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depmionHuii criekTp Mmonaesai bose-Pepmi-Xabbapaa y dasi 3
603e-KOH/IEHCATOM

[.B. Cracwok, B.O. Kpacuos

Awnoranis. locnigxeno ¢epMioHHHMIT eHepreTWYHuil CIIeKTP 6030H-
depMioHHUX CcyMimeil yJIbTPaxOJIOAHUX aTOMIB Yy ONTHYHHUX I'PATKaX.
Bukopucrano migxiz, mo rpyHTyeThCs Ha hopmastiaMi omepaTopiB Xabbapma,
Akl gifore Ha 6as3uci omHOBy3s0BHX craniB. [lobymoBamo piBHsHHS Myt
depwmionnol dyukiii I'pina B Mmozeni Boze-Depwmi-Xabbapaa; dyumil 'pina
BUITIOTO MOPSJIKIB PO3IIEIIEHO B ayci Habnmmxkenns Xab6apa-1 (ue siamosinae
CWJIbHUM BY3JIOBHM B3a€MOAiaM). LIpoBeIeHO pPO3paxyHOK BLAMOBimHMX
CHEKTPAJIbHUX I'ycTuH. JlIs BUIAJKy >KOPCTKUX OO30HIB JIOCIII?KEHO YMOBH
MOSBA JOMATKOBUX Tia30H y cmekTpi ¢depmionis. Ilokazamo, mo BoHm
icHytoTh Juime y craHi 3 003€-KOHIEHCATOM Ta MPOSBISIIOTBCS 3aBIAKH
IepeMillyBaHHIO CTaHIB 3 pi3sHuM umciaom 6ozoniB. Ili momarkoBi min3oHn
€ TpPOsBOM KOMIIOBUTHHX 30y/KeHb (Kosum mogsa depMioHa Ha By3ui
CYIPOBOJIZKYETBHCA OJHOYACHOIO MOABOIO (UM 3HUKHEHHSM) GO30HA).

Fermion spectrum of Bose-Fermi-Hubbard model in the phase with
Bose-Einstein condensate

I.V. Stasyuk, V.O. Krasnov

Abstract. We investigated the fermion spectrum of the Bose-Fermi-Hubbard
model, used for description of boson-fermion mixtures of ultra-cold atoms in
optical lattices. We used the method based on Hubbard operator approach for
on-site basis. The equation for fermion Green’s function in the Bode-Fermi-
Hubbard model was built; Green’s functions of higher order were decoupled
in Hubbard-I approximation approach (the case of strong on-site interaction).
Appropriate spectral densities were calculated. For the case of hard-core bosons
the condition of appearance of additional bands in fermion spectrum was inves-
tigated. It’s shown, that these bands exist only in the state with Bose-Einstein
condensate and manifest themselves because of mixing of states with different
number of bosons. These additional bands are reflection of composite excita-
tions (when appearing of fermion on a site is accompanied by simultaneous
creation (or disappearing) of boson).
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1. Introduction

The Bose-Fermi-Hubbard model (BFHM) in its general form has a di-
rect relation to the ultra-cold boson-fermion mixtures in optical lattices,
which are the object of an intense theoretical investigation during last
years [I]. The investigation of fermion spectrum of BFHM and its trans-
formation when the Bose-Einstein condensate (the SF-phase) appeares
is an interesting problem. Earlier [2] the thermodynamics of the model
has been investigated in the mean-field approximation (MFA); the influ-
ence of fermion subsystem was studied and phase diagrams, illustrating
the MI-SF phase transition were built. Here we are going beyond the
MFA and calculate the fermion band spectrum as well as single-particle
density of states using the Green’s function technique and taking into
account the strong on-site interactions.

2. Hamiltonian of the model and its transformation

The Hamiltonian of the Fermi-Bose-Hubbard model is:

H = Y XM+ XM+ Y thabae+ Y tiblhbie
in i <i,j>,0 <i,j>,0

H = Hy+H (2.1)

where the single-site basis is |n) = |n,0),|n) = |n,1); |ng,nr). Here

n
and

b= Y Vatr xS Ve x et

n

Soxpn (2.3)

n

a;

U and U’ are constants of boson-boson and boson-fermion on-site inter-
actions; ¢ and p’ - are chemical potential of bosons and fermions, respec-
tively. In general, we need to calculate the Green’s function {{a|a™)). In
our case this means that we have to find the Green’s function built on
Hubbard operators: ((X™"|X ")) Let us use the equation of motion

mol(AIB)) = 5[4, B] + (|4, H]|B)) (24)
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And, for this we need to find the following commutators:

XG0T, Hol = (A5, = Am) Xp"7 = (U' = ) X5 (2:5)
G b by = (XG0 by + b (X by) = (2.6)

= Sp(—Vm A IXPT VR X, +
+ o Gpbt (—/mX T i LX)

X7, 0] = 8y (X 4 X )a (27)
G = Dty (VA TXE VX +
J

+ D tiphf (—VmX T Vi 4+ 1X)

+ ) (X X ay (2.8)

J

In the following, we will use the decouplings which are equivalent to
the mean field approximation in the case of bosons and to the Hubbard-I
approximation for fermions:

bi — (b;), bf — <b;r>, (X + XP) = (X4 XM (2.9)

We will suppose that our system is already in the state with Bose-

Einstein condensate, and the order papameter for this uniform conden-
sate is:

(bjy=9, (O)=¢"=¢ (2.10)
Then
X H] = top(—Vm F X VR X ) 4
+ top; (—V/mX TN Vi 1X T
b X (211)

J
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Finally, for the Greens’s function ((X m771|X Z")) we have the equation:

A (X XY) = %@mmn&mxmm FX™mY 4
£ (U= W) (XTTXT) + oV X) +
Dt (X X (0 X)) (2.12)

One can see that to obtaine the closed system of equations we need
to find the Green’s function ((X™™~1X"")). To find it we use the sim-

ilar steps and approximations done before for function ((X "“71|X;">>.
Finally we will have:

Aol (X X)) = 2 (B0 (X7 85 (X))

2 m—1n

mm—1 nn 0y
+ (A = A){(X [ X)) +

NG
+j;%§§mwﬁw (2.13)

(X X)) +

The final system of equations, after passing to Fourier transforms, is:

(hw — U'm+p )G (w,q) = (2.14)
h mm |, ymm
+ VMG T (w, g) + (X 4 X (X))
(hw — A~ +Am)Gm%_1’Z"(w, q) =

m—1

= i(cs,,m<)(’5’93*1>+5~ Hxm)

27 m—1,n

+ topVIGTT T (W, g) 4+ £ (X XY (0] X

3. Four states approximation

In our earlier paper [2] we investigated the ground state diagrams for
the Bose-Fermi-Hubbard model. In Fig.1 we show one of them when
0<U <U:

Supposing that U — oo (the hard-core boson limit) and U’ > ¢,
restrict ourselves to the case, when only four states can be considered:
|0) - neither bosons or fermions on site.

we
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Fig.1 Ground state diagram for 0 < U’ < U

|0) - neither bosons but one fermion on site

|1) - one boson without fermions on site.

|1) - one boson and one fermion on site.

This approximation is also valid when U (energy of the boson on-site

repulsion) is much bigger then U’ (on-site fermion interaction), see Fig.1
Then, in our initial Hamiltonian we will have:

A0 = Oa AN = _,ulv A1 = W, )\’i' = —u—- ,U/ + U/ (31)
and for Bose- and Fermi operators:
ai= X0+ X b= X0 X)) (3.2)

The next step is the diagonalization of the matrix of one-site part of
initial Hamiltonian:

0) (1) 10) 10) |
0 top 0 0 o)
top —p 0 0 1)
0o 0 - toy |0)
0 0 top —p—mu +U"||I)

For this propose we use the transformation:
UT'«H+«U=H (3.3)

where:

(@) S)
S> [en)?
N———
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and:

~  ( cosyp —siny A cos{/)v —sin{/)v
U1_<Sin1/1 cos 1 >7 UQ_(SiH{/? cos{bv )

Then we will get the diagonal single-site part of Hamiltonian Hy:

Hy =Y e xvv's (3.4)
p/
where:
— K + 'LLQ 1202
o1 = D) T + t5e7,
p U (U — p)?
e st * \/T + t§? (3.5)

For Fermi-operators we will have in new basis:
a; = cos (¢ — ) (X?'O’ + X}’l’) +sin (¢ — ) (X}’O’ - Xf’l’) (3.6)
Rewriting the system of equations (2.13, 2.14) for this case, we can

easily get the following expression for Green’s function built on Fermi
operators:

1 1
{ala™)) = — ————— (3.7)
27 g, l(w) — tk
Here:
R P
go(w) = cos*(¢ 1/1)[ hw — 5, + o hw — e + v
XYV 4 X00)(x00 4 xTT
B 3.8
+ sin (1/1 w)[ﬁw_aa_i_gl, hw—&‘;—l—&“o/ ( )

is the single-site Green’s function.

4. Fermion spectrum at 7'=10

The next step is to analyze the ground state of our system. In the case
T = 0, only the states with lowest energy values will contribute to the
expression (3.8) for go(w) . This means that we need to analyze the
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behaviour of single-site energy levels of our system given by formulae
(3.5).

In this connection we have to consider the equation for order param-
eter in the case of different ground states. For the ground state |1") we
have:

~ ltolp

1
p = —=sin(2¢) =
2 (U —0)?
( 4#) t(%@z

Solution ¢ = 0 corresponds to the normal (Mott insulator) phase;
© # 0 describes the phase with BEC. For this the phase, from (4.1) we
have:

(4.1)

1 (U —p)?
=4/l - — 4.2
v =3 7 (4.2)
In the same way, when the ground state is |1}, for the order param-
eter we have:

1 12
o=y1-5 (43)
2 7
€
4 P
5 P 10
o =y
054 \\ 0
00 \\
004 e ¥
0]
159 . T 1
0]
. 20 . .
o 1

Fig.2 On-site energies ¢, for p/ = 0.6 (left) and p' = 1.2 (right)

Here (see Fig. 2) two possibilities are possible: with- or without the
change of ground state. On the left figure the situation is shown when
we have the ground state |1’) at p < p/ and the |1’) one at x> p/. On
the right figure the case is presented when only the ground state |1') is
realized (here the states |1’) and |1’) belong to the transformed basis).

In the case T = 0, only non-zero averages of Hubbard operators
should be taken in (3.8) into consideration. For example, if the ground

ICMP-13-13U 7

Fig.3 Energy transitions €, — 4 for / = 0.6 (left) and g/ = 1.2 (right)

state is |1'), only <XP?> = 1 and for others states we have (X?'?') = 0.
This means that in this case we will have from (3.8).

— 207 <X1l1,+X;;> sn2() <X0l0,+X;;> =
dolw) = eos ) e T e e
_ (@ —y) | s’ —v) (4.4)

hw—siv,—i—sll hw—a;—i—ao/

Here the energy transitions involving the ground state |T’ ) are present
only (see Fig. 3)
Then we will obtain the following expression for fermion Green’s
function:
1 1
((ala®)) = oo~ = (4.5)

- %ggl(w)—tk N

1 (hw—Agy,) cos?(Yp—) + (hw — Ag) sin? (¢ —1p)

2w det
where
det = (hw—Ag ) (hw—Ag,) +t(hw—Agy,) cos2(1Z—w) +
+ tg(hw —Ag) sin2(zZ—z/J)

and A = €m — En-
This expression can be rewritten as decomposition into simple frac-
tions:

alat)) = o= [ 22 4] (46)

_% hw—X1+ﬁw—X2
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where X7, X5 - are solutions of quadratic (with respect to the variable
hiw) equation, which determines the poles of function (4.5) (functions
£1,2(q) = X712 describe the dispersion laws for fermion band spectrum).
A, Ay are constants in the fraction decomposition.

Finally, for density of fermion states in this case we have:

p(hw) = % > —2Im(Gy(w + i€))eso (4.7)

w
p(hw) = / dxpo(z)Big(A1(x)d(x — X1) + Az(x)d(x — Xg)), (4.8)
-w

where pg(z) = % Y 0(z — t4) is the unperturbed density of states.
q

The similar expressions as (4.5), (4.6) and (4.8) can be obtained for
the case with ground state |1’).

5. Results

The results of calculations of density of states p(hw) according to (4.8)
are presented in Figs. 4,5 and 6

o] P©) o] p(®)
u=1.1

Fig.4 Density of states for different p when p/ = 1.2

6. Conclusions

Interaction between Bose- and Fermi particles in BFHM leads to changes
in fermion spectrum. Besides the shift of fermion bands that depends on
boson concentration, the splitting of spectrum and appearance the of

ICMP-13-13U 9

Fig.5 Single-site energy levels and order parameter for ' = 1.2
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Fig.6 Density of states for different p when p' = —0.1

Fig.7 Single-site energy levels and order parameter for p/ = —0.1

new fermion subbands in the SF-phase (the phase with BE-condensate,
where ¢ # 0) takes place. The physical background of effect consists in
mixing of states with different number of bosons and possibility of new
fermion transitions, which are accompanied by creating or destruction
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Fig.8 Density of states for different p when p/ = 0.6
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Fig.9 Single-site energy levels and order parameter for i/ = 0.6

of bosons. Such excitations are called “composite fermions” [4[5]. We see
here their manifestation in fermion spectrum.

The presented results are restricted to the 7' = 0 limit. At finite
temperatures the new subbands will appear (four subbands in the case
of 4-state model). Similar effect of the fermion spectrum splitting was
obtained previously for pseudospin-electron model [3] where calculations
were performed in the DMFT approach. The more complete analyzys of
reconstruction of energy spectrum will be a subject of our subsequent
consideration.
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