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pole model
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Abstract. Two modified versions of the dipole model with a pair of me-
diating fields are considered. First modification affects the Yukawa term
in the Lagrangian. In the second version non-linear self-action term is
added. By constructing exact solutions of the field equations with the use
of a covariant Green function we derive a Lagrangian with many-point
time-nonlocal interaction terms. For the linear dipole model the two-
particle interaction, in the non-relativistic limit, is shown to be a sum
of Coulomb and linear confinement terms. For the nonlinear 3-model
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particle cluster potentials with logarithmic confinement. Approaches to-
wards a consistent relativistic treatment of the models are proposed, and
the problem of divergences is discussed.
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1. Introduction

Substantiation of confinement in QCD, both via numerical simulations
[1,2] and especially via analytical calculations [2], remains a challenging
task. The study of simpler field-theoretical models that simulate the
characteristic features of confinement remains relevant and may be useful
in further investigations. Examples of such simpler models are the higher
derivative models and the dipole models.

In the middle of the 70s a rather simple higher derivative mod-
el [3] and the closely related dipole model [4] was proposed as a phe-
nomenological theory of quark binding in hadrons. Subsequently, the
non-Abelian version of the theory was introduced [5]. These models in-
dicate 1/k* infrared asymptotics of the “gluon" propagator, and thus a
linear interaction potential, even at the classical level. Unfortunately, the
short-range (ultraviolet) behavior of the interaction in these models is
the same, in contradiction to the 1/k? Coulomb-like behavior of QCD. It
is of interest to modify the aforementioned models so as to adjust their
properties to conform with realistic interquark interactions.

In this paper we will analyze the interactions that arise from partic-
ular generalizations of the dipole model [4]. For a simplicity we consider
the scalar version of the model. We modify the Yukawa term in the
Lagrangian in order to take into account Coulomb-like interaction in ad-
dition to the confinement one. Another modification we shall consider
involves the inclusion of non-linear self-action terms in the mediating-
field sector of the Lagrangian. As an example we shall consider the ¢3-
nonlinearity. We show that, in the nonrelativistic approximation, this
model generates a two-particle interaction and three-particle cluster in-
teraction, both with logarithmic-type confinement. This requires regu-
larization of the three-point interaction potential in the static limit.

Two possible ways of the relativistic treatment of the models are con-
sidered. One is based on the classically oriented formalism of Fokker-type
action integrals. Another is the quantum field theory supplemented with
the variational method. The problem of divergences of the relativistic
interaction kernels and their regularization is discussed.

2. Nonlocal Lagrangian from scalar nonlinear dipole
model

We proceed from the classical action integral

I:/d4:v£(:1c) (2.1)
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over Minkowski space (z € M*) with the Lagrangian density (h = c = 1)
L= Lfrcc + ch + a,LLX 8#(:0 - V((p)v (22)

Here Lee is the Lagrangian describing free matter. We do not need to
specify it at this point (specific forms will be presented in Sections 6 and
7). The x(x) and ¢(z) are real massless scalar fields. The Yukawa term

Ly = —pX (23)

describes the interaction of the matter with the field x(z); p is the scalar
charge density of the matter. Lastly, the potential V(¢) describes the
self-interaction of the ¢ field; it can be chosen arbitrary.

The stationary property of the action (2.1)-(2.3), i.e. 6I(x) = 0, de-
termines the dynamics of the system. Thus, varying the action with
respect to the mediating fields x and ¢ leads to the coupled set of the
Euler-Lagrange equations:

Op = —p, (2.4)
Ox = -V'(¢). (2.5)

They possess the exact formal solution:

¢ =—Dxp, (
x=-Dx*V'(p), (

where “ * 7 denotes the convolution [D * p] (z) = [d*z'D(x — 2’)p(2’)
and D(z) is a Green function of the d’Alembert equation. The arbitrary
solution of the homogeneous d’Alembert equation is omitted because the
free x and ¢ fields play no role in the investigation considered here.

Since the mediating fields are real, we must use a real Green function
of the d’Alembert equation. The choice

1
Dyfw) = (1 +nsgna®o@®),  n==+1,0 (2.8)

corresponds to the retarded (if n = 4+1), the advanced (if n = —1) or the
symmetric (if n = 0) Green function; here 2 = z, 2" = 1, 2*z" and the
time-like Minkowski metric ||n,.| = diag(+, —, —, —) is used. We note
some useful properties of the Green functions (2.8):

Dy(~a) = —D_,(x), n = %L;
Do(~x) = Do(a) = 3Dy (x) + D_(a)), (2.9)
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The solutions (2.6)-(2.7) can be substituted into the Lagrangian (2.2).
The result is

E = ﬁfrcc + ﬁint = ﬁfrcc - V(_D * p)v (210)

where ~ denotes equality modulo surface terms. This partially reduced
Lagrangian depends only on the matter variables and it is non-local in
space-time.

3. Linear dipole model

The choice

V(p) = 37 ¢%, (3.1)
where s is an interaction constant with dimension of mass, corresponds
to the linear dipole model [6] (see also [4] where an original vector version
of the linear dipole model was proposed). The interaction term of the
action I = [ d*z £ with the Lagrangian density (2.10) and (3.1) implies
a 2-fold integration over Minkowski space:

Ii(ft) = %%2//d4x d*a’ p(z) G(xz — 2') p(2). (3.2)

The Poincaré-invariant kernel of this integral is constructed by convoluti-
ons of two Green functions of d’Alembert’s equation, D¢ * D,, (&, = +£),
and an arbitrary additive constant. The only choice that avoids diver-
gences in (3.2) is [6]

Glr) = 31Dy« D+ DD ] (1)~ 7
1 2 _ 1 2
= = [0a?) 1] = ——0(~a?). (3.3)

Note that G(z) = G(—z) is symmetric by construction.

In order to have some understanding of the properties of the interac-
tions described by the non-local term (3.2) it is useful to derive a static
potential, i.e., a potential of interaction between motionless point-like
particles. For this purpose we take the source to be a static system of N
point-like particles:

N
pl@) = p(t,2) = 3 gub(@ — wa), (3.4)
a=1
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where &, (a = 1, N) is the position of the a-th particle and g, is its
scalar charge. In this case we obtain:

N N
1) = 52505 gugn [ [ @025 — @ )o(a — ) [t Glo — o)

a=1b=1

- ZZ/dt V(xg — xp). (3.5)

a<b

It is obviously that the function

%2gagb |$
8w “

V(xg — ) = —%2gagb/dt'G(t', T,—Tp) = — x| (3.6)

is a static linearly confining potential.

The above dipole model does not include short-range Coulomb-like
interactions, as would arise in realistic descriptions of inter-quark forces.
Such a Coulombic interaction can be easily generated by modifying the
Yukawa term (2.3) in the Lagrangian (2.2) as follows:

Ly = Ly =—p(x+ 10). (3.7)

As in the case of egs. (2.4)-(2.5), the modified field equations are easily
solvable, and the corresponding reduced Lagrangian has the form:

L = Lree + 1pD x p+ V(=D x p). (3.8)

For the present p?—interaction case, eq. (3.1), the action integral (3.2)
with (3.3) modifies to the form

Ii(ft) = %//d‘l:v d*a’ p(2){52G(z — 2') — Do(z — ')} p(z'), (3.9)

which leads, in the static limit, to the “funnel" (or “Cornell") two-particle
potential:

” P 1
Ve, —x2) = ggb {_|m1—m2| 7} (3.10)

We note that static potentials (3.6) and (3.10) actually realize a non-
relativistic (i.e., slow motion) approximation of an interaction in a system
of point-like particles. Indeed, let us regard particle positions in (3.4) as
slow variable functions of t: @, = x,(t), such that v, = |dx, /dt| < 1.
In this case the expression (3.4) equals approximately to the manifest-
ly covariant charge density (6.2) considered in Section 6. Accordingly,
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the equality (3.5) holds approximately, up to negligibly small (quasi-
relativistic) corrections oc v2. Thus static potentials are ready to be used
in non-relativistic potential models of hadrons. This topic will be dis-
cussed in Section 5.

4. ¢3-nonlinear dipole model

The simplest non-linear version of the dipole model is that with a cubic
self-action potential:

V(p) = 5r¢°, (4.1)
where k is an interaction constant with dimensions of mass. Then, the

corresponding interaction term in the non-local action integral has the
form:

Ii(ni) =1 ////d4x d*z’d*z"d*s""'D(z — 2')D(x — 2" )D(x — 2"")x
<p(a)p(z")p(z")
= %Ii///d4$/d4$//d4x "E@E 2 2" p(a ) p(x ) p(2").  (4.2)
This expression is rather symbolic until the choice of Green functions

D (and thus the kernel F) is specified. To this end, let us consider the
convolution of three arbitrary chosen Green functions:

Fene(z1, 22, x3) :/d4z D¢(z — x1)Dy(z — 22)De (2 — x3). (4.3)

This function possesses the following formal properties:

1. translational invariance:
anC(I1+/\,$2+/\,$3+)\) = anC(Il, X2, Ig), where \ € M4;

2. Lorentz invariance:

Fene(Azy, Ao, Axg) = Fepe (21,22, 23), where A € SO(1, 3);

3. inversional property:
Fene (=21, =22, —23) = F¢ (21, 72, 73).

4. permutational properties:
Foec (2, w1, 23) = Feen(ws, 21, 22) = - = Fenc (21, 72, 3);

It follows from property 1 that the function (4.3) actually depends on
two linearly independent 4-vector arguments only; for example,

Fene (w1, 2, x3) = Fepe(x1—23, 22—13). (4.4)
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In addition, because of properties 3 and 4, all possible functions Fg;¢
can be expressed, in terms of only two functions F_; and F; ;. These
functions are calculated in Appendix with the use of property 2:

0(u)0(u?)0(—v)0[— (u—v)?]

F_ u,v) = , 4.5

++(u:0) 2(4m)2/(u - v)? — uv? (45)
oo, if u & v are space-like

Fresluv) = { 0  otherwise (46)

The function F 4 is divergent, hence only the function F_; can be
used in the action integral (4.2).

Since the kernel F'(x1, zo, 23) of the action integral (4.2) is completely
symmetric by construction, it must be inversion invariant (cf. property
3). The only choice that ensures this property is:

1
F(x1,22,23) = 5 [Foy i (w1, 22,03) + F_yy (22,71, 23)

+ Py (s, 1, 22) + Fqy (=21, —32, —23)
+ F_++(—CC27 —T1, _=T3) + F—++(—=T37 —Z1, _55'2)] (4-7)

In the static approximation the choice of the Green function is not
important and need not be specified explicitly. In this case we have

Ii(r?t) _ %K/dt//d3$//d3$ "/d3x”’p(:v’)p(:c”)p(:v”’)x
x/dt"/dt"'/d4x D(z —2')D(z — 2")D(z — 2'")

= _—3(4";)3/dt/d3x’/dgx”/dgx "o(x")p(x" ) p(x"") %
xU(z', 2", x"), (4.8)

where the kernel

d3z
o _ 4.9
(z1, 2, @3) /|z_m1||z—m2||z—$3| )

has the structure (modulo a constant factor) of a three-particle interac-
tion potential.

The integral in r.h.s. of (4.9) is a divergent quantity and thus it
may seem to be meaningless. However, the gradients OU (21, €2, x3)/0x,
(a = 1,2,3) which determine the forces in the classical background of
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this problem, are well defined and finite. Thus the “function" (4.9) can
be presented in the form

Uz, x2,23) = Uz, 22, 23) + Up (4.10)

where U(x,, 22, x3) is a regular (finite) function and Uy is a physically
unimportant infinite negative constant (independent of the variables xq,
o, :Eg). 5

In order to perform this replacement and calculate U explicitly, let us
first list some general symmetry properties of the integral (4.9) (which
are related to properties of the kernel F' (4.7)):

1. translational invariance:
U(z1+X, 2+, 23+A) = U(x1, T2, x3), where X € R?;

2. rotational invariance:

U(Rx1,Rxa, Ras) = U(x1, 2, x3), where R € SO(3);
3. inversional invariance: U(—x1, —2, —x3) = U(x1, T2, T3).

4. permutational invariance:
U(.’BQ, Iy, .’133) = U(:Bl, 3, :BQ) = U(.’Bl, o, :Eg);

These properties are fundamental symmetries inherent to any interacti-
on potential of a closed (nonrelativistic) system of three particles with
identical interaction properties. Thus the regularized potential must pos-
sess these properties with necessity. As a consequence, the potential
U(xy,xo, x3) actually depends only on the three inter-point distances
r12,213, 223, where Tab = |ccab| = |.’1}a — .’Bb|.

In an earlier paper [7] a representation of the function (4.9) was given
in which its dependence on the inter pair distances is manifest. This
representation simplifies considerably the regularization and evaluation

of U. It is based on an application of the well known formula:

1 1 o 2 2
- dk —k*r
T \/E/_OO ¢

to each Coulomb-like factor of the integrand of the expression (4.9),
which thereby takes the form of 6-fold integral [ d®k [d3z ... The inte-
grand is Gaussian with respect to the variable z and thus the integration
procedure can be easily carried out. As a result, the dependence of the
potential U(z12,x23,213) on the three inter pair distances x,, becomes
apparent.
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The potential difference:

U(z12, 223, 213) — U(y12, Y23, y13)
= U212, T23, 713) — U(y12, Y23, 913)  (4.11)

must be finite since infinite constants Uy (see (4.10)) from the first and
second terms of (4.11) mutually cancel out. The Lh.s. of (4.11) can be
calculated explicitly and the result reduced to a quadrature [7]:

-~ 13 + T3

U(:El,xg,mg) = ﬁ(Ilg,ZCQg,Ilg) :471'111 4@ +I(Oé,ﬂ), (412)

where

21 32
arctan w, (4.13)

1
ds
I(Oé,ﬂ)—‘l_/lm =2

oo Tl — T ge [+ 23)? — aty[dy — (213 — 723)?]

2 ) 1
L1 Ti2

, (4.14)

and a is an arbitrary constant with dimensions of length. We note that
the interparticle distances must satisfy the triangle inequalities: z13 +
T23 > T12, T23 + T12 > 713 and X1z + x13 > Ta3.

The regularized potential (4.12)—(4.14) possesses all properties en-
numerated above, including the permutational invariance (although im-
plicitly). In addition, it obeys the following:

5. scaling property: U(A&1, Mo, Ae3) = U(xy, T2, x3) + 4wln )\,
where A € R,..

In the particular case when the points &1, 2 and x3 lie on a straight
line the integral (4.13) can be calculated analytically:
~ x
U(x12, o3, x13) = 4mln 2—>, where x> = max(z12, z23,213). (4.15)
a
This case includes configurations where two of three points coincide, say,
r1 = I3, i.e., 13 = O, and T> = T12 = T23 in r.h.s. of (415)
Another analytically solvable case is that of equidistant separations
T19 = Tz = 13 = T, for which

U(r) = 4rn L c1, (4.16)
a

where a is any convenient unit of length and ¢; is a (physically irrelevant)
constant.
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In the general case, a numerical integration of (4.13) is required. We
illustrate the behavior of the potential in Figure 1 for the particular case
T, = a, T = —a as a function of 3 = r. The value of potential for
arbitrary configuration can be obtained from this using the symmetry
properties 1-5.

Figure 1. The potential U(a,—a,r) as a function of r = {z,y,2}; p =
V2% +y?%; a = |a|. The function is symmetric under the inversion z —

—2z and rotation around 0z. In particular, U = 470(|2| —a) In 1(|z|/a+1)
if p=0.

In the case when one of the points is far from the others, the equali-
ty (4.15) is valid asymptotically. Thus the regularized potential reveals
logarithmic confinement properties.

5. Application to non-relativistic potential models

Generalized dipole models may have application to the spectroscopy of
hadrons. The funnel potential with linearly rising long-range interaction
(3.10), which we derived here from the ¢?-model, has been used suc-
cessfully in potential models of heavy mesons; see [8] and refs. therein.
The funnel potential has also been applied successfully to the description
of baryons [9]. Due to the linearity of the p?-model, the three-particle
interaction in this case is a superposition of pair-wise potentials.
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The ¢3-nonlinear dipole model reveals a different character of con-
finement. Let us derive two- and three-particle interaction potentials for
this model in the non-relativistic approximation. To this end we insert
the point-like density (3.4) into the action (4.8) (with the regularized
kernel /) and represent the latter in the form:

13 = —/dtV (5.1)
where

K ~ ~
= 30 {Z 920(0,0,0) 43> > " gage(ga+s) U(ab, Tap, 0)

a<b

+ GZZZ%%QC U(xabyxbcaxca)} . (52)

a<b<ec

Terms containing the infinite constant U(0,0,0) correspond to self-
interaction energy and should be omitted. The pairwise terms contri-
bute the two-body potential which, taking account of eq. (4.15) and the
remark following this equation, takes the form:

K£g192(91+92) | T12
V(ml —mQ) = Wln %

(5.3)
The logarithmic funnel-shaped potential is qualitatively similar to the
potential (3.10); see Figure 2. It is also used in potential models of mesons
8] }

In the three-body potential, the cluster term U(x1,x2,x3), egs.
(4.12)-(4.14), arises along with the pairwise terms:

K T12 x23
V(xy, x2,x3) = e {glgz(gl+gz) In 55+ 9293(g2+g3) In S

31 2K919293 ~
1 —} ——"U . (54
+g3gl(g3+gl) n 2. + (47’(’)3 (.’131,.’132,:33) ( )

The breaking the superposition principle is caused by the nonlinearity
of the model.

The use of logarithmic funnel potentials in phenomenological mod-
els of hadrons has some advantages. For example, in the two-particle
problem with such a potential, differences between energy levels do not
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U

Figure 2. Comparison of the Cornell and logarithmic potentials.

depend on rest masses of the particles, and such behaviour is observed
experimentally [8].

The study of properties of three-particle systems in models with log-
arithmically rising potential requires the solution and analysis of the
three-body Schrédinger equation. This is a challenging task, which will
not be undertaken in the present work.

6. Relativistic treatment: Fokker-type formalism

The non-relativistic treatment of dipole models revealed confinement
properties of the models. Now we return to a more consistent relativistic
description which, up to this point, is not complete yet. We should specify
a dynamics of a matter subsystem of the models. This can be performed
in several ways. In the present work, we consider two distinct approaches;
one is classical-oriented and the other is a QFT approach. Both give rise
to some difficulties, which we outline briefly.

Within the classical framework, matter is considered to be a system
of N point-like particles. It is characterized by the following free-particle
Lagrangian and charge density:

‘Cfrcc(x) = - Z ma/dsa 5(17 - Za(Ta)); (61)

p(z) = Zga/dsa 8(z — za(7a)). (6.2)

Here m, and g, are the rest mass and the charge of the a-th particle;
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2(1,) (0 = 0,3, a =1, N) are the covariant coordinates of the world line
of the a-th particle, parameterized by an arbitrary evolution parameter
T, (the proper time s, is used frequently); ds, = \/_ dre; 28 (10) =
dzt /dr,.

The substitution of (6.1) into the action (2.1), and of (6.2) into the
action (3.2) of the modified linear dipole model leads to the Fokker-type
action integral [10,11]:

I= Ifree + 112) = Zma/dsa
+ Z Z gagb//dsa dsp {% Zab DO(Zab)} (6.3)

a<b

where z!, = z/(7,) — 2}/ (7). This expression is well-defined and reg-
ular provided that, in the second (double) integral, the divergent self-
interaction terms corresponding to coincident particle indices a = b are
removed from the sum.

The variation of the particle variables z%(7,) in the action (6.3) gives
rise to integro-differential equations of motion which complicate greatly
the analysis of the model, even in the simplest two-particle case. The
transition to the Hamiltonian formalism and quantization cannot be
performed directly. Similar two-particle Fokker-type models and some
approximation methods appropriate for the Hamiltonian description,
and the quantization of those and the present models are considered
in [12-16].

In the case of the p*nonlinear model the action (4.2) is given by the
three-fold Fokker integral:

Ii(ngt) = 1k Z Z Z\gagbgc///dsa dsydse F(za, 2b, 2¢)
K Z Zgagb///dsa ds! dsy F(za, 20, 21)

a#b

+ 2K Z Z Zgagbgc///dsa dsyds. F Za, Zb, Zc) (6 4)

a<b<ec

where 2!, = z,(7)), s, = s4(7)) and the "backprimed" summa skips over
terms corresponding to a = b = ¢. In contrast to the action (6.3) of the
linear model, this action is not well defined. Even if the self-interaction
terms are omitted, the integrands F'(zq, 2., 2p) of the pair-wise terms
become ill defined as the integration variable 7, approaches 7,, given

ICMP-10-20E 13

the definitions (4.3)—(4.5), (4.7). In this particular case a more subtle
analysis of the integral (4.3) is necessary. Also, it must be remembered
that the non-relativistic three-particle potential (4.9) is divergent. Thus
the integrands F’s in the relativistic action (6.4) are not integrable and
thus should be regularized. We shall not consider this problem further
in this work.

7. Relativistic treatment: QFT variational method

In this section we consider a field-theoretical treatment of matter. Matter
is, more commonly, represented by a system of fermionic fields. However,
in this work, we will consider it to be the complex scalar field.

We proceed from the Lagrangian and charge density:

Liree = u¢*a#¢ - m2¢*¢7 pP= g¢*¢7 (71)

where ¢(x) is a complex scalar “matter" field with rest mass m and
charge g.

The next step is a transition to the Hamiltonian formalism. The pro-
cedure is rather complicated, due to a non-locality of the Lagrangian
description. It can be performed perturbatively, following [6]. In the
leading-order approximation the procedure reduces to the following for-
mal prescription [6,7,17-19]. We construct the Hamiltonian density,

H = 7_[frcc - ﬁintv (72)

where Hyee is the standard expression, and Ly is specified by (2.10) or
(3.8). It is then expressed in terms of the Fourier amplitudes Ay, By and
AI{, BIT( of the field ¢(z) (see eq. (2.14) in [20]). Upon quantization these
amplitudes satisfy the standard commutation relations and become the
creation and annihilation operators. Then, the canonical normal-ordered
Hamiltonian operator is given by H = [ d®z : H(t=0, z) :.

Since the QFT eigenvalue equation H|¥) = E|¢) is not solvable, we
use the variational approximation §(¥,|H — E|W,) = 0. The trial state
of the system, |Wy,), is built of few particle channel components such as
the two-particle state vector |2) = f [ d3p1d3ps f(p1,P3) ALIAI,2|O),

the particle-antiparticle Vector |1+1) = [d®p1d®po f(pl,p3)AI,IB;,2|O>,
the three-particle one |3) = \/— [ d3p1d3pad®ps f(py, Pos pg)AI,lAL2 AI,S |0)
etc. To implement the variational approximation, we evaluate the matrix
elements of H.
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In the case of the linear dipole model the interaction Lagrangian

Ling = El(it) (and thus the Hamiltonian Hi(ft)) is a bilinear function-

al of the charge density p. Accordingly, the matrix elements <2|H.(2)|2>

int
and <1+I|Hi(n2t)|1+i> are the relevant ones for two-particle and particle-
antiparticle variational problems. They lead to a variational Salpeter-like

wave equations of the form:

{p10 +p20 — E} f(P1,P2)

where pao = /m2 + p2 and K2 is a kernel. In the case of a confining
interaction this kernel is singular and must be regularized; see [6] and
refs. therein.

In the case of the ¢3-nonlinear dipole model ﬁl(gt) and thus H

int

are trilinear in p. Consequently, the matrix element <2|Hi(§t)|2) and
(1+1|HP)|14+1) vanish, similarly to the case of the nonlinear the Wick-

int
Cutkosky model considered in [7]. In other words, the purely two-particle
trial states, |2) and |14+1), are inadequate for describing bound states,
as they do not sample the interaction terms of this Hamiltonian. In con-

trast, the three-particle states are affected by H 3 and the (non trivial)

int ’

matrix element <3|Hi(§t) |3) leads to the tree-particle wave equation:

{p10 + p20 + P30 — E} f(P1, P2, P3)

+/d3p’1 d3phy dply K (py, py. p3. P1. o D) F(PLPh. DY) = 0. (7.4)

The kernel X3 of this equation is rather complicated [7] and is expect-
ed to be singular (at least for a massless mediating field). The study of
this question is a subtle problem, as is the problem of regularization of
the kernel K£®). In particular, it should be regularized in accord with the
regularization of the non-relativistic potential (4.9) considered in the Sec-
tion 4. In view of this, another question arises: do QFT-counterparts of
pair-wise interactions which are present in the nonrelativistic potentials
(5.3) and (5.4) exist ? If yes, they would not be sampled by the purely
the two particle trial states |2) and |[1+1). A possible solution to this
problem is to use more general trial states of the form |¥y,) = |2) + [4),
|Uy) = [141) 4 [2+2) ete. [20].
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Appendix. Calculating F_ ., and F, |
Combining the definitions (4.4), (4.3) and (2.8) yields the following ex-
pression for the function F_ 4 (u,v):
1
F_ii(u,v)= W/d4z O(uo — 20)0 [(z — u)?] x
x0(zo — v0)8 [(z — v)?] 0(20)8(2%). (A1)
In order to evaluate this integral we consider different cases.

I.1) Let u be time-like, i.e., u?> > 0. Due to the Lorentz-invariance of
the function F_ 4 (u,v) one can choose a reference frame in which
u = 0. Then following transformations in the integrand of (A.1)

are useful:
d(z0 — |2[)
2y _ .
A2
6(uo — 20) 22 O(uo — |2)); (A.3)
& [(uo — 20)* — 27| @2 S(up — 2uolz|) = M; (A4)
Uo
A4
9(20 - ’Uo) (:) Q(UQ — 2’00); (A5)
5 (2 —v)?] 22 502 — 22+ 0) B2 5 [ug(jvlk — vo) + 2]
2 _
— o (ks ), (A6)
u0|'v| UO|'U|
where k= — . (A7)
2| |v]
Since |k| < 1 then, by (A.6),
|v? — ugvg| — up|v| <0 (A.8)

otherwise the integrand in (A.1) vanish.

I.1.1a) Let v? > 0, vg > |v|. Then, by (A.4), v? —ugug < —v3 —v? < 0.
The Lh.s. of inequality (A.8) can be presented, by (A.5), as follows:

uo(vo — [v]) = v* = (uo — vo — |v])(vo — [v]) > (vo — |v])* > 0.

This inequality is opposite to (A.8). Thus Fy i (u,v) = 0 in this
case.




16 IIpenpunt

I.1.1b) Let v? > 0, vg < —|v|. Then v? — ugvy > v? + uglv| > 0. The
Lh.s. of inequality (A.8) becomes: v? — ug(vo + |v]) > v? > 0. Thus
Fy{ (u,v) = 0 in this case.

I.1.2) Let v? < 0. We replace the inequality (A.8) by an equivalent one:
(v? — ugvg)? — upv? = v*(v? — 2ugvy + ug) <0
which then simplifies to the condition
(vo — up)? — v* > 0. (A.9)

If this condition holds, the integral (A.1) does not vanish and can
be evaluated directly, using (A.2)-(A.7) and spherical coordinates:

2 1 [e%s} oo
1 (20 — |2])
F7++(U,’U) = (271')3 /d(p /dk /|Z|d|2| / dZO TX
0 —1 0 —00
0(]z| —wo/2) 1 v —ugvg\ 1
x 2uyg uo|v| o\ k+ uo|v| —2(47)2ug v’ (A.10)

Otherwise, Fi 4 (u,v) = 0.

I.2) Let u? < 0. There exist a reference frame in which ug < 0. Then the
integrand of (A.1) vanishes due to the factor 8(ug — 29)0(z0) = 0.

Now we return to an arbitrary reference frame in which the function
F_1 4 (u,v) should be expressed in terms of Lorentz-invariant combina-
tions of 4-vectors w and v. This can be done unambiguously, by the
replacement:

(ug—v9)?—v? = (u—v)?, uglv| =/ (u-v)2 — uv? ete. (A.11)

The result yields the form (4.5).

Upon calculating F'; 4 | (u,v) we note that it is described by the same
integral as (A.1) but with the factor 8(ug — zo) replaced by 0(z9 — ug).
Besides, this function is symmetric: Fy 4 (u,v) = Fyy4(v,u). Thus it
is sufficient to consider two cases.

I1.1) Let u? > 0 or/and v? > 0. Using rezoning similar to that used in
the case I.1 one can prove that F\y 4 (u,v) =0.
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I1.2) Let u?> < 0 and v? < 0. One can choose the reference frame in
which v = (0,u1,0,0), v = (0,v1, v2,0). Then

. —u1/2
5 [(z —u)?] (A2 §(2z1u1 —ud) = M; (A.12)
2u1
§[(z—v)?] (A2 §(v? — 22 -v) (A1) §(2uaze + viug — V3 — v3)
1 v + 03 — U1
= — - Al
2’026 <Z2 2’1}2 ’ ( 3)
and thus
1 d(z0 — |2)
F+++(’LL,’U) = W//[/dZQ le d22 dZ3 02|72,’|X
" §(z1 —u1/2) ig . V3 + V3 — urv
2U1 2’02 21}2
) -1/2
1 dzz |u? V3 + 03 — vy 2 9
— bt § 2L 2 0 Al4
(47T)3 /U1U2 l4 + ( 2’1}2 +23 ( )

Last integral is divergent.

The result is summarized in (4.6).
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