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Квантування майже колових орбiт у формалiзмi iнтеґралiв
дiї Фоккера. I. Загальна схема

А.Дувiряк

Анотацiя. Розглядається загальна двочастинкова система в рамках
формалiзму iнтеґралiв дiї типу Фоккера. Припускається, що система
iнварiянтна щодо групи Арiстотеля, яка є спiльною пiдгрупою групи
Галiлея та Пуанкаре. Показано, що рiвняння руху системи допуска-
ють розв’язки у видi колових орбiт частинок. Вивчається динамiка
збурень таких розв’язкiв. Вона описується лiнiйною однорiдною си-
стемою нелокальних у часi рiвнянь та аналiзується на мовi власних
частот i власних мод. Будується гамiльтонiв опис системи у набли-
женнi майже колових орбiт. Для уникнення подвiйного врахування
ступенiв вiльности та вiдбору фiзичних мод системи враховується
її Арiстотеле-iнварiянтнiсть. Запропоновано процедуру квантуван-
ня системи та побудови спектру енерґiї.

Quantization of almost-circular orbits in the Fokker action for-
malism. I. General scheme

A.Duviryak

Abstract. General two-particle system is considered within the for-
malism of Fokker-type action integrals. It is assumed that the system
is invariant with respect to the Aristotle group which is a common sub-
group of the Galileo and Poincaré groups. It is shown that equations of
motion of such system admit circular orbit solutions. The dynamics of
perturbations of these solutions is studied. It is described by means of
a linear homogeneous set of time-nonlocal equations and is analyzed in
terms of eigenfrequencies and eigenmodes. The Hamiltonian description
of the system is built in the almost circular orbit approximation. The
Aristotle-invariance of the system is exploit to avoid a double count of
degrees of freedom and to select physical modes. The quantization proce-
dure and a construction of energy spectrum of the system is proposed.
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1. Introduction

Fokker-type action integrals [1,2] represent an approach to the relativistic
particle dynamics which is alternative or complementary (depending on a
point of view) to field-theoretical approaches. Known about for a century
[3–5], but mainly owing to the Wheeler-Feynman electrodynamics [6,7],
this approach was generalized to other field-type relativistic interactions
including cases of higher-rank tensor fields [8–10], gravitation [11–14],
confining interactions [15–19] etc [20].

A variational problem based on the Fokker-type action describes
a dynamical system with time non-locality, i.e., it leads to difference-
differential or integral-differential equations of motion for which the
Cauchy problem is unsuitable. Consequently, the study the phase space
(i.e., a set of possible states), the construction of the Hamiltonian de-
scription and quantization of such a system are non-trivial tasks.

Serious effort was made to develop Hamiltonization procedure for
the Fokker-type action integrals. In general, this is attained by means of
reformulation of the problem into another but time-local form. Here we
just mention two such schemes.

The first is a formal expansion of the Fokker-type action into the La-
grangian action with higher derivatives (of order up to infinity) [21, 22],
with a subsequent use of a modified Hamilton-Ostrogradsky formalism
[23]. In the second scheme developed by Llosa et al. [24,25] the variational
problem is reformulated into a static one for particle world lines treated
as temporally extended strings. In practice both schemes can be realized
approximately: in the first the quasi-relativistic approximations [23] are
used, for the second the coupling-constant expansion method was devel-
oped [26]. Thus the resulting Hamiltonian description of an N-particle
system is built on the 6N-dimensional phase space, as in a non-relativistic
or free-particle case.

Among not numerous solutions to Fokker-type variational problems
studied in literature the class of two-particle circular orbit exact soluti-
ons [27–29] is of particular interest. These solutions include domain of
essentially relativistic motion of strongly coupled particles and thus they
stand apart the field of application of quasi-relativistic approximations
and a coupling constant expansion. In the case of the Wheeler-Feynman
electrodynamics equations for small deviations from circular orbit were
derived and studied [30]. The analysis revealed bifurcation points in the
highly relativistic domain of the phase space where redundant (as to com-
pare to a non-relativistic case) unstable degrees of freedom get excited.
This result was approved by direct numerical [31,32] and global analyt-
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ical [33] study of the Wheeler-Feynman two-body variational problem.
We do not discuss here a physical meaning of highly relativistic unstable
solutions mentioned above. But on the whole the almost circular orbit
(ACO) approximation turns out more informative and thus appropri-
ate in the highly relativistic domain than the quasi-relativistic or weak
coupling approximations.

Of physical interest is a study, in ACO approximation, of various
Fokker-type systems, especially those which may have relevance to the
relativistic bound state problems in the nuclear and hadronic physics.
In particular, some Fokker-type systems with confining interaction may
serve as relativistic potential model of mesons [15–18]. Thereupon the
quantization procedure of Fokker-type models which is based on ACO
approximation scheme should be developed. One can relay in this way on
the Bohr quantization of circular orbits [29] and a heuristic suggestion
[34] to use the Miller’s quantum condition [35] for WKB quantization of
ACO in the Wheeler-Feynman electrodynamics.

In this paper we propose a substantiate quantization recipe of a two-
body Fokker-type problem of general form in ACO approximation. The
recipe in based on an implicit Hamiltonian description of the system
which, in turn, is built by means of Llosa scheme [25]. We suppose that a
Fokker-type system is invariant with respect to the Aristotle group which
is a common subgroup of the Galilei- and Poincaré groups. By this both
non-reativistic as well as relativistic systems are involved into considera-
tion. The symmetry with respect to time translations and space rotations
results in the existence of generalized Noether integrals of motions [38],
i.e., the energy and the total angular momentum. We show that, under
rather general condition, a system admits a circular particle motion with
a given constant angular velocity. It is taken as zero-order approximation
for non-circular motions. In order to study a perturbation to circular or-
bit solution we use a uniformly rotating reference frame where circulating
particles are motionless. Then ACO solution is formulated in terms of
small deviations from fixed (and presumably equilibrium) particle po-
sitions. We obtain a time-nonlocal action principle for these deviations
and derive corresponding linear homogeneous set of integral-differential
equations of motion. Fundamental set of solutions to these equations
can be expressed in terms of characteristic frequencies and amplitudes
of generalized normal modes. The amplitudes are shown to be canonical
variables, the frequencies are functions of the total angular momentum,
and all they constitute a correction to zero-order circular-orbit energy.
Then the quantization is trivial. In general, it must be complemented by
some selection rules for separation of physical modes out from all variety
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of them. It is discussed in details.
The paper is organized as follows. In Section 2 we apply the ACO

approximation method to a single-particle Lagrangian system which is
rotary-invariant and local in time. This Section has a rather method-
ological meaning since main points of the method are demonstrated,
and useful definitions and notations are introduced there. In Section 3
the method is extended for a general Galilei-invariant two-particle sys-
tem. We consider the latter as a time-local or slow-motion limit of a wide
class of Fokker-type two-particle systems examined in Section 4. Pertur-
bations to circular orbits are shown to be described by a linear set of
time-nonlocal equations of motion. Symmetry and dynamical properties
of this set is studied in various subsections of the section 4 as well as
in appendix. In particular, in subsection D of the appendix the Hamil-
tonization and quantization of a linear nonlocal system is discussed in
detail.

2. Rotary-invariant single-particle dynamics

Let us consider a system of single particle which is invariant under the
time translations t → t + λ and the space rotations x → Rx, where
λ ∈ R, R ∈ O(3) and x ≡ {xi; i=1, 2, 3} ∈ E3. The Lagrangian function
L(x, ẋ), satisfies the equality:

L(Rx,Rẋ) = L(x, ẋ) (2.1)

and thus has the following structure:

L(x, ẋ) = L(x2, x · ẋ, ẋ2) ≡ L(α, β, γ). (2.2)

Following the Noether theorem the energy E and angular momentum J ,

E = x · p− L, (2.3)

J = x× p, (2.4)

are conserved; here p = ∂L/∂ẋ and “×” denotes a vector product.
The system is exactly integrable with standard methods. We consider

this example here in order to demonstrate the idea of the approximate
method applied below to a Fokker-type system.

2.1. The description in a uniformly rotating reference frame

First of all we perform the coordinate transformation x 7→ z correspondi-
ng to transition to a uniformly rotating reference frame:

x(t) = S(t)z(t), with S(t) = exp(tΩ) (2.5)
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where Ω ∈ o(3) is a constant matrix. We introduce the vector Ω which is
dual to Ω: Ωk = − 1

2
ε ij
k Ωij . This vector determines the angular velocity

Ω = |Ω| and the direction n = Ω/Ω of rotation of a reference frame.
Using the equality [Ωv]i = (Ω × v)i we complement the coordinate

transformation (2.5) by the velocity transformation:

ẋ = Su ≡ S(ż + Ωz) = S(ż + Ω× z) (2.6)

and calculate the Lagrangian in the rotating reference frame:

L̃(z, ż;Ω) ≡ L(Sz, Su). (2.7)

This function of z, ż is rotary invariant but with respect to the time-
dependent realization of O(3): z → S

−1(t)RS(t)z ≡ S(−t)RS(t)z. The
corresponding conserved quantity is the same vector of angular momen-
tum J as in eq. (2.4).

Besides, the Lagrangian L̃(z, ż;Ω) does not depend on the time t
explicitly, so that the conserved quantity Ẽ exists although it differs
from the energy (2.3):

Ẽ = ż · ∂L̃
∂ż

− L̃. (2.8)

It is related with the integrals (2.3), (2.4) by means of the equality:

Ẽ = E −Ω · J . (2.9)

2.2. Circular orbit solutions

Let us consider the solution of the above dynamical problem which is
static in the rotating reference frame: ż = 0, z = R. The Euler-Lagrange
equations take the form:

∂L̃/∂z
∣
∣
∣
ż=0

= 0. (2.10)

Taking into account the structure (2.7), (2.2) of the Lagrangian, the
equations (2.10) read:

RLα −Ω× (Ω× c)Lγ = 0, (2.11)

where Lα = ∂L/∂α e.t.c.; in the present case α = R2, β = R ·(Ω×R) =
0, and γ = (Ω×R)2 = Ω

2R2 − (Ω ·R)2.
Let us consider two cases. In the special case R ‖ Ω we have β =

γ = 0 while α = R2 = |R|2 must satisfy the equation αLα(α, 0, 0) = 0.
The solution x = SR is the truly static one:

ẋ = S( Ṙ
︸︷︷︸

‖

0

+Ω×R
︸ ︷︷ ︸

‖

0

) = 0.
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In general, R ∦ Ω. Then the eq. (2.11) determines both the direction of
the vector R,

Ω ·R = Ω · x = 0 =⇒ R ⊥ Ω, x ⊥ Ω,

as well as the relation of R = |R| and Ω = |Ω|:

Lα(R2, 0,Ω2R2) + Ω2Lγ(R2, 0,Ω2R2) = 0. (2.12)

Thus R = R(Ω)R̂, where R̂ ⊥ Ω, |R̂| = 1.
The values of the integrals of motion on the circular orbit solutions

are:

J (0) = 2R× (Ω×R)L(0)
γ = 2ΩR2L(0)

γ , (2.13)

Ẽ(0) = −L(0), (2.14)

E(0) = 2Ω2R2L(0)
γ − L(0) = ΩJ (0) − L(0); (2.15)

they depend on Ω only; here L(0), L
(0)
α e.t.c. denote values of corre-

sponding functions on the circular orbit solution.

2.3. Equations of motion in the linear approximation

Let us put

z = R + ρ, u = v + ρ̇ + Ω× ρ, with v = Ω×R,

where |ρ| ≪ |R|, and expand the Lagrangian (2.7) in the vicinity of
the extremal point R up to quadratic (with respect to ρ) terms. One
obtains:

L̃(z, ż) = L̃(R + ρ, ρ̇) ≈ L̃(R,0) +
∂L̃(R,0)

∂z
︸ ︷︷ ︸

‖

0

·ρ +
∂L̃(R,0)

∂ż
· ρ̇

︸ ︷︷ ︸

total derivative

+
1

2

(

∂2L̃(R,0)

∂zi∂zj
ρiρj + 2

∂2L̃(R,0)

∂zi∂żj
ρiρ̇j +

∂2L̃(R,0)

∂żi∂żj
ρ̇iρ̇j

)

≡ L(0) + L(2). (2.16)

(the argument Ω of L̃ is omitted here). Using the notations

Li ≡
∂L̃(R,0)

∂zi
, Lı̂ ≡

∂L̃(R,0)

∂żi
e.t.c. (2.17)
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we write down the second-order Lagrangian

L(2) = 1

2
(Lijρ

iρj + 2Li̂ρ
iρ̇j + Lı̂̂ρ̇

iρ̇j), (2.18)

and corresponding equations of motion:

Lijρ
j + (Li̂ − Ljı̂)ρ̇

j − Lı̂̂ρ̈
j = 0. (2.19)

It is convenient to chose unit coordinate orts as follows: ǫ3 ⇈ Ω, ǫ1 ⇈

R, ǫ2 = ǫ3 × ǫ1 ⇈ Ω×R, and decompose the vector ρ = {ρ1, ρ2, ρ3}
into coordinate components. Then taking the rotary invariance of the
Lagrangian into account (see appendix A) one obtains the equations of
motion in the following form:

L11ρ
1 + (L12̂ + L2̂/R)ρ̇2 − L1̂1̂ρ̈

1 − L1̂2̂ρ̈
2 = 0, (2.20)

− (L12̂ + L2̂/R)ρ̇1 − L1̂2̂ρ̈
1 − L2̂2̂ρ̈

2 = 0, (2.21)

− L2̂

RΩ
(Ω2ρ3 + ρ̈3) = 0, (2.22)

The equation (2.22) splits out from other ones of this set; it describes
the harmonic oscillations in the direction ǫ3 ⇈ Ω with the frequency
Ω. Physically, this can be treated (in the linear approximation) as a
motion of particle along a plane orbit, the normal to which differs from
ǫ3. Inother words, this mode combines with a circular orbit solution
resulting a new one with the angular velocity Ω̃ = RΩ (where R is
a rotation by some small angle). In order to avoid double counting of
degrees of freedom one can assign the constraint ρ3 = 0.

The equation (2.21) can be integrated out once:

(L12̂ + L2̂/R)ρ1 + L1̂2̂ρ̇
1 + L2̂2̂ρ̇

2 = C, (2.23)

with the integration constant C. Let us show that one can put C = 0
without loss of generality. Indeed, if C 6= 0, the set of equations (2.20),
(2.23) possesses the solution ρ1 = ρ10, ρ

2 = ρ20 + ρ̇20t with some constants
ρ10, ρ̇

2
0 which are proportional to C (the constant ρ20 falls out the equa-

tions and is unimportant). The variable ρ2 grows beyond all bounds of
applicability of the linear approximation unless ρ1 = 0 and ρ̇2 = 0. On
the other hand, the solution with ρ1 6= 0 or/and ρ̇2 6= 0 can be treated (in
the linear approximation) as a motion of particle along the circular orbit
of the radius R̃ = R + ρ10 with the angular velocity Ω̃ = Ω + ρ̇20/R, i.e.,
as some zero-order solution. Thus, it is sufficient to put C = 0 yielding
ρ2 = ρ20.

Apart these two modes (in ǫ3 and ǫ2 directions) which we will refer to
as kinematic ones, the system (2.20)-(2.22) possesses the third dynamical
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mode which is of physical interest. Looking for a bounded solution of the
linear set (2.20)-(2.22) we use the ansatz

ρi = ei(ω)e−iωt, (2.24)

real part of which makes a physical sense. Substituting this anzatz into
(2.20)-(2.22) yields the set of equations D(ω)e(ω) = 0 for a polarization
vector e(ω) with the dynamical matrix

D(ω) =

∥
∥
∥
∥
∥
∥

L11 + ω2L1̂1̂ ω2L1̂2̂ − iωL̄12̂ 0
ω2L1̂2̂ + iωL̄12̂ ω2L2̂2̂ 0

0 0
L2̂

RΩ (ω2 − Ω2)

∥
∥
∥
∥
∥
∥

,

where L̄12̂ = L12̂ + L2̂/R.
The secular equation:

detD(ω) =
L2̂

RΩ
ω2(ω2 − Ω2)

{
L11L2̂2̂ − L̄2

12̂
+ ω2

[
L1̂1̂L2̂2̂ − L2

1̂2̂

]}
= 0

leads to three solutions for eigenfrequencies squared corresponding to
three degrees of freedom of the system. The only one solution corresponds
to the dynamical mode:

ω2
1 =

L̄2
12̂

− L11L2̂2̂

L1̂1̂L2̂2̂ − L2
1̂2̂

. (2.25)

If ω2
1 > 0, both values of eigenfrequencies ±ω1 are real; they permit us,

using the ansatz (2.24), to construct a physically meaningful real and
bounded solution of equations (2.20)–(2.22).

Two other eigenfrequencies squared and corresponding eigenvectors,

ω2
2 = 0, e = {0, 1, 0};

ω2
3 = Ω2, e = {0, 0, 1},

are images of the kinematical modes mentioned above.

2.4. Integrals of motion in the linear approximation

Let us start from the angular momentum J . It can be presented as
follows:

J = Sz × S
∂L̃

∂ż
= SΥ , (2.26)

where the vector

Υ ≡ z × ∂L̃

∂ż
=

∂L̃

∂Ω
(2.27)
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is not, in general, conserved. Its components, in the linear approximation,
can be presented as follows:

Υi = ε k
ij (Rj + ρj)(Lk̂ + Lk̂lρ

l + Lk̂l̂ρ̇
l + . . . )

≈ ε k
ij RjLk̂ + ε k

ij {Rj(Lk̂lρ
l + Lk̂l̂ρ̇

l) + Lk̂ρ
j}

≡ Υ
(0)
i + Υ

(1)
i . (2.28)

The components Υ
(0)
i and Υ

(1)
i have the explicit form:

Υ
(0)
1 = Υ

(0)
2 = 0, Υ

(0)
3 = RL2̂, (2.29)

Υ
(1)
1 = L2̂ρ

3, Υ
(1)
2 = − 1

Ω
L2̂ρ̇

3, (2.30)

Υ
(1)
3 =

1

R

{
L̄12̂ρ

1 + L1̂2̂ρ̇
1 + L2̂2̂ρ̇

2
}
≡ C

R
. (2.31)

It is evidently that J(0) = SΥ
(0) = Υ

(0). Besides, the only kinematic
modes but not the dynamical one contribute in Υ

(1) and thus in J (1) =
SΥ

(1). It was pointed out in the previous subsection that we can put
ρ3 = 0 and C = 0 without loss of generality. Then J (1) = SΥ

(1) =
0, and, in the given approximation, J ≈ J (0)(Ω), where the function

J (0)(Ω) is defined implicitly by (2.12)–(2.13).
Now we consider the energy of the system. First of all, we calculate

the correction to the zero-order term Ẽ(0) (2.14) of the integral Ẽ (2.8):

Ẽ ≈ Ẽ(0) + Ẽ(2) ≡ −L(0) + 1

2
{Lı̂̂ρ̇

iρ̇j − Lijρ
iρj}. (2.32)

So that the first nontrivial correction Ẽ(2) to Ẽ(0) is quadratic in ρi. It is
evidently conserved by virtue of the equations of motion in the first-order
approximation (2.20)-(2.22).

Further we are interested not in the integral Ẽ but in the energy

E = Ω · J + Ẽ = ż · ∂L̃
∂ż

+ Ω · ∂L̃
∂Ω

− L̃

≈ Ω · J − L(0) + Ẽ(2). (2.33)

It follows from the equalities (2.28)–(2.32):

Ẽ(2) = 1

2
{Lı̂̂ρ̇

iρ̇ j + Lijρ
iρ j} +

Ω

2J
(0)
3

Υ
(1)
i Υ(1)i. (2.34)

where i, j = 1, 2. On the other hand, within the given accuracy

Ω · J = ΩJ3 = Ω

√

J2 − JiJ i ≈ Ω

{

J − JiJ
i

2J

}
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≈ ΩJ − Ω

2J
(0)
3

Υ
(1)
i Υ(1)i.

Thus we obtain a useful equality

E ≈ ΩJ − L(0) + E(2), where E(2) = Ẽ(2)
∣
∣
∣
ρ3=0

(2.35)

which holds with accuracy up to quadratic terms in ρ’s.

2.5. Hamiltonian description and quantization

The Legendre transformation ρ̇ 7→ π = ∂L̃/∂ż leads to the Hamiltonian
description with the Hamiltonian function H̃(ρ,π;Ω) to be the integral
of motion Ẽ (2.8) in terms of canonical variables ρ, π.

The fixed auxiliary vector Ω was introduced to specify the rotating
reference frame and then the circular orbit solution. In order to generate
a set of all possible circular orbit solutions we let Ω to be a variable
of angular velocity. It follows from (2.27) and (2.33) that the Legendre
transformation with respect to both ż = ρ̇ and Ω leads to the Hamilto-
nian description with the Hamiltonian function H(ρ,π;Υ) to be a con-
ventional energy. Rotary invariance and a Hamiltonian constraint born
from the identity (2.27) provides a proper balance of degrees of freedom
in the phase space enlarged with the Υ variable.

It is convenient in our case to proceed from the expression (2.33).
First two terms depend on J = |J | = |Υ | and Ω only. Using (2.12),
(2.13) one can express Ω = f(J). Thus, in zero-order approximation, we
have the Hamiltonian:

H(0)(J) = E(0)(Ω, J)
∣
∣
∣
Ω=f(J)

. (2.36)

Similarly, coefficients Lij, Lı̂̂ of the quadratic form E(2) in (2.35) turns
into functions of |J |. We note that within the Hamiltonian descripti-
on the components Ji of the angular momentum J satisfy the Poisson
bracket relations (PBR):

{Ji, Jj} = εij
kJk ;

non-triviality of these PBR is due to the fact that original variables Ωi

are not velocities but quasi-velocities.
To complete the Hamiltonization one should eliminate in E(2) ve-

locities ρ̇i (i = 1, 2) in favour of canonical momenta πi = ∂L̃(2)/∂ρ̇i

satisfying the PBR {ρi, πj} = δij (others are trivial). For a quantization
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purpose it is better to use normal mode complex amplitudes Aα satisfyi-
ng PBR: {Aα, A

∗
β} = −i δαβ (α = 1, 2 in our case). Then, using results of

subsections 2.3-4, the energy correction E(2) is put in the Hamiltonian
form:

H(2) =
∑

α
ωα|Aα|2 = ωr(J)|Ar |2. (2.37)

Here ωr ≡ ω1 (>0) is the characteristic frequency of dynamical mode
(2.25); we redenoted the subscript α = 1 → r to hint that this degree of
freedom corresponds to radial oscillations. The radial frequency ωr(J) is
expressed in terms of J rather than Ω.

We note that the kinematic mode with the frequency ω2 = 0 is not
oscillator-like and must be suppressed; corresponding solution is dis-
cussed in Subsection 2.3 after eq. (2.23). The corresponding contribution
in the Hamiltonian (2.37) drops out automatically.

Finally we have the Hamiltonian H = H(0) + H(2) which is ready
for quantization: variables are replaced by operators and then – by their
eigenvalues as follows:

J → Ĵ ; Ar → Âr, A∗
r → Â†

r;

J →
√

Ĵ2 →
√

ℓ(ℓ + 1), ℓ = 0, 1, ...;

|Ar|2 → 1

2
(Ârâ

†
r + â†rÂr) → nr + 1

2
, nr = 0, 1, ... (2.38)

It is implied, due to a perturbation procedure, the condition H(2) ≪ H(0)

which is mainly satisfied by nr ≪ ℓ. Then
√

ℓ(ℓ + 1) ≈ ℓ + 1

2
.

General structure of the Hamiltonian (2.36), (2.37) and its spectrum
agree completely with corresponding results derived with the standard
Hamilton-Jacobi and WKB methods. In appendix B the quantization
method is demonstrated on the example of a nonrelativistic particle in
a power-law potential.

3. Galilei-invariant two-particle dynamics

The rotary-invariant single-particle dynamics studied in the previous
section gives us an important tool for the description of a two-particle
system. Any isolated system, anyway the non-relativistic or relativistic
one, possesses 10 conserved quantities: the energy E, the momentum
P , the angular momentum J and the boost K. This is consequence of
invariance under the action of a symmetry group: the Galilei group in
the non-relativistic case, and the Poincaré group in the relativistic case.
It is known, both in the non-relativistic and relativistic cases, that in the
rest reference frame fixed by the condition P = 0 (and also K = 0 in the
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classical, i.e., non-quantum description) the two-particle dynamics can
be reduced to an effective single-particle one with a residual symmetry
group to be O(3)×T, (here T denotes the time translation group). Below
we consider a non-relativistic two-particle system and reduce it to an
effective single-particle one in the ACO approximation.

3.1. General dynamics and circular orbits

The Galilei-invariant two-particle Lagrangian has the following general
form:

L(x1,x2, ẋ1, ẋ2) =

2∑

a=1

ma

2
ẋ2
a + F (x2, x · ẋ, ẋ2)

≡
2∑

a=1

ma

2
ẋa

2 + F (α, β, γ), (3.1)

where x ≡ x1 − x2. The corresponding 10 integrals of motion are:

E =
2∑

a=1

ma

2
ẋ2
a + ẋ · ∂F

∂ẋ
− F, (3.2)

P =
2∑

a=1

maẋa, (3.3)

J =
2∑

a=1

maxa × ẋa + x× ∂F

∂ẋ
, (3.4)

K =
2∑

a=1

maxa − tP . (3.5)

Non-inertial variables are introduced similarly to the single-particle
case:

xa = Sza, ẋa = Sua ≡ S(ża + Ω× za) ≡ S(ża + va). (3.6)

In these terms the Lagrangian

L̃(z1, z2, ż1, ż2;Ω) ≡ L(z,u1,u2) (3.7)

does not depend on time t explicitly and thus it generates the corre-
sponding integral of motion:

Ẽ =

2∑

a=1

ża ·
∂L̃

∂ża
− L̃, (3.8)
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related to the original integrals (3.2), (3.4) by means of eq. (2.9).
Circular orbit solutions are determined by the conditions:

∂L̃/∂za

∣
∣
∣
ż1=0
ż2=0

= 0, a = 1, 2

which explicit form is:

−maΩ× va + 2(−)ā(zFα −Ω× vFγ) = 0, ā ≡ 3 − a. (3.9)

Multiplying left- and right-hand sides of these equations by Ω yields:

2(−)āΩ× zFα = 0 =⇒ z ⊥ Ω. (3.10)

We note that eqs. (3.9) are invariant under translations along Ω, i.e.,
under the transformations z′

a = za+λn with an arbitrary λ ∈ R. Indeed,
it is evidently that z 7→ z′ = z, and also

v′
a = Ω× z′

a = Ω× (za + λn) = Ω× za = va.

Taking into account the equality (3.10) one finds:

Ω · za = Ω · (za − (za − zā)) = Ω · zā,

i.e., z
‖
a ≡ n · za = z

‖
ā but no information for the last quantity follows

from eqs. (3.9). Thus one can choose

Ω · za = 0 =⇒ za ⊥ Ω,

which simplifies the system (3.9) to the form:

{
m1Ω2 + 2[Fα + Ω2Fγ ]

}
z1 − 2[Fα + Ω2Fγ ]z2 = 0,

−2[Fα + Ω2Fγ ]z1 +
{
m2Ω2 + 2[Fα + Ω2Fγ ]

}
z2 = 0, (3.11)

where α = z2, β = 0 and γ = Ω2z2.
The linear homogenous set of equations (3.11) possesses a non-trivial

solution if its determinant vanishes:

Ω2
{
m1m2Ω2 + 2(m1 + m2)[Fα + Ω2Fγ ]

}
= 0. (3.12)

This is a relation between Ω and z. One solution of eq. (3.12) is: Ω = 0. In
this case the set (3.9) reduces to the equation Fαz = 0. If an interaction
is not singular at z = 0 then we have the solution z = 0. Otherwise, the
solution is determined by the equality Fα = 0 which is the condition of
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extremum (here, the minimum) of the static potential of interaction. As
in the single-particle case, this solution is not suitable.

Other roots of secular equation are determined by the condition:

µΩ2 + 2[Fα + Ω2Fγ ] = 0, Ω 6= 0 (3.13)

(here µ = m1m2/(m1+m2) is the reduced mass) which being combining
with (3.11) yields the set:

(m1 − µ)z1 + µz2 = 0
µz1 + (m2 − µ)z2 = 0

}

=⇒
{
z1 = R1 ≡ m2

m1+m2
R

z2 = −R2 ≡ − m1

m1+m2
R

, (3.14)

The relation of R = |R| and Ω is, evidently, defined by (3.13).
The values of the integral of motions (3.2)-(3.5) on a the circular-orbit

solutions are as follows

P (0) = 0, K(0) = 0,

Ẽ(0) = − 1

2
µc2Ω2 − F (0),

J(0) = ΩR2(µ + 2F (0)
γ ),

E(0) = R2Ω2( 1

2
µ + 2F (0)

γ ) − F (0);

they obviously correspond to a rest of the system as a whole.

3.2. The dynamics in the ACO approximation

Similarly to the single-particle case one puts:

za = (−)āRa + ρa, ua = va + ρ̇a + Ω× ρa,

where va = (−)āΩ×Ra,

and expands the Lagrangian (3.7) in ρa, ρ̇a. One gets L̃ ≈ L(0) + L(2)

where

L(2) =
1

2

∑

ab

(Lai bjρ
i
aρ

j
b + 2Lai b̂ρ

i
aρ̇

j
b + Laı̂ b̂ρ̇

i
aρ̇

j
b), (3.15)

with the coefficients Lai bj = ∂2L̃

∂zi
a∂z

j

b

∣
∣
∣

(0)

etc. The corresponding equations

of motion,

∑

b

(

Lai bjρ
j
b + (Lai b̂ − Lbj aı̂)ρ̇

j
b − Laı̂ b̂ρ̈

j
b

)

= 0,
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have the following explicit form:

ma(Ω2ρai − ΩiΩjρ
j
a + 2ε k

ij Ωkρ̇
j
a − ρ̈ai

+(−)ā(Fijρ
j + F[i̂]ρ̇

j − Fı̂̂ρ̈
j) = 0,

where Fij = ∂2F̃
∂zi∂zj

∣
∣
∣

(0)

etc., F[i̂] = Fi̂ − Fjı̂ and ρ = ρ1 − ρ2. Summing

up these equations over a = 1, 2, first with the wight 1, and then with
(−)āmā/(m1 + m2), splits the equations as follows:

Ω2̺i − ΩiΩj̺
j + 2ε k

ij Ωk ˙̺j − ¨̺i = 0 (3.16)
[
µ(Ω2δij − ΩiΩj) + Fij

]
ρj + [2µε k

ij Ωk + F[i̂]]ρ̇
j

− [µδij + Fı̂̂]ρ̈
j = 0, (3.17)

where ̺ =
∑

a
ma

m1+m2
ρa is a deviation of the center-of-mass position.

Let us consider the equation (3.16). Choosing orts as in the 1-particle
case simplifies it to the form :

Ω2̺1 + 2Ω ˙̺2 − ¨̺1 = 0

Ω2̺2 − 2Ω ˙̺1 − ¨̺2 = 0

− ¨̺3 = 0.

In order to cut unbounded solutions off we search a solution in the form:

̺i = εie−iωt,

and arrive at the secular equation:

ω2(ω2 − Ω2)2 = 0.

We claim without details that eigenvectors belonging to the degenerate
eigenvalue ω2 = Ω2 correspond to a rotation of the vector ̺ with the
frequency Ω. In the fixed (motionless) reference frame this solution is the
constant vector ε⊥Ω. The ω = 0 mode possesses constant eigenvector
ε‖Ω. All three modes can be compensated by the translation of the origin
of coordinates, i.e., by redefinition of the center-of-mass reference frame.
Thus these modes are kinematic, and one can put ̺ = 0.

The set of equations (3.17) can be obtained from the set (2.19) or
(2.20)-(2.22) by means of formal substitution L → L̄, where

L̄(α, β, γ) = 1

2
µγ + F (α, β, γ). (3.18)

This set leads to one dynamical mode with frequency (2.25) (with the
change L → L̄) and two kinematic modes in addition to three ones
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described just above. Particle eigenvectors ea of all the kinematic modes
have the following components:

ω2 = 0, e1 = {0, R1, 0}, e2 = {0,−R2, 0}; (3.19)

ω3 = ±Ω, e1 = {0, 0, R1}, e2 = {0, 0,−R2}; (3.20)

ω4,5 = ±Ω, e1 = {1,∓i , 0}, e2 = {1,∓i , 0}; (3.21)

ω6 = 0, e1 = {0, 0, 1}, e2 = {0, 0, 1}, (3.22)

where Ra ≡ |Ra| and Ra (a = 1, 2) are defined in (3.14).
After the kinematic modes are suppressed, the subsequent analysis is

reduced to the single-particle case considered in Section 2 with the effec-
tive centre-of-mass Lagrangian (3.18), as it is in the standard treatment.

4. Two-particle Fokker-type dynamics

In this Section we extend the ACO approximation method to the for-
malism of action integrals of Fokker type. We start with a two-particle
Fokker-type action of general form [38]:

I =

2∑

a=1

∫

dtaLa (ta,xa(ta), ẋa(ta))

+

∫∫

dt1dt2Φ (t1, t2,x1(t1),x2(t2), ẋ1(t1), ẋ2(t2)) . (4.1)

The variational problem leads to the integral-differential equations of
motion:

{
∂

∂za
− d

dta

∂

∂ża

}

(La + Λa) = 0, a = 1, 2, (4.2)

where
d

dta
≡ ∂

∂ta
+ ẋa ·

∂

∂xa
+ ẍa ·

∂

∂ẋa
and

Λ1 =

∫ ∞

−∞

dt2 Φ, Λ2 =

∫ ∞

−∞

dt1 Φ. (4.3)

For a physical reason we are interested mainly in the case where
the system is invariant under transformations of the Aristotle group [36]
(see also [37]), i.e., time and space translations and inversions as well as
space rotations. The Aristotle group is a common subgroup of the Galilei
and Poincaré groups. Thus this case includes both non-relativistic and
relativistic non-local systems into consideration.
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4.1. Symmetries and conserved quantities

Symmetry properties of the action (4.1) determines general structure of
the functions La(ta,xa, ẋa) (farther referred to as the 1-Fokkerians) and
Φ(t1, t2,x1,x2, ẋ1, ẋ2) (referred to as the 2-Fokkerian) and leads to an
existence of integrals of motion studied, for non-local (i.e., Fokker-type)
systems, in [1, 38].

The invariance under time translations, t → t + λ0 (λ0 ∈ R), results
in the conditions:

XT
0 La ≡ ∂La

∂ta
= 0, (4.4)

XT
0 Φ ≡

2∑

a=1

∂Φ

∂ta
= 0 =⇒ Φ(t1, t2, ...) = Φ(t1−t2, ...)

≡ Φ(ϑ, ...) (4.5)

and yields the energy integral of motion:

E =

2∑

a=1

{

ẋa ·
∂

∂ẋa
− 1

}

(La + Λa) +

∫∫

� dt1 dt2
∂

∂ϑ
Φ (4.6)

where

∫∫

� ≡
∫ t1

−∞

∫ ∞

t2

−
∫ ∞

t1

∫ t2

−∞

. (4.7)

The invariance under space translations, x → x + λ (λ ∈ R3), yields
the conditions:

XTLa ≡ ∂La

∂xa
= 0; (4.8)

XTΦ ≡
2∑

a=1

∂Φ

∂xa
= 0 =⇒ Φ(..,x1,x2, ..) = Φ(..,x1 − x2, ..)

≡ Φ(..,x, ..) (4.9)

and the conserved total momentum:

P =

2∑

a=1

∂

∂ẋa
(La + Λa) −

∫∫

� dt1 dt2
∂

∂x
Φ. (4.10)

The rotary invariance,

La(Rẋa) = La(ẋa), (4.11)

Φ(ϑ,Rx,Rẋ1,Rẋ2) = Φ(ϑ,x, ẋ1, ẋ2), (4.12)
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yields the infinitesimal conditions:

XRLa ≡ ẋa×
∂La

∂ẋa
= 0, (4.13)

XRΦ ≡ x×∂Φ

∂x
+

2∑

a=1

ẋa×
∂Φ

∂ẋa
= 0 (4.14)

and results in a conservation of the angular momentum of the system:

J =

2∑

a=1

xa×
∂

∂ẋa
(La + Λa)

− 1

2

∫∫

� dt1 dt2

{

(x1 + x2)× ∂

∂x
+ ẋ1×

∂

∂ẋ1
− ẋ2×

∂

∂ẋ2

}

Φ. (4.15)

The consequences of discrete symmetries with respect to space inversions
and a time reversal will be considered farther.

4.2. Fokker-type dynamics in a uniformly rotating reference
frame

Using the non-inertial change of variables:

xa(ta) = S(ta)za(ta) ≡ Saza(ta), ẋa = Saua, (4.16)

where S(t) and u are defined in (2.5), (3.6), and symmetry properties
(4.4)-(4.5), (4.8)-(4.9), (4.11)-(4.14) one can define “tilded” Fokkerians:

La(ẋa) = La(Saua) = La(ua) ≡ L̃a(za, ża;Ω), (4.17)

Φ(ϑ,x1−x2, ẋ1, ẋ2) = Φ(ϑ, S1z1−S2z2, S1u1, S2u2)

= Φ(ϑ, ST2 S1z1−z2, S
T
2 S1u1,u2)

= Φ(ϑ, S(ϑ)z1−z2, S(ϑ)u1,u2)

≡ Φ̃(ϑ, z1, z2, ż1, ż2;Ω). (4.18)

It is obviously that “tilded” Fokkerians are invariant under time trans-
lation. Thus the corresponding integral of motion exists:

Ẽ =

2∑

a=1

{

ża ·
∂

∂ża
− 1

}(

L̃a + Λ̃a

)

+

∫∫

� dt1 dt2
∂

∂ϑ
Φ̃ (4.19)

where the relations of Λ̃a and Φ̃ are similar to (4.3). The equality (2.9)
holds in the present case too which fact can be examined directly with
the use of eqs. (4.6), (4.15) and (4.16).
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4.3. Circular orbit solutions

Proposition. If Fokkerians are invariant with respect to the action of
the Aristotle group, i.e., the equalities (4.4), (4.5), (4.8), (4.9), (4.13),
(4.14) hold, the corresponding equations of motion (4.2) posses a circular
orbit solution with characteristics described below.

Proof. Fokker-type equations of circular orbit motion (i.e., equations of
a rest in terms of variables za) have the form:

∂

∂za

(

L̃a + Λ̃a

)
∣
∣
∣
∣
ż1=0
ż2=0

= 0, a = 1, 2, (4.20)

where L̃a

∣
∣
∣
ża=0

= L̃a(za, 0;Ω) ≡ L(0)
a (za;Ω), a = 1, 2,

Λ̃a

∣
∣
∣
ż1=0
ż2=0

=

∫

dtā Φ̃(t1−t2, z1, z2, 0, 0;Ω) (ā = 3 − a)

=

∫

dϑ Φ̃(ϑ, z1, z2, 0, 0;Ω)

≡ Λ(0)(z1, z2;Ω),

and the last function is common for both values of a = 1, 2. Thus, equa-
tions of a rest (4.20) can be presented in the effective Lagrangian form:

∂

∂za
L(0) ≡ ∂

∂za

(
2∑

a=1

L(0)
a + Λ(0)

)

= 0, a = 1, 2. (4.21)

In order to take into account symmetric properties of Fokkerians it
is convenient to represent their general functional form as follows:

La(ẋa) = La(ẋ2
a) ≡ La(γa), a = 1, 2, (4.22)

Φ(ϑ,x, ẋ1, ẋ2) = Φ(ϑ,x2,x · ẋ1,x · ẋ2, ẋ
2
1, ẋ

2
2, ẋ1 · ẋ2)

≡ Φ(ϑ, α, β1, β2, γ1, γ2, δ). (4.23)

Invariance with respect to time reversal causes the property

Φ(−ϑ, ...,−β1,−β2, ...) = Φ(ϑ, ..., β1, β2, ...);

the space parity is provided automatically.
In appendix C scalar arguments α . . . δ are expressed in terms of non-

inertial variables za and their derivatives. Using (C.1)-(C.4) in (4.22)-
(4.23) then yields “tilded” Fokkerians.
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For a circular orbit problem it is sufficient to consider the static case
ża = 0. Then the expression (C.1) for α does not change while remaining
scalars (C.2)-(C.4) simplify:

β
(0)
1 = β

(0)
2 = Ω

[
z⊥
1 · z⊥

2 sin(Ωϑ) − (n, z1, z2) cos(Ωϑ)
]
,

γ(0)
a = v2

a = Ω2|z⊥
a |2, δ(0) = Ω2z⊥

1 · z⊥
2

Upon these equalities the 2-Fokkerian takes the following general struc-
ture:

Φ(0) = Φ(0)(ϑ, z2, |z⊥
1 |2, |z⊥

2 |2, z⊥
1 · z⊥

2 , (n, z1, z2); Ω). (4.24)

Upon accounting the temporal reversability,

Φ(0)(−ϑ, ...) = Φ(0)(ϑ, ...), (4.25)

the integrating this function over ϑ yields a general structure of Λ(0):

Λ(0) =

∫

dϑΦ(0) = Λ(0)(z2, |z⊥
1 |2, |z⊥

2 |2, z⊥
1 · z⊥

2 , (n, z1, z2)2; Ω).

Since (n, z1, z2) = ±|z1×z2|, so (n, z1, z2)2 = |z⊥
1 |2|z⊥

2 |2 − (z⊥
1 · z⊥

2 )2,
the final structures of the 2-Fokkerian and then of the effective La-
grangian involved in eq. (4.21) is expressed via four scalar arguments:

Λ(0) = Λ(0)(z2, |z⊥
1 |2, |z⊥

2 |2, z⊥
1 · z⊥

2 ; Ω)

≡ Λ(0)(σ0, σ1, σ2, σ3; Ω), (4.26)

L(0) = L(0)(σ0, σ1, σ2, σ3; Ω)

=
2∑

a=1

L(0)
a (σa; Ω) + Λ(0)(σ0 . . . σ3; Ω). (4.27)

This form is useful for a study of circular-orbit equations (4.21).
Using the notations ki ≡ ∂L(0)/∂σi (i = 0 . . . 3) brings (4.21) to the

form:
2(−)āk0z + 2kaz

⊥
a + k3z

⊥
ā = 0, a = 1, 2. (4.28)

Scalar product of these equations with n yields the condition:

k0n · z = 0 =⇒ n · z = 0 =⇒ z⊥n

(we do not consider the solution k0 = 0; roughly it corresponds to a
static case in a conventional meaning).
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Notice that z and thus σ0 is translation-invariant; z⊥
a and thus σa, σ3

are invariant under translations along n. Thus the solution of eq.(4.28)
is specified up to arbitrary vector along n. We fix it by means of the
conditions:

n · za = 0, a = 1, 2 =⇒ za⊥n, za = z⊥
a .

From now on both vectors za are placed on a common plane and the
superscript “⊥” can be omitted.

The rest equations (4.28) take the form:

2(k0 + k1)z1 − (2k0 − k3)z2 = 0, (4.29)

−(2k0 − k3)z1 + 2(k0 + k2)z2 = 0; (4.30)

they possess non-trivial solution provided:

4(k0 + k1)(k0 + k2) − (2k0 − k3)2 = 0. (4.31)

Then z1||z2. Choosing orts of a moving reference frame as follows: ǫ3 =
n ⇈ Ω, ǫ1 ⇈ z1, ǫ2 = ǫ3×ǫ1, one can recast (4.29)-(4.30) into equalities:

z1 = R1ǫ1, z1 = −R2ǫ1, (4.32)

R2

R1
=

k3 − 2k0
2(k0 + k1)

=
2(k0 + k2)

k3 − 2k0
. (4.33)

By (4.32) we presuppose z2 ↑↓ z1 and thus R1 > 0, R2 > 0, as in the
Galilei-invariant two-particle case. Otherwise R2 < 0 but this case is
rather nonphysical.

Relations (4.31) and (4.33) form the set of equations determining R1

and R2 as functions of Ω �

4.4. Integrals of motion along circular orbits

Static character of circular orbit solutions implies that Fokkerians L
(0)
a

and Λ(0) depend on the constant vectors (4.32). Besides, Φ(0) is a function
of ϑ = t1 − t2. Thus integrals of motion can be evaluated explicitly. At
that it is useful the following “skew” integration (4.7) ansatz valid for
arbitrary function f(ϑ):

∫∫

� dt1 dt2 f(ϑ) ≡
[∫ t1

−∞

∫ ∞

t2

−
∫ ∞

t1

∫ t2

−∞

]

dt′1 dt′2 f(ϑ′)

=

∫ ∞

−∞

dϑ′ (ϑ− ϑ′)f(ϑ′).
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Taking into account the time reversal (4.25) of Φ(0) yields easily an
evaluation of the integral Ẽ(0):

Ẽ(0) = −
2∑

a=1

(

L(0)
a + Λ(0)

)

−
∫ ∞

−∞

dϑ ϑ
∂

∂ϑ
Φ(0)

= −
2∑

a=1

L(0)
a − 2Λ(0) +

∫ ∞

−∞

dϑΦ(0)

= −
2∑

a=1

L(0)
a − Λ(0) = −L(0) . (4.34)

An evaluation of the angular momentum is cumbersome: J (0) = nJ (0)

where

J (0) = 2Ω
2∑

a=1

R2
a (La + Λa)(0)γa

−R1R2

∞∫

−∞

dϑ {[(2Φα − Ω2Φδ)ϑ + Φβ1 + Φβ2 ] sin(Ωϑ)

+ [2Φδ + (Φβ1 + Φβ2)ϑ]Ω cos(Ωϑ)}(0); (4.35)

the subscripts α, ..., δ denote derivatives, Φα = ∂Φ/∂α etc.
It follows from (4.34) and (4.35) the following relation:

J (0) = −∂Ẽ(0)/∂Ω = ∂L(0)/∂Ω.

Besides, the relation (2.9) gives the possibility to evaluate the energy:

E(0) = Ẽ(0) + ΩJ (0) = −L(0) + Ω∂L(0)/∂Ω. (4.36)

The linear momentum integral vanishes: P (0) = 0.

4.5. Equations of motion in oscillator approximation

Small perturbations ρa(ta) to circular orbits are introduced naturally:

za(ta) = (−)āRa + ρa(ta), ża(ta) = ρ̇a(ta), a = 1, 2

and then substituted into the action (4.1). Expanding the Fokkerians up
to quadratic terms in ρa(ta), ρ̇a(ta) yields:

I =
∑

a

∫

dta L
(0)
a +

∫∫

dt1 dt2 Φ(0)
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+
∑

a

∫

dta

{[

∂L̃a

∂za
+

∫

dtā
∂Φ̃

∂za

](0)

︸ ︷︷ ︸
‖

0

·ρa +

[

∂L̃a

∂ża
+

∫

dtā
∂Φ̃

∂ża

](0)

·ρ̇a

︸ ︷︷ ︸

total derivative

}

I(2)







+
1

2

∑

a

∫

dta
(
Laijρ

i
aρ

j
a + 2Lai̂ρ

i
aρ̇

j
a + Laı̂̂ρ̇

i
aρ̇

j
a

)

+
1

2

∑

a

∑

b

∫∫

dt1 dt2

(

Φai bjρ
i
aρ

j
b + 2Φai b̂ρ

i
aρ̇

j
b + Φaı̂ b̂ρ̇

i
aρ̇

j
b

)
(4.37)

with the coefficients Laij = ∂2L̃a

∂zi
a∂z

j

b

∣
∣
∣

(0)

, Φai b̂ = ∂2Φ̃
∂zi

a∂ż
j

b

∣
∣
∣

(0)

etc.

The equations of motion have the form:

Laijρ
j
a(t) + La[i̂]ρ̇

j
a(t) − Laı̂̂ρ̈

j
a(t) +

∫

dt′ Ξaij(t− t′)ρjā(t′) = 0, (4.38)

where La[i̂] ≡ Lai̂ − Lajı̂ (a = 1, 2, ā = 3 − a),

Laij = Laij + Λaij , Lai̂ = . . . , (4.39)

Ξaij(ϑ) = Φai āj(ϑ) + (−)āΦ̇[ai ā̂](ϑ) − Φ̈aı̂ ā̂(ϑ) (4.40)

and Φ̇(ϑ) ≡ ∂Φ/∂ϑ. Due to the time reversability of the dynamics, the
kernel possesses the properties:

Ξaij(ϑ) = Ξaji(−ϑ) = Ξāji(ϑ) = Ξāij(−ϑ).

Putting ρia(t) = eiae−iωt leads to the set of equations:

2∑

b=1

Dai bj(ω)ejb = 0 (4.41)

with the 6 × 6 dynamical matrix

D(ω) =

∥
∥
∥
∥

L1ij − iωL1[i̂] + ω2L1ı̂̂ Ξ̌1ij(ω)
Ξ̌2ij(−ω) L2ij − iωL2[i̂] + ω2L2ı̂̂

∥
∥
∥
∥
, (4.42)

where the off-diagonal entries Ξ̌aji(ω) ≡
∫

dϑΞaji(ϑ)eiωϑ possess the
properties:

Ξ̌aji(ω) = Ξ̌∗
aij(ω), Ξ̌2ij(ω) = Ξ̌1ij(−ω). (4.43)

The equation (4.41) determines characteristic modes of the system.
In particular, eigenfrequencies are derived from the secular equation

detD(ω) = 0.
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Subsequent description of the system depends considerably on properties
of the dynamical matrix (4.42).

First of all we note that the equations of motion (4.38) are not or-
dinary 2nd-order differential set but they form an integral-differential
set which complicates to a great extent the analysis of the dynamics. In
particular, the Cauchy problem is not appropriate and the Hamiltoniza-
tion is not straightforward. On the other hand, the set is linear which, in
turns, simplifies somewhat the analysis. The Hamiltonization scheme of
a general linear system defined by a non-local action integral is discussed
in appendix D.

4.6. Symmetry properties of the dynamical matrix

Similarly to the cases of ordinary single- and two-particle systems we
should separate the dynamical and kinematic modes of the dynamical
matrix. This can be done by taking the Aristotle-invariance of the system
into account.

Proposition. The dynamical matrix (4.42) built with the Aristotle-
invariant Fokkerians admits the eigenfrequencies and eigenvectors (3.19)-
(3.22), where Ra (a = 1, 2) are determined by the equations (4.31),
(4.33).

Proof. Multiplying l.-h.s. of equalities (4.8), (4.9), (4.13) and (4.14) by
S−1
a ≡ STa ≡ ST(ta) and expressing them in terms of noninertial variables

yields the equalities:

X̃T
aiL̃a =

{
∂

∂zia
+ ε l

ik Ωk ∂

∂żla

}

L̃a = 0, (4.44)

X̃R
aiL̃a = ε l

ik

{

zka
∂

∂zla
+ żka

∂

∂żla
+ Ωkε n

lm zma
∂

∂żna

}

L̃a = 0, (4.45)

X̃T
aiΦ̃(ϑ) =

{
∂

∂zia
+ ε l

ik Ωk ∂

∂żla

}

Φ̃(ϑ)

+ [S(−1)a(ϑ)] j
i

{
∂

∂zjā
+ ε l

jk Ωk ∂

∂żlā

}

Φ̃(ϑ) = 0, (4.46)

X̃R
aiΦ̃(ϑ) = ε l

ik

{

zka
∂

∂zla
+ żka

∂

∂żla
+ Ωkε n

lm zma
∂

∂żna

}

Φ̃(ϑ) + [S(−1)a(ϑ)] j
i

×ε l
jk

{

zkā
∂

∂zlā
+ żkā

∂

∂żlā
+ Ωkε n

lm zma
∂

∂żnā

}

Φ̃(ϑ) = 0; (4.47)

here arguments za, ża of L̃a and Φ̃ are omitted for brevity.
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Symmetry conditions (4.44)–(4.45) for 1-Fokkerians result in useful
consequences:

[

X̃T
aiL̃a

](0)

= 0,

[
∂

∂zja
X̃T

aiL̃a

](0)

= 0,

[
∂

∂żja
X̃T

aiL̃a

](0)

= 0,

[

X̃R
aiL̃a

](0)

= 0,

[
∂

∂zja
X̃R

aiL̃a

](0)

= 0,

[
∂

∂żja
X̃R

aiL̃a

](0)

= 0,

where the superscript “(0)” means “on circular orbit solution”, i.e., taking
the conditions z1 = R1, z2 = −R2, ża = 0 into account. These equalities
impose constraints (E.1)–(E.6) for the quantities Lai, Laij etc. shown in
appendix E.

For the 2-Fokkerian we are interested in the following consequences
of (4.46), (4.47):

∞∫

−∞

dϑ
[

X̃T
aiΦ̃(ϑ)

](0)

= 0,

∞∫

−∞

dϑ

[
∂

∂zja
X̃T

aiΦ̃(ϑ)

](0)

= 0, . . . ,

∞∫

−∞

dϑ
[

X̃R
aiΦ̃(ϑ)

](0)

= 0, . . . ,

∞∫

−∞

dϑ

[
∂

∂żja
X̃R

aiΦ̃(ϑ)

](0)

= 0,

which impose constraints for the quantities Λai = Φ̌ai(0), Λaij = Φ̌aij(0),
. . . and Φ̌aiāj(±Ω) etc. Using the explicit form for the matrix S(ϑ):

S j
i (ϑ) = cos(Ωϑ)δji + {1 − cos(Ωϑ)}nin

j − sin(Ωϑ)nkε j
ki ,

and taking into account the equality S−1(ϑ) = ST(ϑ) = S(−ϑ) and the
fact that the Fourier-transform Φ̌(ω) of Φ̃(ϑ) and its derivatives Φ̌ai(ω)
etc. are pair-vise functions of ω, one can arrive at the equalities (E.7)–
(E.12) in appendix E. They lead together with the equations (E.1)–(E.6)
and the equations of a rest Lai = 0 to the following linear relations for
elements of the dynamical matrix D(0) and D(Ω):

Lai3 + Λai ā3 = 0, (4.48)

RaLai2 −RāΛai ā2 = 0, (4.49)

Ra(Lai3 + Ω2Laı̂3̂) − Rā(Φ̌ai ā3(Ω) + Ω2Φ̌aı̂ ā3̂(Ω)) = 0, (4.50)

RaLa[i3̂] −RāΦ̌[ai ā3̂](Ω) = 0, a = 1, 2, i = 1, 2, 3, (4.51)

Laij − Ωε k
3j La[ik̂] + Ω2Laı̂̂ + Φ̌ai āj(Ω)

− Ωε k
3j Φ̌[ai āk̂](Ω) + Ω2Φ̌aı̂ ā̂(Ω) = 0, j = 1, 2. (4.52)
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The relations (4.48) provide the existence of the eigenfrequency and the
eigenvector (3.22), the relations (4.49) – of (3.19), the relations (4.50)-
(4.51) – of (3.20), and the relations (4.52) – of (3.21) �

Thanks to this proposition, the kinematic modes separate from phys-
ical modes, eigenfrequencies of which can be found from the equation:

detD(ω)

ω4(ω2 − Ω2)3
= 0. (4.53)

Since D(ω) is a 6×6 matrix, entries of which are not, in general,
polynomial, the secular equation (4.53) is rather complicated. It can be
simplified somewhat due to the following proposition.

Proposition. The following identities hold:

Daj b3(ω) = Da3 bj(ω) = 0 for any a, b = 1, 2 and j = 1, 2.

Proof can be completed directly using the representation (4.22), (4.23)
of 1- and 2-Fokkerians and examining the following equalities:

∂α

∂z3a

∣
∣
∣
∣

(0)

= · · · =
∂δ

∂z3a

∣
∣
∣
∣

(0)

= 0,
∂α

∂ż3a

∣
∣
∣
∣

(0)

= · · · =
∂δ

∂ż3a

∣
∣
∣
∣

(0)

= 0,

∂2α

∂zja∂z3b

∣
∣
∣
∣
∣

(0)

= · · · = 0, · · · =
∂2δ

∂żja∂ż3b

∣
∣
∣
∣
∣

(0)

= 0, j = 1, 2,

where α, . . . δ are defined by (C.1)–(C.4) in appendix C, and the super-
script “(0)” denotes the value of a marked quantity on the circular orbit
solution �

Thanks to this proposition, detD(ω) splits into two factors:

detD(ω) = detD⊥(ω) · detD‖(ω),

where D
⊥(ω) = ‖Dai bj(ω)‖ (i, j = 1, 2), D

‖(ω) = ‖Da3 b3(ω)‖ .
The 2×2 submatrix D‖(ω) possesses two kinematic modes (3.20) and
(3.22) while the 4×4 submatrix D⊥(ω) – another three kinematic modes
(3.19), (3.21) and one the dynamical mode. The frequency of the latter
can be determined fr0m the reduced secular equation:

detD⊥(ω)

ω2(ω2 − Ω2)2
= 0. (4.54)

The secular equations (4.53) or (4.54) simplify in the case of equal
particles.
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4.7. The dynamics of the equal particle system

The equal particles system is defined by Fokkerians of the following prop-
erties:

La(ẋa) = L(ẋa), (4.55)

Φ(ϑ,x1,x2, ẋ1, ẋ2) = Φ(−ϑ,x2,x1, ẋ2, ẋ1). (4.56)

Proposition. Along with a plausible assumption the equations of mo-
tion (4.20) for equal particles possess a circular motion solution of the
form:

z1 = R, z2 = −R (and ż1 = ż2 = 0) (4.57)

with characteristics described below.

Proof. It follows from (4.57) and (4.29), (4.30) the equality: k1 = k2
which turns into identity provided (4.57) holds. Then r.h.s of the equa-
tion (4.31) for |R| = R(Ω) factorizes:

(4k0 + 2k1 − k3) = 0 or/and (2k1 + k3) = 0. (4.58)

Although solutions of both the equations (4.58) must be examined, the
only first equation seems to make a physical sense since it includes the
derivative k0 = ∂L(0)/∂z2 which is intuitively related to a fource of
interparticle interaction �

Proposition. If the equal particle system is invariant under the space
inversions the entries of the dynamical matrix satisfy the equalities:

D2i 2j(ω) = D1i 1j(ω), D2i 1j(ω) = D1i 2j(ω) (4.59)

Proof. If 1-Fokkerian is invariant under space inversions,

L̃(−z,−ż) = L̃(z, ż),

then its second-order derivatives are invariant too. Thus we have

L2ij = ∂2L̃
∂zi∂zj (−R, 0) = ∂2L̃

∂zi∂zj (R, 0) = L1ij (4.60)

and, similarly,
L2i̂ = L1i̂, L2ı̂̂ = L1ı̂̂. (4.61)

The 2-Fokkerian for equal particles can be presented in the form

Φ̃(ϑ, z1, z2, ż1, ż2) = 1

2
F (ϑ, z1, z2, ż1, ż2) + 1

2
F (−ϑ, z2, z1, ż2, ż1);
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here F (ϑ,x,y,u,v) is some function (for example, the Φ(ϑ,x,y,u,v)
itself) which is inversion-invariant,

F (ϑ,−x,−y,−u,−v) = F (ϑ,x,y,u,v),

and thus its second-order derivatives are so. We have the equality

Φ2i 2j(ϑ) = ∂2F
2∂yi∂yj (ϑ,R,−R, 0, 0) + ∂2F

2∂xi∂xj (−ϑ,−R,R, 0, 0)

= ∂2F
2∂yi∂yj (ϑ,−R,R, 0, 0) + ∂2F

2∂xi∂xj (−ϑ,R,R, 0, 0)

= Φ1i 1j(−ϑ)

and similar equalities for other derivatives and their Fourier-transforms:

Φ̌2i 2j(ω) = Φ̌1i 1j(−ω), . . . , Φ̌2ı̂ 1̂(ω) = Φ̌1ı̂ 2̂(−ω). (4.62)

Then using the definitions (4.39), (4.40), (4.42) and the properties (4.43),
(4.60), (4.61) and (4.62) results in the equalities (4.59) �

Thanks to equalities (4.59) the set of equations (4.41) splits into to
subsets:

Dij(ω)εj = 0 with Dij(ω) ≡ L1ij − iωL1[i̂] + ω2L1ı̂̂ + Ξ̌1ij(ω)

= D1i 1j(ω) + D1i 2j(ω), εj ≡ 1

2
(ej1+ej2); (4.63)

Dij(ω)ej = 0, with Dij(ω) ≡ L1ij − iωL1[i̂] + ω2L1ı̂̂ − Ξ̌1ij(ω)

= D1i 1j(ω) −D1i 2j(ω), ej ≡ ej1 − ej2. (4.64)

It is easy to verify that the subset (4.63) possesses three kinematic
eigenfrequencies and eigenvectors (3.21), (3.22) while the subset (4.64)
– another two kinematic modes (3.19), (3.20) and one the dynamical
mode. The frequency of the latter can be determined from the reduced
secular equation:

detD⊥(ω)

ω2
= 0 where D⊥(ω) ≡ ‖Dij(ω)‖ (i, j = 1, 2)

is the reduced dynamical matrix. In the next subsection we discuss pos-
sible solutions of this equation as well as of more general equations (4.53)
or (4.54).

4.8. Predictive treatment of the Fokker-type system

Let us call a particle system as predictive if it possesses three degrees of
freedom per particle. For example it is the Galilei-invariant Lagrangian
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two-particle system considered in section 3. Consequently, in ACO ap-
proximation the corresponding dynamical matrix admits 6 modes with
real frequencies, 5 of which have a kinematic origin (they are 0 or ±Ω),
and only one mode characterizes a specific dynamics (it corresponds to
radial interparticle oscillations).

The same kinematic modes arise in Aristotle-invariant Fokker-type
2-particle system and thus, in a Lagrangian system (as a particular case
when 2-Fokkerian includes δ(ϑ)) as well as in the Poincaré-invariant
Fokker-type system (as a particular case with extra Lorentz-invariance).

In contrast to predictive systems, the Fokker-type dynamical system
may possess an infinite number of degrees of freedom, due to a time
nonlocality of equations of motion. In ACO approximation the quadratic
term I(2) of the action (4.37) (i.e., 3rd and 4th strings) is of the Fokker-
type too. Consequently, the dynamical matrix of such systems is not
polynomial and may possess an infinitely large number of modes with
real or/and complex frequencies. It has been shown in subsections 4.6
and 4.7 how kinematic modes can be separated out. The question arises:
how one could understand the case when a number of remaining modes
is more then 1?

One point of view is that extra degrees of freedom are inherent to
Fokker-type system considered literally as a physical model. If complex
frequencies are present, the system is unstable and thus it cannot form
bound states, at least in the ACO approximation. It has been pointed
out in appendix D that some modes with real frequencies may contribute
negatively in the energy what is another kind of instability [39]. In these
cases the model should be adjudged as physically inconsistent.

One can adhere another point of view. We considered two-particle
Fokker-type action integral where 1-Fokkerians correspond to a free-
particle system while 2-Fokkerian describes particle interaction. A sys-
tem of two free particles possesses 6 degrees of freedom. The same is true
for the interacting system describing within the predictive Lagrangian
dynamics. If one endows a particle interpretation of the Fokker-type sys-
tem, the latter should possess 6 physical degrees of freedom. Thus extra
degrees of freedom should be considered as a mathematical artifact of
the Fokker formalism or specific model, and finally should be separated
out the physical dynamics of the system. Similar situation arises when
considering the Lorentz-Dirac equation [40]. It possesses an extra soluti-
on describing exponentially accelerating particle even if external forces
vanish. This solution is commonly discarded as nonphysical.

The question is how to separate physical degrees of freedom out of
nonphysical ones? In our case, how to recognize the only dynamical mode

ICMP–12–08E 29

of radial excitations? A kind of selection rule can be suggested if 1) there
exist some parameter of nonlocality τ such that:

Φτ (ϑ,x1, ..., ẋ2)−→
τ→0

δ(ϑ)Λ(x1, ..., ẋ2),

i.e., in the limit τ → 0 the system turns into a predictive Lagrangian
system, and 2) if this predictive system admits circular orbit solution. As
a consequence, all modes of the dynamical matrix reduce to 5 kinematic
and 1 dynamical ones while every extra mode disappears. It is possible,
for example, if corresponding frequency |ω| −→

τ→0
0 (then this mode does

not contribute in the Hamiltonian; see (2.37), (D.18) and (D.22)) or
|ω| −→

τ→0
∞ (then it never can be excited).

If there is no an explicit parameter of nonlocality, it sometimes can
be defined dynamically, as a function of the angular velocity Ω or of the
angular momentum J . This is possible because Ω is a parameter with
respect to the action I(2) in (4.37) as well as the angular momentum J
or the quantum number ℓ are parameters as to the classical or quantum
hamiltonian H(2) (2.37). For example, in the Fokker action formulation
of electrodynamics [30] one can put τ ∼ v = RΩ, where v is a particle
speed along a circular orbit of the radius R. In the domain v ≪ 1 there
exists only one mode with the frequency which can be identified as ωr(J).
By continuity this mode can be recognized and selected in the essentially
relativistic domain v . 1, while other (extra) modes should be discarded
as nonphysical.

Similarly, one can treat other relativistic systems.
After kinematic modes are suppressed and nonphysical modes are di-

scarded the subsequent treatment of the two-particle Fokker-type system
reduces to the effective single-particle case with the effective Hamiltonian

Heff(J, |Ar|) = H(0)(J) + H(2)(J, |Ar|) = H(0)(J) + ωr(J)|Ar |2, (4.65)

where J = |J | =
√
J2 and |Ar| =

√
A∗

rAr.
At this point one should refer to a symmetry of the original Fokker-

type system which is Galilei-invariant in a non-relativistic case or
Poincaré-invariant in a relativistic case. In both cases the effective Hamil-
tonian is understood as the energy of the system in the center-of-mass
(CM) reference frame. It is a function of J which is meant as the intrin-
sic angular momentum of the system, and Ar which is the amplitude of
interparticle radial oscillations. In order to have a complete Hamiltonian
description of the system one must introduce variables (or operators)
characterizing the state of the system as a whole, for example, the total
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momentum P and the canonically conjugated CM position Q. Together
with J , Ar and the function (4.65) these variable unambiguously deter-
mine a canonical realization of a symmetry (Galileo or Poincaré) group,
i.e., the complete Hamiltonian description of the system.

For example, the total energy of a non-relativistic system is

H = 1

2
(m1+m2)−1P 2 + Heff(J, |Ar|). (4.66)

In the relativistic case:

H =
√

M2 + P 2, where M = Heff(J, |Ar|), (4.67)

i.e., the effective Hamiltonian coincides with the total mass M of the
system, while the total Hamiltonian (4.67) and other generators of the
Poincaré group are determined in terms of M , J , P and Q via the
Bakamjian-Thomas (BT) or equivalent model [41,42]. The quantization
of BT model is well elaborated [43, 44]. But the spectrum of the mass
operator can be obtained from (4.65) by means of the substitution (2.38).

5. Conclusion

In this paper we proposed a quantization scheme for a two-particle
Fokker-type system on ACO approximation. For generality it is consid-
ered a system which is invariant under the Aristotle group, the common
subgroup of the Galileo and the Poincaré groups. In such a way both
non-relativistic as well as relativistic systems are included into consid-
eration. And only at a very final stage the scheme refers to a genuine
symmetry of the system.

It has been proven that the Aristotle-invariant two-particle system
admits a planar circular motion of particles with arbitrary (in principle)
angular velocity Ω provided some rather general conditions hold. This
is done by the usage of a non-inertial uniformly rotating reference frame
in which circular orbits are search as static (equilibrium) solutions of
equations of motion. Radii Ra of particle orbits are stated as certain
implicit functions of Ω = |Ω|. Then small perturbations of particle moti-
on around equilibrium point are considered. They correspond to almost
circular particle orbits [30] as referred by the inertial observer.

The action principle of Fokker type for perturbed motion is derived.
It leads to a set of linear homogeneous integral-differential equation.
General properties of this set has been studied.

It is shown by means of a group-theoretical analysis that a possi-
bly wide variety of characteristic modes of this set includes a number of
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modes which are unessential and must be suppressed in order to avoid
a double count of degrees of freedom. Also, there is a one mode corre-
sponding to radial inter-particle oscillations. Our attitude is that, name-
ly, this mode is physically meaningful. All other characteristic modes (if
exist) are unstable or physically unacceptable and must be suppressed.
The corresponding selection rule is suggested. The reduced dynamical
system is equivalent to some effective single-body problem. It is put
by means of the Llosa procedure [25] into the Hamiltonian formulati-
on which then is expanded to a two-body problem in accordance to a
symmetry of the origrnal Fokker-type system. For example, if the ori-
ginal Fokker-type system is Poincaré-invariant, the final Hamiltonian
description is formulated within the Bakamjian-Thomas (BT) or equiva-
lent model [41,42] on the 12-dimensional phase space P. In other words,
as a dynamical system, this BT model is a predictive subsystem of the
original Fokker-type system. A subsequent quantization is straightfor-
ward.

The presented scheme for quantization of Fokker-type models may
appear useful in the nuclear and hadronic physics. The Fokker-type mod-
el of Regge trajectories will be presented in a forthcoming paper [46].

Appendix

A. Rotary invariance properties of a single particle Lagrangian

We use the rotary invariance property (2.1) of the Lagrangian (2.2) in
the infinitesimal form:

XR
i L = ε l

ik

(

xk ∂

∂xl
+ ẋk ∂

∂ẋl

)

L = 0. (A.1)

Applying the infinitesimal operators X̃R
i ≡ Sj

iX
R
j to the Lagrangian

(2.7) we express the identities (A.1) in terms of the variables z, ż:

X̃R
i L̃ = ε l

ik

(

zk
∂L̃

∂zl
+ żk

∂L̃

∂żl
+ Ωkε n

lm zm
∂L̃

∂żn

)

= 0. (A.2)

Then the equation (2.10), the identities (A.2) and their differential con-
sequences

∂

∂zj
X̃R

i L̃ = 0,
∂

∂żj
X̃R

i L̃ = 0,

taken on circular orbit, result in the homogeneous linear set of equations:

Li = 0,
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ε l
ik Ωkε n

lm zmLn̂ = ziΩ
nLn̂ = 0,

ε l
ik

(
zkLlj + Ωk(ε n

lj Ln̂ + ε n
lm zmLn̂j)

)
=

= δijΩ
nLn̂ − Lı̂Ω

j + ε l
ik z

kLlj − ziΩ
nLn̂j = 0,

ε l
ij Ll̂ + ε l

ik

(
zkLl̂ + Ωkε n

lm zmLn̂̂

)
=

= ε l
ij Ll̂ + ε l

ik zkLl̂ + ziΩ
nLn̂̂ = 0,

where z = R. This set permits us to express a one part of coefficients
(2.17) Li, Lij etc. via another part of them. Choosing unit coordinate
orts as described before eq. (2.20) we have:

‖Lij‖ = ‖Lji‖ =

∥
∥
∥
∥
∥
∥

L11 0 0
0 0 0
0 0 −Ω

RL2̂

∥
∥
∥
∥
∥
∥

, (A.3)

‖Lı̂̂‖ = ‖L̂ı̂‖ =

∥
∥
∥
∥
∥
∥

L1̂1̂ L1̂2̂ 0
L1̂2̂ L2̂2̂ 0
0 0 1

RΩL2̂

∥
∥
∥
∥
∥
∥

, (A.4)

‖Li̂‖ = ‖L̂i‖ =

∥
∥
∥
∥
∥
∥

L11̂ L12̂ 0
− 1

RL2̂
1
RL1̂ 0

0 0 1
RL1̂

∥
∥
∥
∥
∥
∥

(A.5)

so that

‖Li̂ − L̂i‖ =

∥
∥
∥
∥
∥
∥

0 L12̂ + 1
RL2̂ 0

−L12̂ − 1
RL2̂ 0 0

0 0 0

∥
∥
∥
∥
∥
∥

(A.6)

It follows from these formulae the equations (2.20)-(2.22).

B. Nonrelativistic particle in a power-law potential

Let us consider the following Lagrangian of a non-relativistic particle:

L =
m

2
ẋ2 − a|x|ν =

m

2
γ − aαν/2, aν > 0. (B.1)

Eqs. (2.12), (2.13) and (2.15) in this case lead to the following circular
orbit equation and integrals of motion:

Ω2 = ν
a

m
Rν−2, (B.2)

J = mR2Ω, (B.3)

E(0) = 1

2
mR2Ω2 + aRν . (B.4)
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Combining (B.2) with (B.3) and (B.4) yields the functions which deter-
mine the circular orbit Hamiltonian:

Ω =

[

(νa)2
Jν−2

mν

] 1
ν+2

, (B.5)

H(0) =
(ν

2
+ 1
)[

a2
(

J2

νm

)ν ] 1
ν+2

. (B.6)

The radial frequency (2.25) the present case, ω2 = ν(ν+2) a
mRν−2,

simplifies with the use of (B.2):

ωr =
√
ν + 2 Ω. (B.7)

It follows from this that the circular motion is unstable at ν ≤ −2.
Gathering (B.6), (2.37), (B.7), (B.5) all together and using the quan-

tization rules (2.38) one obtains the energy spectrum:

E =
(ν

2
+ 1
)[

a2
(
ℓ(ℓ + 1)

νm

)ν ] 1
ν+2

{

1 +
ν√
ν + 2

2nr + 1
√

ℓ(ℓ + 1)

}

. (B.8)

It coincides exactly with that formula derived in [45] by solving the
Schrödinger equation in the oscillator approximation.

In the cases of Coulomb and oscillator potentials we have:

ν = −1 :

E = − a2m

2ℓ(ℓ + 1)

{

1 − 2nr + 1
√

ℓ(ℓ + 1)

}

= − a2m

2(ℓ + nr + 1)2
+ O(ℓ−4);

ν = 2 :

E =

√

2a

m
ℓ(ℓ + 1)

{

1 +
2nr + 1
√

ℓ(ℓ + 1)

}

=

√

2a

m

{

ℓ + 2nr +
3

2

}

+ O(ℓ−1).

C. Scalar arguments of Fokkerians

α = x2 = (S1z1 − S2z2)2 = (Sz1 − z2)2

= z2 + 2
{
z⊥
1 · z⊥

2 [1 − cos(Ωϑ)] − (n, z1, z2) sin(Ωϑ)
}
, (C.1)

βa = ẋa · x = (−)ā(ża + va) · (za − S
T
a Sāzā)

= (−)ā(ża + va) · {za − zā cos(Ωϑ) − n(n · zā)[1 − cos(Ωϑ)]

− (−)an×zā sin(Ωϑ)} , a = 1, 2; ā = 3 − a, (C.2)

γa = ẋ2
a = [Sa(ża + va)]2 = ż2

a + 2ża · va + v2
a, (C.3)
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δ = ẋ1 · ẋ2 = [S1(ż1 + v1)] · [S2(ż2 + v2)] = [S(ż1 + v1)] · (ż2 + v2)

= (ż1 + v1) · (ż2 + v2) cos(Ωϑ) + (n · ż1)(n · (ż2)[1 − cos(Ωϑ)]

+ (n, ż1 + v1, ż2 + v2) sin(Ωϑ); (C.4)

here va ≡ Ω×za is a vector product of Ω and za; (n, z1, z2) = n ·
(z1×z2); Sa = exp(taΩ) (a = 1, 2); S = S1S

T
2 = exp(ϑΩ)

D. Hamiltonization of a system of nonlocal oscillators

Quadratic terms of the action (4.37) can be presented in the following
simple form:

I(2) = 1

2

∑

kl

∫∫

dtdt′ρk(t)Dkl(t− t′)ρl(t′), (D.1)

where the matrix kernel D(t−t′) = ||Dkl(t−t′)|| (here the multindeces are
used: k, l = (a, i), (b, j) etc.) is invariant with respect to time translations
and a time reversal: DT(t′ − t) = D(t − t′). The time-nonlocal linear
equations of motion:

∑

l

∫

dt′Dkl(t− t′)ρl(t′) = 0 (D.2)

admit a fundamental set of solutions of the form: ρk(t) = ek(ω)e−iωt.
Their substitution into the equations (D.2) yields the set of algebraic
equations:

∑

l

Dkl(ω)el(ω) = 0, (D.3)

which constitute the eigenvector-eigenvalue problem for the polarization
vectors ek(ω) and characteristic frequencies ω. The latters are deter-
mined from the secular equation detD(ω) = 0 in terms of the dynamical
matrix: D(ω) =

∫
dtD(t)eiωt. (Here the Fourier-image D(ω) is denoted

by the same symbol as the prototype D(t) but with different argument
which might not lead to confusion). Due to non-locality of the problem
(D.2) matrix elements Dkl(ω) are non-polynomial, in general, functions
of ω. Consequently, solutions of the secular equation form, in general,
an infinitely large set of complex and/or real characteristic frequencies.
Thanks to symmetry properties of the dynamical matrix:

D
T(ω) = D(−ω), D

†(ω) = D(ω∗) (D.4)

this set consists of quadruplets {±ωα,±ω∗
α, α = 1, 2, . . .} (and/or du-

plets if ωα ∈ R), and a general real solution of the equations (D.2) is:
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ρk(t) =
∑

α

{

Aαe
k
α e−iωαt + A∗

α

∗
ekα eiω

∗
αt

+ Bαf
k
α e−iω∗

αt + B∗
α

∗

fk
α eiωαt

}

, (D.5)

where ekα ≡ ek(ωα) and fk
α ≡ ek(ω∗

α).
Arbitrary complex variables Aα and Bα parameterize a phase space

PC of the system (infinitely-dimensional, in general) which may include
both the physical as well as non-physical degrees of freedom. Complex
frequencies cause necessarily difficulties in a physical interpretation of
the system which we discuss below (also see [39]). Thus, from the whole
variety of frequencies we choose only real ones: ω∗

α = ωα. The general
solution (D.5) reduces in this case to the following one:

ρk(t) =
∑

α

{

Aαe
k
α e−iωαt + A∗

α

∗
ekα eiωαt

}

, (D.6)

where summation spreads over those α for which Im ωα = 0. This is
implied in next subsection too.

D.1. Hamiltonian description: real frequencies

A current problem at this point is to construct the Hamiltonian descrip-
tion for the variational principle (D.1) on the phase subspace PR ⊂ PC of
solutions (D.6) parameterized by complex variables Aα. An appropriate
guideline which we adopt for this purpose is the Hamiltonian formalism
for nonlocal Lagrangians proposed by Llosa and coauthors [24–26].

Let us define the time-nonlocal lagrangian:

L(t) = 1

2

∑

kl

∫

dt′ρk(t)Dkl(t− t′)ρl(t′), (D.7)

in term of which the action (D.1) takes a usual form I(2) =
∫
dtL(t), and

the functional derivative:

Ek(t, t′; [ρ]) ≡ δL(t)

δρk(t′)
= 1

2

∑

l

ρl(t)Dlk(t− t′). (D.8)

Then, following the Ref. [25], the Hamiltonian structure on the phase
space of the time-nonlocal system is defined by the symplectic form, i.e.,
the closed differential 2-form:

Ω =
∑

kl

∫

dt

∫

ds

∫

duχ(t, s)
δEk(−s, t; [ρ])

δρl(u)
δρl(u) ∧ δρk(t), (D.9)
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where χ(t, s) ≡ 1

2
(sgnt + sgns) = θ(t)θ(s) − θ(−t)θ(−s),

δρk(t) denotes a functional differential of ρk(t), and “∧” denotes the
wedge product. In turns, an explicit calculation of the symplectic form
determines PBR of phase variables (in our case – of Aα’s).

It is evidently that the symplectic form (D.9) is exact, i.e., Ω = δΘ,
where

Θ =
∑

k

∫

dt

∫

dsχ(t, s)Ek(−s, t; [ρ])δρk(t) (D.10)

is a 1-form, so called the Liouville form, defined up to arbitrary exact
1-form (i.e., a total differential). A calculation of Θ (rather than Ω) is
more simple and convenient for our purpose.

The dynamics of a time-nonlocal system in a phase space is deter-
mined by the Hamiltonian [25]:

H =
∑

k

∫

dt

∫

ds χ(t, s)Ek(−s, t; [ρ])ρ̇k(t) − L(t)|t=0. (D.11)

Upon integration in eqs. (D.10) and (D.11) the following formula is
useful:

∫

dt

∫

ds χ(t, s)E(−s, t)f(t) =

∞∫

−∞

ds

s∫

0

dtE(t− s, t)f(t).

Let us calculate the Liouville form Θ. Using (D.6) and (D.8) in (D.10)
yields

Θ = 1

2

∑

kl

∞∫

−∞

ds

s∫

0

dtDkl(s)ρ
l(t− s)δρk(t)

= 1

2

∑

kl

∑

αβ

∞∫

−∞

dsDkl(s)

s∫

0

dt
(

Aαe
l
αe−iωα(t−s) + A∗

α

∗
elαeiωα(t−s)

)

×

×
(

e−iωβtekβδAβ + eiωβt∗ekβδA
∗
β

)

(D.12)

which then is convenient to present in the matrix form:

Θ = 1

2

∑

kl

∑

αβ

∞∫

−∞

dsDkl(s)[ Aαe
l
αeiωαs, A∗

α
∗
elαe−iωαs ] ×
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×
s∫

0

dt

[

e−i (ωα+ωβ)t e−i (ωα−ωβ)t

ei (ωα−ωβ)t ei (ωα+ωβ)t

] [

ekβδAβ
∗
ekβδA

∗
β

]

= i

2

∑

kl

∑

αβ

[ Aαe
l
α, A∗

α

∗
elα ] ×

×
∞∫

−∞

dsDkl(s)

[

− eiωαs−e−iωβs

ωα+ωβ
− eiωαs−eiωβs

ωα−ωβ

e−iωαs−e−iωβs

ωα−ωβ

e−iωαs−eiωβs

ωα+ωβ

] [

ekβδAβ
∗
ekβδA

∗
β

]

= i

2

∑

kl

∑

αβ

[ Aαe
l
α, A∗

α

∗
elα ] ×

×
[

−Dlk(ωα)−Dlk(−ωβ)
ωα+ωβ

−Dlk(ωα)−Dlk(ωβ)
ωα−ωβ

Dlk(−ωα)−Dlk(−ωβ)
ωα−ωβ

Dlk(−ωα)−Dlk(ωβ)
ωα+ωβ

][

ekβδAβ
∗
ekβδA

∗
β

]

. (D.13)

Due to properties (D.3) and (D.4) all items of the sum (D.13) vanish
except those terms which both correspond to α = β and include anti-
diagonal entries of the square matrix in the last line of (D.13). Residuary
terms possess uncertainty 0/0 which can be eliminated by a limit tran-
sition:

Θ = i

2

∑

kl

∑

α

lim
λ→ω

(

A∗
α

∗
elα

Dlk(λα) −Dlk(ωα)

λα − ωα
ekαδAα

−Aαe
l
α

Dlk(−λα) −Dlk(−ωα)

λα − ωα

∗
ekαδA

∗
α

)

= i

2

∑

α

∆α(A∗
αδAα −AαδA

∗
α), (D.14)

where

∆α ≡
∑

kl

∗
ekα

dDkl(ωα)

dω
elα = ∆∗

α. (D.15)

In order to calculate the Hamiltonian we first note that the La-
grangian (D.7) equals to zero by virtue of the equations of motion (D.2),
thus the last term of (D.11) vanishes. The residuary sum in (D.11) can be
obtained from the Liouville form (D.10) by means of formal substitution
δAα → −iωαAα. Thus one gets:

H =
∑

α

∆αωα|Aα|2. (D.16)

If ∆α > 0 one can redefine polarization vectors ekα → ẽkα = ∆
−1/2
α ekα
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in (D.6) so that the Liouville form and the Hamiltonian simplify:

Θ = i

2

∑

α

(A∗
αδAα −AαδA

∗
α), (D.17)

H =
∑

α

ωα|Aα|2. (D.18)

Then one gets from (D.17) the symplectic form:

Ω = δΘ = i
∑

α

δA∗
α ∧ δAα (D.19)

which generates the following PBR: {Aα, Aβ} = {A∗
α, A

∗
β} = 0,

{Aα, A
∗
β} = −i δαβ. Upon quantization Aα → Âα, A∗

α → Â†
α one ob-

tains standard annihilation and creation operators: [Âα, Â
†
β] = δαβ ; the

Hamiltonian (D.18) takes the standard oscillator form and leads imme-
diately to the discrete spectrum E =

∑

α ωα(nα + 1

2
), nα = 0, 1, . . . . We

will refer to variables Aα, A∗
α, and the form (D.19) as canonical ones.

Let us now {α} = {α′} ∪ {α′′} such that ∆α′ > 0 and ∆α′′ < 0.
Redefining the polarization vectors ekα → ẽkα = |∆α|−1/2ekα and then the
canonical variables Aα′′ → Cα′′ = A∗

α′′ reduce the Liouville form (D.14)
to the canonical one:

Θ = i

2

∑

α′

(A∗
α′δAα′−Aα′δA∗

α′) − i

2

∑

α′′

(A∗
α′′δAα′′−Aα′′δA∗

α′′)

= i

2

∑

α′

(A∗
α′δAα′−Aα′δA∗

α′) + i

2

∑

α′′

(C∗
α′′δCα′′−Cα′′δC∗

α′′ ).

The Hamiltonian in this case,

H =
∑

α′

ωα′ |Aα′ |2 −
∑

α′′

ωα′′ |Cα′′ |2,

is not positively defined which feature is characteristic of higher deriva-
tive and time-nonlocal systems [39].

D.2. Hamiltonian description: complex frequencies

If Im ωα 6= 0, the corresponding terms in (D.5) are unbounded which
fact contradicts the taken approximation of small ρk. One can chose
a dumping solution by putting Bα = 0 in (D.5). This case however
cannot be turned into the Hamiltonian formalism, using the scheme by
Llosa et.al. [25]. To see this we consider briefly a general case of complex
frequencies.
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Substituting the solution (D.5) into (D.10) and accomplishing similar
to eqs. (D.12)-(D.14) (but more cumbersome) calculations yields the
Liouville form:

Θ = i

2

∑

α

{∆α(B∗
αδAα−AαδB

∗
α) + ∆∗

α(A∗
αδBα−BαδA

∗
α)} , (D.20)

with complex (contrary to (D.15)) coefficients

∆α ≡
∑

kl

∗

fk
α

dDkl(ωα)

dω
elα 6= ∆∗

α.

Then the redefinition ekα → ẽkα = ∆
−1/2
α ekα, fk

α → f̃k
α =

∗

∆
−1/2
α fk

α in (D.5)
reduce (D.20) to the form:

Θ = i

2

∑

α

(B∗
αδAα−AαδB

∗
α + A∗

αδBα−BαδA
∗
α) . (D.21)

Similarly one obtains the Hamiltonian:

H =
∑

α

(ωαB
∗
αAα + ω∗

αA
∗
αBα) . (D.22)

The Liouville form (D.21) is not split in variables Aα and Bα which
thus are not canonical nor appropriate for quantization. Properties of
the Hamiltonian (D.22) in these variables are obscured. Thus we change
variables into canonical ones. For a brevity we consider only one mode
corresponding to some quadruplet of characteristic frequencies. Thus
hereinafter the indices α and summation over α are omitted.

A choice of canonical variables is not unique. One may choose for one
a complex variables a, b as follows:

A = (a− b∗)/
√

2, B = (a + b∗)/
√

2,

in terms of which the Liouville form indeed becomes separated and
canonical:

Θ = i

2
(B∗δA−AδB∗ + A∗δB −BδA∗)

= i

2
(a∗δa− aδa∗ + b∗δb − bδb∗).

On the contrary, the Hamiltonian does not split in a and b modes,

H = 1

2
(ωB∗A + ω∗A∗B)

= 1

2
{Reω(a∗a− b∗b) + i Imω(ba− b∗a∗)} .
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In this case, real canonical variables are more appropriate for a quanti-
zation. If one chooses:

A = (−P + i p)/
√

2, B = (q + iQ)/
√

2,

the Liouville form standardizes:

Θ
md
== pδq + PδQ

(the notation “md” means “up to a total differential”) while

H = −Reω(qP −Qp) − i Imω(qp + QP ).

In this form the Hamiltonian has been quantized in [39] and its spectrum
is shown to be continuous and unbounded both from below and from
above. A physical meaning of such a system is doubtful.

E. Aristotle-invariance properties of the dynamical matrix

Lai + ε l
ik ΩkLal̂ = 0, (E.1)

Laij + ε l
ik ΩkLal̂j = 0, (E.2)

Lai̂ + ε l
ik ΩkLal̂̂ = 0, (E.3)

ε l
ik {zkaLal + Ωkε n

lm zma Lan̂} = 0, (E.4)

ε l
ik {zkaLalj + Ωkε n

lm zma Lan̂j} + ε l
ij Lal + ε l

ik ε
n

lj ΩkLan̂ = 0, (E.5)

ε l
ik {zkaLal̂ + Ωkε n

lm zma Lan̂̂} + ε l
ij Lal̂ = 0, (E.6)

Λai + ε l
ik ΩkΛal̂ + nin

m{Λān + ε l
nkΩkΛāl̂}

+ Prni {Φ̌ān(Ω) + ε l
nkΩkΦ̌āl̂(Ω)} = 0, (E.7)

Λaij + ε l
ik ΩkΛal̂j + nin

n{Λān aj + ε l
nkΩkΛāl̂ aj}

+ Prni {Φ̌ān aj(Ω) + ε l
nkΩkΦ̌āl̂ aj(Ω)} = 0, (E.8)

Λai̂ + ε l
ik ΩkΛal̂̂ + nin

n{Λān a̂ + ε l
nkΩkΛāl̂ a̂}

+ Prni {Φ̌ān a̂(Ω) + ε l
nkΩkΦ̌āl̂ a̂(Ω)} = 0, (E.9)

ε l
ik {zkaΛal + Ωkε n

lm zma Λan̂}
+ nin

qε l
qk {zkaΛāl + Ωkε n

lm zma Λān̂}
+ Prqi ε

l
qk {zkaΦ̌āl(Ω) + Ωkε n

lm zma Φ̌ān̂(Ω)} = 0, (E.10)

ε l
ik {zkaΛalj + Ωkε n

lm zma Λan̂j}

ICMP–12–08E 41

+ nin
qε l

qk {zkaΛāl aj + Ωkε n
lm zma Λān̂ aj}

+ Prqi ε
l

qk {zkaΦ̌āl aj(Ω) + Ωkε n
lm zma Φ̌ān̂ aj(Ω)}

+ ε l
ij Λal + ε l

ik ε
n

lj ΩkΛan̂ = 0, (E.11)

ε l
ik {zkaΛal̂ + Ωkε n

lm zma Λan̂̂}
+ nin

qε l
qk {zkaΛāl a̂ + Ωkε n

lm zma Λān̂ a̂}
+ Prqi ε

l
qk {zkaΦ̌āl a̂(Ω) + Ωkε n

lm zma Φ̌ān̂ a̂(Ω)} + ε l
ij Λal̂ = 0, (E.12)

where z1 = R1, z2 = −R2 and Prki ≡ δki − nin
k.
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4. H. Tetrode, Über der Wirkungzusammenhang der Welt. Eine Er-

weiterung der klassischen Dynamik, Z. Phys. 10, 317-328 (1922).
5. A. D. Fokker, Ein invarianter Variationsatz für die Bewegung

mehrerer elektrischer Massenteilchen, Z. Phys. 28, No 5-6, 386-393
(1929).

6. J. A. Wheeler, R. P. Feynman, Interaction with the absorber as the

mechanism of radiation, Rev. Mod. Phys. 17, No 2-3, 157-181 (1945).
7. J. A. Wheeler, R. P. Feynman, Classical electrodynamics in terms

of direct interparticle action, Rev. Mod. Phys. 21, No 3, 425-433
(1949).

8. P. Ramond, Action-at-a-distance theories and dual models, Phys.
Rev. D 7, No 2, 449-458 (1973).

9. V. I. Tretyak, Fokker-type action integrals and forms of relativis-

tic Lagrangian dynamics. Thesis on search of the degree of doctore



42 Препринт

of physical and mathematical sciences (Lviv State University, Lviv,
1996), 306 p. [in Ukrainian].

10. V. I. Tretyak, Forms of relativistic Lagrangian dynamics (Naukova
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group, in Methods for studying differential and integral operators
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