)
The coefficients ¢o and ¢4 are as follows
_dlmJ, 9 ND? 1D A7)
2T 9ND T 9(ND)ANG' T 2G '
and
(ND)*\ 12
o wop[ol)] 1o ~s(12y°
YT TO(NG) ANG d(ND) | —41G2 2G/)
1 D?

The same value for ¢y one may get in the method of steepest descend
(SDM). Coefficients ¢z and ¢4 are connected with averaging over the
density. From this moment the differences between these two methods
starts.

Taking into account (A.G)—(A.8) rewrite the expression (A.2) for Z,,
as
IND? 1D, 11D%*,

- +] (A.9)

= = expl(l = Dlesp| 35+ 157 — 5

Then write the equation for envelope in the form

OlnE JlnE, 0lnZ, NalnEpo

= = = N. A.10
o o ou* ov ( )
After substitution from (A9), we get
1D?, 1D
= 3= A = All
pe” TagrtaT! (A-11)
or in a standart form:
B apr4q=0, (A.12)

where p = —6%, q= 12g—zA, with the discriminant @:

2 3 4 3
q P G* 4 G

= 4+ — =36—A°—8—. Al
Q 1 +27 36D4 8D3 (A.13)
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The value of @ may be positive, negative and equal to zero. For Q > 0
we have one real root, for Q < 0 there are three real roots, the value
@ = 0 means the boundary of bifurcation.

When @ > 0, from (A13)

2 3

q P 2D 1 2

— —, Al >/ == =—4=b==d A14
4>‘27’| > 9¢G V3 37 ( )

and for ¥ we have two values:

y 3 _g{(1_¥)1/3+ (1_¥)1/3}
:3—6§A{2+%%+,”}; (A15)

|A] > 2d, A= A; > 2d for liquid, A = Ay < —2d for vapor.
In the limit @ — 0,
2 2 /1D

A—+Sd=+24/== Wio_g = %=,
3 s\V2gr ¥ le=o

Inside the region @) < 0, % < ‘g—i ‘, we have three real roots (Table [
for the equation (A12).

2 ’p’cosw 2cosw 2003w+2ﬂ 200s¢+4ﬂ-
v = — — = = — Vo = — Va = — .
! 3 3 d 3 7T d 3 T4 3
(A.16)

A 2
cos = — d =— A = —=dcos1. (A.17)

o/ e @3)d 3

The forms of 11 2 3 behave slightly reversely to the forms of po1, po2,
pos in Part 1.

This is a quite new expression in comparison to the equality u* =
acosp, a = Gb* ~ T%U, which we have in the Part 1. That means the
solutions v1, V2, 3 are the trajectories of the main density, and we have
done some smoothing of the FOPT.

In Table [6] we have given also the values of v 23 in nodal points
=0, 3,7

Comparing with (AT5), we see that vy continues the positive values
of v, and v, — the negative values of v(1) inside the area Q < 0.

From (A.T6) it is clear that V12,3 are finite quantities, and therefore
in the TL in (A9) the contribution of 7 23 tend to zero. This means,
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Table 5. The values of vy 2 3 = 2/d cos(y) + 2nm)/3 at nodal points of 1,
Y =0,7/2, .

Y vy 12 U3

0 2/d —1(2/d) —1(2/d)
7/2 | V3/2(2/d) | —v/3/2(2/d) 0

7T 3(2/d) —-2/d 3(2/d)

that there has to be another quantity characterizing the events at (Q < 0.
That are Ay, Ao, Az — the mean densities, which correspond to vy, vs,
V3.

After substitution of vy 23 from (AI6) into (AI2) we obtain three
curves for Ay, As and As.

A172)3 = 2d cos M (1 _ 2 Q/J +2m™n

. 5 cos” ) n=012 (A.18)
0<¢<mn=0,1,2;d=+/(1/2)D/G. Quantities (AI6) for v 2 3 and
(AI8)) for Ay 23 have one common discriminant @, given in .

TableBlshows the values of A; 5 3 at the nodal points of the argument
Y =0,7/2,m, ; =+ 2mn;, n; =0,1,2.

One can see that the curve A; (1) is an extension of A(v()) in case
v is positive (vapor), and Ay(vy) is an extension of A(v())) in case
v is negative (liquid) and that Az is connected with the (unstable)

Table 6. The values of Ay 23 = Ay, Ay, Ag, at the nodal points ; =
420w, 0 =0,7/2, 7.

Y| Ay % P2 AV % 3 A %
0|0 —%d 0 2 —%d 0 47 —;d 0
3150 gd 2+ 3| 0 gd 5 +dr| 0 gd
T gd 0 |2n+7 gd 0 5T gd 0
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_____ n=0
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............. n=2
0.1

Figure 12. Plot of Ajo3 = 2dcos|(¢ + 2mn)/3[{1 — (4/3) cos®[(¢) +
2nm)/3]} on the interval 0 < ¢ < 7, for different n = 0,1,2. At the
points (27n + 7/2)/3, n = 0,1,2 all three curves dA; 2 3/dy = (2/3)d
have the same inclination of the tangents. The same behavior is true for
the simplified curve A = —(2/3)d cos .

v3 states at @ < 0 (only inside the rectangular @ = 0). The width of
the area A equals (4/3)d; the size of the area of bifurcation @ = 0, also
equals (4/3)d.

From (A7), written in the form cosiq 23 = 72A\/13523 follows, that
for every A;, i = 1,2, 3 has its own argument v;, 11 = ¥, Yo = ¢ + 2,
Y3 =1 + 4.

For A we always have A = nc(ﬂ - 1), n = n. + A. Along (AT7)

Ne
there is a correspondence between ¢ and n. At A < 0 for n < n. we

have a vapor, for n > 7. and A > 0 — a liquid. We regard here the
process of the isothermal compression of vapor, therefore we follow the
trajectory ) < 0 from outside the rectangular @ = 0 to the point
v = v =2/d and ) = 0 (see Tables Bl and [B). From the latter point
both the bifurcation and the process of the FOPT start. The value of A

here is A = Ay(11) = —%d; the density of vapor n|g=o = nc(l - %d)

Further on inside the rectangular Q = 0, we move along 14 (). The
curves Ao and Ajz take the same values. Therefore we can say that all
curves A = Ay 93 and A = —%dcosw coincide at 0 < ¢ < . In Table @
the values of A; 23 at nodal points and values of derivatives at those
points are given. At the point A = AQ(V”I/:%d we say that we have a

liquid with density n; = n.(1 + %d) The difference between the density
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values at the end-points is A(v2)|,,—14 — A1), =14 = 3d.

So the first order phase transition occurs in a special manner. There
is no jump of densities and no two phases. The difference of the density
zitdbetween the points 11 = %, A = —%d and vy = —%, Ay = %d equals
§ .

Equation of state. Let us return to the formula ([(AJ9) and write
the equation of state.

PV PV IND2 1D , 11D?
= mE Y J(1—A)4- S22 4
D = WEp or o =v(I=A) et GV T e

After substituting the values of v 5 3 from (AI0]), inside the rectangular
@ = 0 we obtain

Py IND? 1D ,
(?)1)273 = I/1,2,3(1 — A1,273) + Z—4G + ZE(VLZ’S) _
11D2 4 d —1 w+2nﬂ_ 1 ND2
_ 15@@1’2’3) = (5) cos — (1 — Ay93) + et

12{(d)*1cos¢+2nﬁr 1 DQ[(SI)*COSUJ%—%M}‘!’

4G \2 3 48 G2 L\2 3

for d we have d = /22 and for A — expression (AIT), then after

reducing for % we shall have

1IND2 1¢ ,1 [ID\! 4 +2nn
P-o—=—=+={-(5/5%) AT —A
ove TvilaVag) oy 0o
2 4 2
+2 cos? Y 2nm + = cos? M} (A.20)
3 3 3
In TL the expression in parenthesis may be neglected. So the solutions
vy 2,3 aren’t explicitly represented unlike the mean density N/V. For
T =nL:, n=n.(1+A), we have & = S3n.(1 + A), then
1 D2 6
P=—0—n(1+A) —. A2l
60 Gl +4) —3 (A.21)
For A there we have expression (AIT). There are three values of
A1 2.3, accordingly to the values of roots v o 3. Outside the rectangular
Q = 0 the equation (AI3) has only one root v*) for vapor and one
root (M) for liquid, expressed in (AI6). At the boundary @ = 0 it tends
to the expression (AJH) and along the values in Table [ for v 23 the
root 1) coincide with vy at ¢ = 0 and v at ¢ = 7, A = ni(n —Ne)s

n=mn(1+A4).
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But inside the region @ < 0 there are no trajectories of the type
po1,2,3 from [Z8) (Part 1). We get the three coinciding curves for the
mean density A. They start from the point A = A, d that means
the density 77 =g = Ne — d — of a vapor, and termlnate at the point
A=A =z=2d,n=mn = nc + d which means a liquid. Without any
dependence on N Here the roots V1, g, V3 are not sufficient.

So using the “direct” integration and substitution pu*N = V at the
very beginning in formulas (ILT)) and (2] we have smoothed the whole
picture. We have lost the Fig. [l (from the Part 1), we have lost the
variable p*, which play the main role in the description of the FOPT.

So, starting from the expression (A2I]), and keeping in mind the
behavior of v 93 and A; 23 we would like to describe the process of
isothermal pressing the vapor. Our main goal is to obtain the situation
of the first order phase transition. Now we want to compare the results
we get here by the method of obtaining the main probability trajectories
(or mathematicaly, the method of steppest descent (SDM)) with the
results, obtained by “direct” integration of the GPF.

Appendix B. On the basic density measure

In this article we won’t talk about the basic density measure. We
start with the GPF in a usual form

S i [ev-s Y (el ey, (B
== XPp TU + (145 N, 1
N=0 V2rhm3N 1<i<j<N

where 8 = 1/kT, u is the chemical potential, p(r) and 1 (r) potentials
of short- and long-range interactions correspondingly. Then introduce
the extended phase space consisting of two subspaces. The subspace of
Cartesian coordinates {dI'} of particles is for the description of short-
range interactions > ¢(r;;), and the subspace of collective variables { pi }
is for the description of long-range interactions. The overfilling of the
phase space by introducing the products of the corresponding d-functions
is eliminated.

The initial form (B is reduced to the functional integral in the
phase space of collective variables {pk}, the system of the short-range
interactions become the reference system (RS) of the problem. Then
the series of easy operations are realized: writing an explicit form for §-
functions we made integration in the Cartesians phase space {dI'}. Now
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Z is in the form of a functional integral over the set of collective variables:
1 b(k
E=Ep /expﬁhpo /exp 5 ; ﬁwT()pkp_kJ(p)(dp), (B.2)

where Zj is the partition function of the RS, h = B(u — o), po is the
chemical potential of the RS, J(p) is the Jacobian of transition to the
phase space of CV,

J(p) = /exp(zQﬂ'Zwkpk + Z D, ( ) (B.3)

n>1
(—i2m)™
Dn(w) = - Z My (ks bn)wk, - wk,  (B.4)
E1yeokon
..Wx ... is the set of Fourier’s variables conjugated to ... px ..., 9, is

the n-th cumulant arising as a result of the RS-averaging:

eProN

——1
oxp Y D) = 551 3 T
n>1 N

x/eXp[—ﬂwN—ﬁ”zk:“k( 1NXN:6 lk“)}

=1

Both types of interactions are gathered together: the z/;(k) from the
long-range interactions and semiinvariants M, (kq, . .., k;,) from the short-
range interactions, both as a functions of k. But their dependence on k
is antipodal.

The distinctive features of the long-range interactions 9 (r) are ob-
served at great distances but in case of Fourier transform @(k) at small
values of k. The situation is completely inverse for semiinvariants
M, (ky, ..., k,) since they take main values at small r that means at big
values of k. Fig.[3and Fig. [show the curves of ¢ (k) and M, (k, 0. ..0).

We suppose that the main events connected with attraction between
particles are concentrated inside the interval 0 < k < B and we put
(k) = 0 for k > B. In (B) (B3) the integration over py, for k > 0,
gives [~ 5 6(wk). Inside the interval 0 < k < B we take values of the
cumulants M, (ky,...,k,) at k; = 0. In result, the functional integral
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Figure 13. Plot of the Fourier transform of the long-range attractive
interactions ¥(k).
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Figure 14. Plot of seminvariants 9, (k,0...0) as functions of k at dif-
ferent densities: 1 —n =0.05;2 —n=0.1;3 —n=0.2;4 —n = 1.5.
The point B denotes location of the first zero of the Fourier transform

1/;(/{) from Fig.
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BI)-B3) for = can be written in the form:
2 =5 /eXp(\/_Bhpo /{exp[% > BQS(‘]/{)NPkP—k'f‘
kB
+ Z D, (w } exp Z ( )exp 2 Z wkpk}(dw)(dp) (B.5)

n<ng n>ng
kgB
where
(—2m)"
D, (w) = Tgﬁn(o, ...,0) Zw;ﬁ e Wiy, Oy 4otk s
k
(O _ 0 a
Dn(—) - e
apk n! Z apk1 kn A
k<B

We say that wy,(p, p') is the n-th basic density measure (BDM), if all mo-

menta [ wn(p, p')pl, - - - P, lo=p (dp) are convergent. In expression (B.3)
the basic density measure is:

b(k)N
W, (pa pl) = exp \/NﬁhPO - %Z ﬁ¢(‘/) PPk X
k

/exp Z expz27rZwkpk} (dw). (B.6)

n<ng

For the whole expression of = we have:

== [[o0 X D5 Junos)] o) ()

n>mno

Let us put ng = 2, and get the Gaussian form for BDM

wa(p, p') = exp{ﬁhpom - % ;ﬂ%‘g(k)pkpk} X (B.8)
X /exp{'

Then we introduce some new notations, p = \/N~ p’ for pg and py,
omit the prime, Sh + 9MM1(0)/M2(0) = i, (N/V)Be(k) = a(k) < 0,

k)wiw_k + 127 Z wkp{(}(dw).

k<B
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My = Ny, substitute them into (B-3) and (B.F) and obtain a complete
form for the Gaussian BDM

5 1
wa(p, p') = OGXP{NM’O - Nmpfﬂ _ Na(O)Pg} x
N 1 ,, N
x exp| -3 % T ;aaf)pkp_k}, (B.9)
k#£0 E#£0
where .
Se=Y e
=0 1=—1
Se=Sa
=0 1=—1
N / 1 1
C =exp|=— = X ,  max|a(k)| = |a(0)].
»(5%) 11 50,05 Vorom (k)| = |a(0)]

k0

We have separated macroscopic variable pg from the macroscopic set of
microscopic variables {py} but fail to get the Landau form).

In formula (B.6) we now have to dsplit expression exp Y. D, (9/dp})
n>2
into two factors, along (B3)

0 . o
Da(gyr) = (CU"M0- 0 +
1y

n!

o
Py, - 0P,

n

> Mk k)

k
k<B,k#0

(B.10)
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And prepare the formula (B for integration over the set of {pk }r0

E-/exp(Z(—l)an(O...O)ai—zn> X

n>3

X exp <ﬂpo - ﬁ(ﬂéf - Na@)ﬂ%) X

0? 0?
X “ e
apiq 8/)/_1(1 8/){(3 8/’/_1(3

+ot

ki <B
0? 0?
% o R R
P, 00 e, Opic, 00y,
)
1 1,1
xexp| —3 > ol <Pk T 5 > alk)prp {dpx}.
k<B 2 k<B p—
k70 k0
(B.11)

So we have explicitly written the third items in expansion of the op-
erator exp ), -4(0/0p)). Only pair derivatives give a non-zero result.
Therefore, we obtain

— + Ly for each 872
My(ky) o3l Opr; Op—1;

Now we may put pi p"y = px,p-k, and substitute

0 1
) for exp—g I;B a(k)prp—x -
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The final form of = is:

E—/P:enwmg%%m@m—Q&E@W—a@% x

n>3

11
X {1+ 530 > M0 0)M5(0. .. )5k, 4hyhy X
ki1,ka,k3
k<B
1 0
X — — X
Ma(k1)  (Ma(k1))? Do)
— X

X exp l—% > (@ + a(k)> Pkp—k‘| (dp),

k50
k<B

the integration over (dpk )20 is going only along the sample:

/eXP [—% Z(@ + a(k))pkp—k] (dpr)kz0 =

k#0
1 1

k;<B

In the braces we get

23!
kikaks

{1+li > 9313(0...0)9313(0...O)g(kl)g(kQ)g(kg)Jr---}, (B.12)

where §(k) is the Fourier transform of the screened potential

a(k)

g(k) = ————"——. B.13
I8 = T (e th) (B-13)
We have not written the explicit forms for cumulants 95 (ki koks). It’s

enough to say that all g(r) are zero for r < o.

ICMP-19-07E o7

The total expression for = in braces may be written in the form:

) H 14+ Mo (k)a(k)

=== : Mo (k) X
X {1+constN(J;[V_ D /(933(!” + 944(!” —|—...)dr+... } (B.14)

The expression in braces is the second virial coefficient in which the
integrands are formed on the screened potentials g(r)

g(r) = /f](k)eikrdk.

We are interested in behavior of integrals over great values of r (small
values of k for g(k)). Therefore we use for ¢(k) a parabolic approximation

o) =90 (1- ). do <o (B.15)
For g(k) it is:
(k) :% %, (B.16)
where
n=BJ0—mwm§maw) (B.7)

is the inverse radius of screening; and g(r) = C(e ""/r), C is the in-
tensity of interactions. There are the temperature 7, and the density
(N/V),, where k = 0 for which g(r) ~ 1/r, and in (BI2)) the integral

o0

oo 1
3 ~ 2 _ e’}
/g (r)dr _/—Tgr dr =Inr|2

o

is divergent.

The second virial coefficient as well as the higher virial coefficients
will also diverge, highly diverge. It is explained in more details in [I2].
The integral

dr 1

4
dr~ | = ==
/g(r)r /r2 T,

is convergent.
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Therefore, instead of (B7) the initial form of the BDM should be:

wy(p, p',w) = exp (Bhpo - % > BQST(k)pkp-Q X

k<B
2 2
. /eXP [_wﬂ-ml(o)wo _en) ZWQ(k)wkwfk +
k
i27)3
+( 3|) Z M3 (K1, ka2, k3 )wk, Wi, Wk, +
" kik2,ks

i2m)*
+( ) Z Mk, ..., ka)wi, Wie,wic, Wi, +

+ iQWZkaL] (dw). (B.18)
k

The latter expression is quite enough for describing the events of the
first order phase transition, in particular, for the arising and disappearing
of two phases inside the maternal phase and other events described in the
first part of the present paper. This means that we cannot assume ng = 2
in formula (B:8) which cause the momenta of operator exp D3(9/dpx)
in (B7) to diverge. The operator Dj is proportional to i, so D3 + Dy
should be left in the formula of the basic density measure. Consideration
of phase transitions in one-component systems in case of the FOPT in a
two-phase system includes two main thermodynamic trajectories pg; and
poz2- The unstable state trajectory pgs is not realized. The equation of
max E(pp) is the the first order equation and E(py) is itself a polynomial
function of degree four in the indeterminate pg, according to the initial
formula (2I). For more details about the basic density measure refer

to [12].
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