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HusbkoTemiiepaTypHi BJIaCTUBOCTI KBaHTOBOTO aHTHdepoMa-
raHeTuka laiizenbepra Ha AedKUX OJHOBHUMIipHUX rpaTKax, IO
MiCTITh PiBHOCTOPOHHI TPUKYTHUKU

M.Maxcumenko, O./lepzkko, 11.Pixrep

Amnoraris. Mu posrisggaemo KBaHTOBUil aHTugepOMarueTuk laiizen-
Oepra y MarHiTHOMY IIOJIi Ha JIBOX OJIHOBHUMIDHMX TpaTKax, IO Mi-
CTSITh PIBHOCTOPOHHI TPUKYTHUKH (JIAHITFOYKOK 3 TOJBIHHNX TeTpaeapis 3
crisbHUME BepinHaMu i dpycTpoBaHa TpUHOTA APAbUHKA), SKi miaTpu-
MYIOTH JIOKQJII30BaHI MarHoHHi cranu. Mamyioun JJoKaIi30BaHi MAarHoHHI
CTYTeH] BITbHOCTI Ha KJIACHIHUN I'PATKOBUN T'a3, MU OTPUMYEMO TEPMO-
JUHaAMIYHI BJIACTUBOCTI MOJIEJI Y CUJIBHUX TIOJISIX ITPU HU3bKUX TeMIIEpa-
Typax.

I1s pobora 6yna mpeacTaBieHa Ha 14ii dechKiit i cioBalpbKiit KoudepeH-
it 3 marseruamy CSMAG’10 (6-9 smumast 2010, Komrine, Cinosaadnsa).

Low-temperature properties of the quantum Heisenberg anti-
ferromagnet on some one-dimensional lattices containing equi-
lateral triangles

M.Maksymenko, O.Derzhko, J.Richter

Abstract. We consider the quantum Heisenberg antiferromagnet in a
magnetic field on two one-dimensional lattices containing equilateral tri-
angles (a chain of corner-sharing double tetrahedra and a frustrated
three-leg ladder) which support localized-magnon states. By mapping
of the localized-magnon degrees of freedom on a classical lattice gas we
obtain high-field thermodynamic quantities of the models at low tem-
peratures.

This paper was presented at the 14th Czech and Slovak Conference on
Magnetism CSMAG’10 (6-9 July 2010, Kosice, Slovakia).
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Recently it has been shown how the low-temperature thermodynam-
ics of a large class of geometrically frustrated quantum Heisenberg an-
tiferromagnets in magnetic fields can be studied using the concept of
localized-magnon states [1], for a review see Ref. [2]. For this class of
models the lowest-energy states in the one-magnon subspace are the so-
called localized-magnon states, i.e., the spin excitations above the fully
polarized ferromagnetic state are localized on a small part of the lattice
(trapping cell). Moreover, independent (isolated) localized magnons are
the lowest-energy states in many-magnon subspaces. Their degeneracy
can be calculated by mapping on corresponding classical lattice gases
and, as a result, the contribution of localized magnons to thermodynam-
ics can be estimated. In extension to these previous studies we consider
here lattices with triangular traps, which have not been considered so
far. As it is shown below, such triangular traps may produce new fea-
tures, since the localized-magnon state trapped on a triangle possesses
an extra degree of freedom, namely the chirality. Thus, an extra degen-
eracy of independent localized-magnon states becomes relevant for the
low-temperature physics.

To be specific, we consider the standard quantum (s = 1/2) Heisen-
berg antiferromagnet with the Hamiltonian

H = Z JumSn - Sm — hS?, SZZZSZ (1)

(nm)

on the two one-dimensional lattices shown in Fig. 1 (see, e.g., Refs. [3,4]).
The first sum in (1) runs over neighboring sites, the second sum in (1)

a)

b)

Figure 1. Double tetrahedra chain (a) and frustrated three-leg ladder (b).
Exchange integrals acquire two values: Jo > 0 along equilateral triangle
sides (bold) and J; > 0 along all other bonds (thin).

runs over all N lattice sites. Jp,, > 0 acquires two values: Jy along
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equilateral triangles (bold bonds in Fig. 1) and J; along all other bonds
(thin bonds in Fig. 1). We introduce the number of cells N” which equals
N/4 for the double tetrahedra chain and N/3 for the frustrated three-
leg ladder. In what follows we construct the ground states in the sub-
spaces with 0 < n < nyax magnons (i.e., for N/2 — nyax < 5% < N/2),
where nyax = N for the double tetrahedra chain and nya.x = N/2 for
the frustrated three-leg ladder. Furthermore, we calculate the degener-
acy of ground states gar(n) in these subspaces and, as a result, obtain
the thermodynamic quantities for both spin models in low-temperature
strong-field regime.

We begin with the one-magnon subspace. We find that the two-fold
degenerate and completely dispersive (flat) one-magnon band e; 3(k) =
—J1 — 3J2/2 (double tetrahedra chain) or &1 2(k) = —3J1 — 3J2/2 (frus-
trated three-leg ladder) becomes the lowest-energy one if J; > 2.J;. Then
the saturation field hy is given by hy = —e1,2(k). The corresponding
eigenstates (localized magnons) are located along one of A triangles and
they have the energy Ewry — b1, where Epy is the energy of the ferro-
magnetically polarized state. The two-fold degeneracy comes from the
chirality of the triangles.

Next we pass to the n-magnon subspace with 1 < n < np,x. A many-
magnon state which consists of n localized magnons located on different
triangular traps (double tetrahedra chain) or on different but not neigh-
boring triangular traps (frustrated three-leg ladder) is the lowest-energy
state in the n-magnon subspace with the energy Ery — nhy. Important-
ly, we can easily count the ground-state degeneracy in the n-magnon
subspace ga(n). We find gar(n) = 2"C}; (double tetrahedra chain) or
gn(n) = 2"Z(n,N), where Z(n,N) stands for the canonical partiti-
on function of n hard dimers on a simple chain of A sites (frustrated
three-leg ladder). Note, that the factor 2" appears in gar(n) due to the
chirality of the triangles (compare with the results for the diamond chain
and frustrated two-leg ladder [5]).

Considering the case when a magnetic field h is present we find that
the independent localized-magnon states are the lowest-energy states
having the energy Epy — hN/2 — n(hy — h) and the degeneracy gar(n).
Due to their huge degeneracy the localized-magnon states yield the domi-
nant contribution to the partition function of the spin model (1) at low
temperatures T' and high fields h = hq, i.e., Z(T,h,N) ~ Z1n(T,h, N),
where

Tmax Bpy—h X —n(hy—h)
emzhg onh)

Zn(T 0, N) =Y gn(n)e
n=0

ICMP-10-08E 3

h=0.98h; ED, chain(ad) ©
2 06 Im, chain (a)
= ED, chain(b) 2
< Im, chain (b)
<
£ 03}
o cc
fJ
IS AALAAL XA
0.01 0.1 1
T
h=102h, 2%, ED, cﬂa@ng)) o
L m, chaln
g 06 RPN ED. chain(b) 2
< A9 Im, chain (b)
= @ VAN AO
= 03¢ B
© /A
)
0 2 . s
0.01 0.1 1

Figure 2. Specific heat for the double tetrahedra chain and frustrated
three-leg ladder which consist of N/ = 4 cells for small deviations from
the saturated magnetic field h = 0.98h; and h = 1.02h;. Here J; = 1
and J; = 5 and hence hy = 17/2 (double tetrahedra chain) or hy = 21/2
(frustrated three-leg ladder). Exact diagonalization data are shown by
symbols, localized-magnon predictions are shown by lines.

N
Epm—ho

=e — 7 E(T,u,N); pw=hi—h. (2)

The sum in Eq. (2) can be easily evaluated for both lattices: Z(T, u, N') =
(1 + 2e*/TYN" (double tetrahedra chain) and Z(T,u, N) = XV + N,
A2 =1/2+/1/4+ 2e#/T (frustrated three-leg ladder). Based on this
result the thermodynamic quantities can be easily calculated from the
free energy Fip (T, h, N) = =T ln Z1,, (T, h, N). For example, the specific
heat is given by Ciy (T, h, N) = —T0*Fiy (T, h, N)/OT?.

In Fig. 2 we compare the temperature dependence of localized-
magnon contribution C, (T, h, N) of the specific heat (lines) and specific
heat of the full model C(T,h,N) at h = 0.98h; and h = 1.02h; for fi-
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nite chains [6] (symbols). The specific heat shows a well-pronounced low-
temperature maximum due to the localized magnons. Obviously the elab-
orated approach reproduces perfectly well the low-temperature behavior
of the specific heat thus illustrating the dominant role of the localized-
magnon contribution to thermodynamics at low 1" and h around h;.

Several remarks are in order here. First, the considered spin models,
in principle, may have solid-state realizations, see, e.g., Refs. [7,8]. Sec-
ond, for the antiferromagnetic Heisenberg frustrated three-leg ladder it is
also possible to take into account a substantial part of low-lying excited
states [9]. Third, one may add to spin Hamiltonian (1) small extra terms
which remove the degeneracy due to the chirality. Manipulation with
chirality attracts much interest nowadays [10-12]. Fourth, the elaborat-
ed scheme may be applied to the Hubbard model on the lattices shown
in Fig. 1, see Refs. [13-15]. These issues will be discussed in an extended
publication.
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