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IIpo yTpumyrodi B3aeMo/il B HEJIIHIMHUX y3arajJbHEHHAX MOOeJ i
Bika-KyTkocbkoro

FO.lapeBuy, A.JlyBipsk

Amwnorartis. Posrisiaiorbes y3arajibHeHHs: Mojesi Bika-KyTkocbkoro 3
HeJiiHiftHuM 1nosieM-tiocepeaukoM. [1lnsxoM poskiagy 3a mapaMeTpoMm
HEJTIHITHOCTH Ta BWIYYEHHAM IOJISI-TIOCEPETHUKA 3 JOIOMOIOI0 KOBa-
pistaTHOT (byHKIiT I piHa 0TpEMAHO JArPAHKISH 13 YaCO-HEIOKATHHIMIT
6araTo-TOYKOBAMHY WICHAMHI B3a€MOIIl. ¥ HIKYNX HAOJIMKEHHSAX TEOpil
3 OTPEMAHO 3BUYHI JIBO-CTPYMOBI B3a€MOJII Ta TPH-CTPYMOBY B3a€MO-
Jifo Tury kKoudaitumenty. Ileit ke pe3ybTaT OTPUMAHO TOYHO JIJTsT BepCil
aunoibHol Mogesi. Ilpu raminbronizarnii Ta KaHOHIYHOMY KBaHTYBaHHI
HaOJIMZKEHO BPAXOBAHO YACOBY HEJIOKAJIBHICTH. PessiTuBicTrdaHI 1BO- Ta
TPU-YACTUHKOBI XBIJILOBI PIBHSIHHSA OTPUMAHO BaPIAIIHHIM METOIOM i3
3aCTOCYBaHHAM 0araTo-IaCTUHKOBUX MPOOHUX cTaHiB y mpoctopi Poka.
OTpuMaHO HEpeJSITUBICTUYHI I'PAHMI IUX PiBHAHD, AHAJI3YHOTbCS Ta
KOPOTKO OOT'OBOPIOIOTHCS 1X BJIACTUBOCTI.

On confinement interactions in nonlinear generalizations of the
Wick-Cutkosky model

Yu.W.Darewych, A.Duviryak

Abstract. We consider nonlinear-mediating-field generalizations of the
Wick-Cutkosky model. Using an expansion in the nonlinearity parameter
and eliminating the mediating field by means of the covariant Green func-
tion we derive a Lagrangian with many-point time-nonlocal interaction
terms. In low-order approximations of ¢ theory we obtain the usual two-
current interaction and a three-current confining one. The same result is
obtained exactly for a version of the dipole model. The Hamiltonization
and canonical quantization is performed with time non-locality taken
into account approximately. Relativistic two- and three-particle wave
equations are derived variationally by using many-particle Fock space
trial states. The non-relativistic limits of these equations are obtained
and their properties are analyzed and discussed briefly.
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1. Introduction

The so-called partially reduced QFT complemented by the variational
method is a promising and powerful approach to the relativistic bound
state problem [1-9]. The use of many-particle Fock-space sectors in the
variational trial states leads to wave equations with lower (and thus
improved) energy levels of bound states. This has been shown on the
example of the simple scalar Yukawa model [8,9]. The incorporation of
many-particle cluster interactions requires nonlinear terms to be added
to the Lagrangian of the model. The purpose of this study is to shed
light on the question: might confinement be governed by many-body
interactions?

In this paper we analyse the interactions that arise from the non-
linear terms in the mediating-field sector of the QFT Lagrangian. As an
example we consider the ¢3-generalization of the Wick-Cutkosky (i.e.
massless scalar Yukawa) model [10] and of a version of the dipole model.

2. Nonlocal Lagrangian from a non-linear Wick-
Cutkosky model

We proceed from the classical action integral:

I= /d4x£(:v), (2.1)
with the Lagrangian (h =c¢ = 1)
L=0,0"0"0 —m?¢"d + px+ 500" x — KV(X),  (22)

where ¢(z) is a complex scalar “matter" field with rest mass m, x(x) is
a real massless scalar field interacting with ¢ via the scalar density p =
—g¢* ¢ and with itself via the potential KV (x); here g, k are interaction
constants.

The stationary property of the action (2.1)-(2.2), i.e. 6I(z) = 0, leads
to the coupled set of the Euler-Lagrange equations,

(O +m*)¢ = —gox, (2.3)
(O+m?)¢* = —go™x, (2.4)
Ox =p—&V'(X), (2.5)

which determine the field dynamics (here V'(x) = dV(x)/dx).
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Equation (2.5) can be formally solved by means of an iterative ex-
pansion in the parameter k (cf. ref. [11]). In 1st-order approximation we
have

0 1
X=X+KX+...=Dx(p—rV'(Dxp)+...), (2.6)

where X = D p is the solution of (2.6) with x = 0, D(z) = £8(2?) is
the symmetric Green function of the d’Alembert equation, and “ * ” de-
notes the convolution [D x p] (z) = [ d*z’D(z —2")p(z’). The arbitrary
solution of the homogeneous d’Alembert equation is omitted because the
free x field plays no role in the investigation considered here. The use of
the formal solution (2.6) in equations (2.3) and (2.4) leads to a coupled
set of integro-differential equations for the fields ¢(x) and ¢*(z), which
we shall refer to as partially-reduced field equations. Alternatively, these
equations can be derived from the partially reduced action obtained, in
turn, by the use of (2.6) directly in the Lagrangian (2.2). In the 1st order
this gives,

L

1

Ou* 0" —m?¢ P+ p <>% + ni)
1 0 1 0 1 0
-3 <x+nx> O <x+nx> — KV(X)
* ap 2 % 0 i 0 1 0 0
~ 9,0 0" —m P o+ X |p—10X) +rX|p—0Ox)—rV(X)
~ 0,00 —m*¢* ¢+ IpD x p— V(D * p)

Liveo + L2 + £ (2.7)

int int

where ~ denotes equality modulo surface terms. This Lagrangian is non-
local in the space-time, and the action (2.1), (2.7) includes 1-, 2- and
>2-fold integrations over the Minkowsky space. The treatment of non-
local theories of this type is a conceptually complicated, but practically
realisable procedure [7].

3. Nonlocal Lagrangian from nonlinear dipole model

The non-local Lagrangian (2.7) is the 1st-order approximate result of the
reduction procedure applied to nonlinear generalizations of the Wick-
Cutkosky model. Here we propose another local model which can be
reduced to the Lagrangian (2.7) exactly. The model is built in analogy
to the linear “dipole" model [12] that simulates the confinement inter-
action of quarks in mesons. The present model is nonlinear and gives
Yukawa + cluster interactions.
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Let us consider the Lagrangian
L=0,0" 0" —m*¢"p+p(x+30) +0ux v —rV(p),  (3.1)

where both the x(x) and ¢(z) are real massless scalar fields and p =
—go*¢ as in (2.2).

The variation of the action (2.1), (3.1) leads to the coupled set of the
Euler-Lagrange equations,

(O+m?)p=—go(x+ 3¢), (3.2)
(O+m?)¢" =—g¢* (x + 29, (3.3)
O = p, (3.4)
Ox = 30— KV '(p), (3.5)

which determine the field dynamics.
Equations (3.4) and (3.5) possess exact formal solution:

w=D=xp, (3.6)
x=Dx{3p—rV'(¢)} =D*{3p—kV'(Dxp)}, (3.7)

which can immediately be used in the r.h.s. of egs. (3.2), (3.3):
(O +m?*)p = —gpD * {p—kV'(D*p)}, (3-8)

and similarly for ¢*. These equations can be derived from § I = 0, with
a Lagrangian identical to (2.7) (but note that no iterative expansions in
x need to be made in this case).

4. ¢’—interaction

We consider the simplest non-linear Wick-Cutkosky model, namely that
where

V(p) =4 ¢° (4.1)

Then, the corresponding term in the non-local action integral has the
form:

Ii(jt) =—3 ////d4x d*z’d*z"d*a""'D(z — 2')D(x — 2" )D(x — ") x
<ola)pla")pla).  (42)

In subsequent sections we will discuss the role of this term in the quan-
tized version of this model. However, it is of interest to examine first the
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physical content of (4.2) at the classical level. Had the action term (4.2)

the standard form Ii(ngt) = [dtL®[p], where L3 [p] is a time-independent
(

functional of the field source p, the contribution of Iijt) to the ener-
gy of the system would be H®) = —L®) This is not the case unless
we use the static approximation where the source is considered to be
time-independent: p(x) = p(x). In that (static) case the choice of the
Green function is not important and we choose the retarded function,
Dy(z—a') = 6(t —t' — |& — @'|)/|z — /|, instead of the symmetric
one (though, with a little more effort, the same result is obtained if the
symmetric function is used). Then, we have

Ii(ngt) — _% /dt//d3wl/d3$H/dSZEI”p(iL")p(iL‘”)p(iL‘m) %
x/dt”/dt”’/d4:v Dy(z—2")Dy(z —2")Dy(x — 2")

— —3(4Ijr)3/dt/d3:17//dgx”/d?’:z:’”p(m’)p(:c”)p(m”’)x
xU(z', 2", 2", (4.3)

where the kernel

U(iL‘I ml/ mI/I) :/ dS‘T (4 4)
Y |x — x'||x — x" ||z — x| ’

is a time-independent function which has the structure (modulo a con-
stant factor) of a three-point interaction potential. Its properties are
studied in the Appendix A. It is shown there (Prop. 2) that the integral
(4.4) diverges. However, the corresponding force is well behaved, as can
be seen from the potential difference

AUz 2", 2"") = AU(a—z' b—z" c—z'")
Ula,b,c) —U(z',z", x"), (4.5)

where a, b, c are arbitrary constant vectors. This can be expressed as
the sum

AU(a—z',b—z" c—z") = AU(a,b,c—z")+ AU(x", a,b—z")
+ AU (2", 2" a—x) (4.6)
of the partial potential differences of the form AU(a,b,c—r) =

U(a,b,c) — U(a,b,r) (see (A2)). These are well defined (see Prop. 3)
and indicate logarithmic confinement (Prop. 4). The calculation of the
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Figure 1. The potential AU (a,—a,0—r) as a function of r = {x,y, z};
p=+/x%2 +y2  The function is symmetric under the inversion z — —z
and rotation around 0z. In particular, AU = 470(|z| —a)log 1(|z|/a+1)
if p=0.

integral AU (a, b, c—7) is complicated, and we illustrate the behavior of
this function in Figure 1 for the particular case b = —a, ¢ = 0.

The subtraction procedure (4.5) can be regarded as a regularisation of
the divergent integral (4.4). Another version of the subtraction procedure
is presented in the Appendix B. It is possible to use other regularisation
procedures, such as inserting a cut-off factor, for example e~**I with
b > 0, into the integrand of (4.4) (whereupon the integral converges)
and studying the results in the limit of b — 0. Evidently, the cut-off
procedure is not unique.

5. Quantization: the V = 1 ¢® model

Following Refs. [7,9] we proceed to the Hamiltonian formalism and
canonical quantization. Formally, the Hamiltonization procedure is as
follows. We construct the Hamiltonian density,

@) | 3,3

int int

H = Hieo + H (5.1)

where H'2) = —1 [da'p(z)D(z — 2’)p(a’) and HE) = —£3) is specifi-

int int int

ed by 1) = [dz L)

int oty given in equation (4.2). The total interaction




6 IIpenpunt

Hamiltonian density (5.1) is then expressed in terms of the Fourier am-
plitudes Ay, By and AI{, BIT(, of the field ¢(x) (see eq. (2.14) in [9]).
Upon quantization these amplitudes satisfy the standard commutation
relations and become the creation and annihilation operators. Then the
canonical Hamiltonian operator is given by

H = /d% cH(t=0,z) :, (5.2)

where “: :" denotes the normal ordering of operators. Other canonical
generators, such as linear and angular momentum, can be easily ob-
tained.

The term Hppoc is the standard Hamiltonian of the free complex scalar

field. The explicit form of the pair interaction term Hi(jt) is known (see

[3]b, [4,7]) and so we shall concentrate on the Hi(rf’t) term. It has the
following somewhat cumbersome form:

d3k d3k ~
Hi(r?t) = 24 27r / = : Z D (k1 + m2kz2)x
771_i ..me==

D(n3ks + naka) D(nsks + n6ke)d (ks + . . . + n6ke) x
M M2 M3 N4 N5 N6

X :Bx; Ak, Bxs; Axy Bks Akg:s (5.3)

+ - + -
where B = B, B = Af. A4 = A, A = B' and the Fourier trans-
form, D(k) = —P/k?, of the symmetric Green function of d’Alembert
equation depends on the on-shell 4-momentum k& = {ko,k}, where

ko = v/m?2 + k*. The expression (5.3) includes 26 = 64 terms.

6. Variational three-particle wave equations

In the variational approach to QFT the trial state of the system is built
of few particle channel components [8,9] such as the two-particle state
vector [2) = ffd?’pl d®p2 Fa(py, ps) A, AL, 10), the particle-antiparticle
one |1+ 1) = [d®py d®py G(py,p3) AL, B},10), and so on. The three-
particle component has the form

1
|3> = ﬁ /d3p1 d3p2 d3p3 F(P1=P2=P3) AI)IALZAL3|O>7 (6-1)

where the channel wave function F, which is to be determined variati-
onally, is completely symmetric under the permutation of particle vari-
ables: p;, Py, P5. In the variational method the channel components, |1;),
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are used to determine the matrix elements of the Hamiltonian, namely
(¢;|H|v;), where i, j stand for 1, 1, 2, 141, 2, 3, 2+1, 242, ...

Here, we are interested in the matrix element of the interaction Hiy: =
H® + H® of the Hamiltonian. We note that A+1[HO1+1) = o,

int int int
<2|H1(113t)|2> = 0. In other words, purely two-particle trial states, and so

the resulting variational wave equations, do not sample the term Hlf’t)

Thus we first consider the three-particle case and calculate the matrix
element

(3|Hint|3) =/ ..d®ply d®p1...d®ps F*(pl..p5) F(py...ps) X
xKs3(py..-p5 p1--p3),  (6.2)

where the kernel K33 = IC% IC§3 consists of the following components:

2

2
K3 (... Pr-p3) = — §(py + ph + P — Py — Py — P3)X

1(27)3
D(pl, — p2)d(ph —
. D /pQ,) (p3 p3)7 63)
vV P1oP20P10P20
3
3 rg
KS3 (P)...05, py..p3) = ~ 1@ §(p) + Py + P — Py — Py — P3) X
D(p, — p1)D(ps — p2)D(ph —
" (py — p1)D(ph — p2) D(ps p3)7 (6.4)

vV p’10~-~P/30P10---p30

and pio = /m? + p; and similarly for p/j,.

This kernel determines the interaction in the relativistic three-
particle wave equation that follows from the variational principle § (3| H —
E|3) = 0, namely

{p10 + p20 + 30 — E}F(py, P, P3)

+/d3p’1 d®phy d*py Ks3(py, Pas P3, P, Ph. D) F(PY, Ph, Ps) = 0, (6.5)

where the kernel is understood to be the completely symmetrized ex-
pression (with respect to the variables p/, ps, p4 and py,ps, p3) of (6.3)
and (6.4).

The term IC%) of the kernel corresponds to the attractive interaction

via massless boson exchange between each pair of particles while ICg?’g)
describes a cluster three-particle interaction.

In order to have some understanding of the properties of the cluster
interaction we consider the non-relativistic limit of the equation (6.5).
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In coordinate space, it is the Schrédinger equation for the three-particle
eigenfunction ¥ (x1, 2, x3) (see [8]) and eigenenergy e = E — 3m:

1
{%@% +P3+p3) + V(@ @, w5) - e} V(zy, w2, w3) =0, (6.6)

where p, = —1V, (a = 1,2,3), and the potential V (x1,x2, x3), like the
relativistic kernel, consists of two parts, V = ‘/3( ) + ‘/3(:? ).

Vi) (@1, 2, 23) = _1657;12 {|m1 i Zo|
- |wzim3| " |~’B315B1|}’ 07
a3
1/3(33)(531,3@2,:03) ;:Tgn |z_$1||z—12||z—:v3|
= (;:i) U(xy, T2, x3). (6.8)

The function U (21, €2, 3) on the r.h.s. of (6.8) is discussed in Sec. 4 and
Appendix A. It is a divergent and thus equation (6.6) may seem to be
meaningless. However, one can resort to regularisation, as already noted
in section 4. One way would be to subtract an infinite constant from the

potential Vzg ) and add it to the eigenenergy ¢ as follows:

‘/3(?;9’)(53175327333) - ‘73(5)(13175132,133)

2kg°
= - (871'9 )3 {U(wla T2, $3) - U(a7 b7 C)}
2k
= ﬁAU(iﬂlaw%aﬁ) (6.9)
2
¢ — i=F—3m— (8"”91) Ula,b,c), (6.10)

where a, b and ¢ are arbitrary constant vectors. The potential ‘73(33 ) is
well defined and possesses the confining property, provided that x > 0.
Thus, equation (6.6) with Vg(g’ ) replaced by the finite quantity 173(5’ ) and
€ replaced by €, makes sense and presumably possesses bound states
solutions only. Of course, the results would be meaningful to the extent
that they were independent of the choice of the regularisation procedure
(choice of a, b and ¢ in the subtraction procedure).

The problem of divergences is expected in the relativistic case too.
But the analysis of the integral equation (6.5) is a more subtle problem
which shall not be undertaken in this work.
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7. An improved treatment of the particle-antiparticle
system

It was pointed out in the previous section that the simple variational
particle-antiparticle trial state |14+1) = [ d3p; d®py F(p,,ps) Al B}, [0)

does not sample the Hl(rf’t) term of the Hamiltonian. Thus, this term does

not influence the variational wave equation derived by using only |1+ 1).
But the inclusion of both the |14+1) and |2+2) sectors [9] does show the

effect of the Hl( ) term. Indeed,

(1+1|HE)|2+2) = /d3pa &phyd®p1...d®p s F*(p), ph) G(py..ps) ¥
xK$) (0}, Pl prpa),  (7.1)
(242|HP) |242) :/013;)’1 LdPply APy .. dPpy GF(D)...pY) G(py...py) X

XK (p Dy prps),  (72)

where

IC24 (P, P2 Py - Py) = — 65(P/1+p12—171—"'—p4)><

4(2m)

. 2D, — p1)D(ply — D(p, +p,)D
< D(ps + pa) (py — p1)D(ph /p3)+ (P} +p5)D(p1 +p2), (73)
\/ P1oP20P10 - - - P40
K
K& (@) .phupr - pa) = — i S0P+ -+ Py =Py~ —Py)X

[\]

(2m)°
D(ph + p) D(ps — p1)d(ps — po)
V/PhoPsoPhoP1oPsopao
n D(py + p3) D(py — p2)d(p) — py)
\/ P20 P30P40P20P30P40
D(ph — p1)6(ph — ps)
\/ pﬁoplgopﬁloplomopw

X {2D(p3 + pa)

+ D(p5 — p3)D(p)y — pa) [

. Db — )3l — py)
\/ plzoplgopﬁ;opzop3op40

} . (74)

Therefore, if we use the trial state |[¥) = [1+1) 4 [242) and vary
the energy expectation value E = (U|H|¥)/(¥|¥) with respect to the
channel amplitudes F' and G, we obtain the coupled pair of relativistic
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wave equations:
2
{p10 + p20 — E}F(py, ps) +/d3p’1 &*phy KS3) (P1. po. DL DY) F (D), )

+/d3p’1 .d®p) Koa(py, o Ph--Py) G(P1..p}) =0, (7.5)
{p1o+- 4110 — E}G(p;...p4)

+/d3p’1 . d®ply Kaa(py...ps, P --P)) G(P)...0Y)
4 /d3pa 0l Ko (P, Py 1 p2) F@Lph) =0 (7.6)

with Kos = K2 + K5, Kag = £ + K5, where €8, K82 and £
are contributions of the pair interaction defined in [8,9] (with the mass
of mediating field p = 0), and ICéi), ICﬁ) are defined in (7.3), (7.4). We
note that the kernels Ka4 and K4y in (7.6) are the expressions given in
(7.3) and (7.4), symmetrized with respect to variables p;, p; and p,, p,.

In the domain E ~ 2m, equations (7.5), (7.6) can be regarded as
describing a two-body particle-antiparticle system in which account is
taken of a virtual pair. Similarly, in the domain E ~ 4m they can be
regarded as describing a four-body (two-pair) system in which account is
taken of the virtual annihilation of a pair. Of course, if F' = 0, equation
(7.5) does not arise, and (7.6) becomes a relativistic equation for the
four-body, two-pair system (“quadronium"), analogous to (6.2) for the
three-body system.

As before, it is of interest to consider the non-relativistic limit of the
wave equations (7.5), (7.6). In this approximation the equations (7.5),
(7.6) reduce to a coupled set of Schrodinger-like equations (see (4.8),
(4.9) in [9]). The three-particle interaction does not change the non-
relativistic potential Vay ((4.10) in [9]) and contributes in V24 and Vi
((4.11), (4.12) of [9]) as

ggli 5(.’1)3 - :B4)
(2m)2(2m)° |1 — 3|y — 4

2m)96($1 - 1133)6(1132 — 1134)6(1133 — 1134) (77)

3
v - I [y, +
b 4(47m)3 |z —x1||z —x3] ||z — 22| |2 — @4

1 1 1
+ +
|z —x1| |z —x3]] |2 — x2||z — 4]
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3

- g { i —a) + oea = )] | 2

27(2m) |T1 — 24| |22 — X3

+[6(m1—w4)+6(w2—:133)][ ! ]} (7.8)

|CC1—CC2| |w3—m4|

Divergent integrals in the potential V4(f ) should be regularized givi-
ng confining terms in the non-relativistic version of the equation (7.6),

similarly to the potential ‘/3(33 ) (6.8) in the three-particle case. There are

no divergent terms in 1/2(43 ) (and all the more in Vag) so confining po-
tentials are absent in the non-relativistic limit of (7.5). This disparity
of equations (7.5) and (7.6) makes the simple subtractive regularization
scheme, used in the three-particle case (by re-definition of the energy),
not applicable (unless F' = 0, that is, a pure four-body problem), so that
another regularisation procedure must be used. In any case, the role of
the three-point interaction in the particle-antiparticle problem needs to
be investigated further.

8. Concluding remarks

We have considered generalizations of the Wick-Cutkosky (massless
scalar Yukawa) model to include nonlinear mediating fields. Covariant
Green functions were used to eliminate the mediating field, thus arriv-
ing at a Lagrangian that contains nonlocal interaction terms. In the
case of a massless mediating field with a %mp3 nonlinearity, we evalu-
ate the corresponding interaction term explicitly and show that, in the
non-relativistic limit, the kernel has the form of a non-local three-point
potential that exhibits a logarithmic-confinement form.

We consider the quantized version of this model in the Hamiltonian
formalism, and use the variational method, with trial states built from
Fock-space components, to derive relativistic integral wave equations for
three-particle and particle-antiparticle systems. The kernels (relativis-
tic potentials) are shown to contain local (one-quantum exchange) and
three-point non-local terms. In the non-relativistic limit we evaluate the
explicit coordinate-space form of the interaction potentials and show
that they consist of local Coulombic potentials and nonlocal three-point
confining potentials. The nonlocal potentials, which arise from the %mp3
term in the Hamiltonian, are divergent (and so need regularisation), but
the potential differences are finite.

The many-body wave-equations derived in this paper are quite com-
plicated and must be solved using approximation methods. This will be
the subject of forthcoming work.
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Appendix A. Properties of the three-point potential

First of all we list some obvious properties of the potential U(a, b, ¢),
(4.4):

1. translational invariance: U(a + X, b+ A, ¢+ A) = U(a, b, ¢), where
A €R3;

2. rotational invariance: U(Ra,Rb,Rec) = U(a,b,c), where R €
SO(3);

3. scaling invariance: U(Aa, Ab, Ac) = U(a, b, ¢), where X € R;
4. permutational invariance: U(b,a,c) = U(a,c,b) = U(a,b, c).

These formal properties apply provided the potential U(a,b,c) is
well defined. Actually, the integral (4.4) does not exist. To this show we
first introduce the convenient notation:
d3z

x — bl|lx — ¢

U(A)EU(a,b,c;A):/|w_a|| (A1)
A

where A C R? is an integration volume. Let d(a, €) be a sphere of radius
€ with center at a. We consider the space R? to be affine and use the
same notation for vectors a, b... and their end points (if the starting
point is 0).

Proposition 1. If a # b # ¢ and R > |al,|b|,|c| then
U(a,b,c;d(0,R)) <

Proof. It is evident that U(a, b, c; A) < oo if A is compact and does not
include the singular points a, b, ¢ of the integrand of (A.1).

Consider a neighbourhood of, say, the point ¢, namely the sphere
d(e,€), where € < |a — ¢|, |b — ¢|. Shifting the integration variable  —
x —cin (A.1) we have

Ula,b,c;d(c,¢)) / da
7’; ’EZ
|z||lz —a+c|lz — b+ ¢
c,e
y [
|~’B||a—c||b—0| |a—c||b—| |a—C||b—C| '

The same result holds for neighbourhoods of the other singular points a
and b. @
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Proposition 2. Let A = R3\d(0, R) where R > |al,|b],|c|. Then
U(a,b,c;A) = o0

Proof.

T—00

_ ds3 Ood
U(a,b,C;A)z/ﬁ:@T/%:% lim log(r/R) = co. m

Thus, the integral (4.4) diverges logarithmically at oo. Neverthe-
less, one can define the force generated by the potential, Fe =
—90U(a,b,c)/0c, and prove it is a well defined quantity. Alternative-
ly, we consider the potential difference when a test particle is moved
from, say, the point c to r:

AU(a,b,c —r)=U(a,b,c) —U(a,b,r)
d3x 1 1
= —all =1 {|w—c| - |:c—r|} (A-22)

3 _ _ _
_ d*x {lz—7r|— |z —c|} (A.2b)
|z — allx — bl|lz — c||lz — 7|

7/ Bz (r+c—2z)-(r—c) (A.20)

[z —allz - bl|z — cf|z —r|{|lz — | + & — [}

We show next that AU(a,b,c — r) is a well defined finite function:
It follows from (A.2a) and Prop. 1 that the integral AU(a,b,c — r; A)
is well defined in a neighbourhood of every singular point a . ..r of inte-
grand except, perhaps, co. For the last case we verify the following:

Proposition 3. |[AU(a,b,c — r; A)| < oo where A = R3*\d(0, R), R >
lal, |6, |e], 7]

Proof. Taking the expression (A.2b) and using the inequality
[l —r|—|x—c|| < |r—c| we have

_ d3 —
|AU(a,b,c — r; A)| < z Ir=

|z — allz — bl|lz — c||lz — 7|

Q

[ d
47T|r—c|/—2=47r|r—c|/R<oo ]
T

We next consider some properties of the function AU(a,b,c — 7).
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Proposition 4. Let » = |r| > ¢ = |max(|al,l|b|,|c|). Then
|AU(a,b,c — r)| ~ 4w log(r/q).

Proof. We divide R? into three domains: R? = A; U Ay U A3, where
Ay = d(0,2q), Az = d(0,7/k)\d(0,2q), Az = R3\d(0,r/k) and k > 2.
From (A.2b) it follows that

Bz |r— d’z
AU(4)] < ~ '
|AU( 1)|—/|:13—a|| —bllx — c||x — 7| /|:B—a||$—b||=’13_c|
Ay A1

Note that the function U(a, b, ¢; A1), which is finite (by Prop. 1) and
independent of r, appears on the r.h.s. of this inequality.

Performing the change of variable & = x/r in the integral AU(Aj3)
and using the notation @ = a/r, 3 =b/r, v = ¢/r, n = r/r, we have:

/ Bz |r—c
|z — allz — bz — c||lz — 7|
As

_ & In—n -/ @
J &E—allE-BllE—7l€—n| ] [EPIE—n|
Az

Asz

|AU(A3)]

IN

where A3 = As/r = d(0,1/k). The integral on r.h.s. is finite and r-
independent.

For the integral AU(Az) we use the expression (A.2c) and the same
change of variables:

AU(A5) =
vids) J = aTe= Al — i€~ nifle —nl + -

where Ay = Ay/r = d(0,1/k)\d(0,26) and § = q/r.
We note the following inequalities for the integrand of (A.3):

(n+y—-26)-(m—7v)>1-79>=261+7) > (1+7)(1 —v—2/k);
1-1/k<|n|- €| <|E—n|<|{|+n| <1+1/k;

€l =0 <|&—al,l§—B[§—~<[&+0.
Thus,

1/k
d3 2d3

sia) > K- [ s =ik [ e

Az

26
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1/k
d3§ - §2d3€
AU(AQ) < K+/W—47TK+/7(§_5)3,
Ag 20
where
(1+86)(1—6—-2/k)
K- = aiimarorzm L HOGLVR,
K, = 20 o6k,

(1—1/k)

Calculating the integrals

1/k 913
/ £7d’e = —4rlogd + O(1)
25

(E+0)?
and choosing k sufficiently large, establishes the desired result. |

Appendix B. One-parametric subtraction procedure

The subtraction procedure (4.5) depends on the choice of three arbitrary
vectors a, b, ¢ (i.e., nine arbitraty parameters) which is not satisfactory.
It is tempting to remove this arbitrariness or, at least, to reduce a number
of parameters. At first sight one can put @ = b = ¢ = 0 in (4.5).
In this case the term U(0,0,0) compensates an infinite contribution of
the integral (4.4) over a far integration volume (where the integration
variable |z| — o0), but brings divergency from a close volume || — 0.

Instead, we propose another subtraction procedure. We proceed from
the formal expression AU(z',z”,x"") = 1U(0,0,0) — U(z', 2", x"")
which is free of any arbitrary parameter. Actually, this expression is
not defined unambiguously. We specify it as follows:

AUz, 2", ") = 1U(0,0,0) — U(z', 2", ")

R
1 1
=l N CRY: - B.1
RE)HOO r ’f'/ {2|.’1}|3 |m_m/||m_w1/||m_m///|}7 ( )
e=RZ/R

where Q is a solid angle, » = |z|, and Ry is an arbitrary length pa-
rameter. Dividing the integration segment (g, R) into two parts (g, Rg)
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and (Rg, R), and using in the first one the change of integration variable
7 = RZ/r, we present the first term of (B.1) in the form:

R dQQ Ry R 4
1 2 7
1 d " —9 -
2/’°T/|m|3 ”/*/r

RZ/R R2/R  Ro
a i 420

= 47r/7r = 47 In(R/Ry) :/r2dr TP (B.2)
R() RO

Then

Ro
- dzQ
_ 2
AU(:B/,.’BN,.’BW) — /r dr / |$ — il:'||£l: — :I:”H:I} — il:”/|
0

R
1 1
li 2dr | d2Q —— ' (B3
*am /” ”/ {|:B—:B’||:B—:B”||:B—:B’”| |:c|3} (B.3)
0]

It follows evidently from Appendix A that both terms of this expressi-
on are finite. Thus the subtraction procedure (B.1) represent the one-
parametric (i.e., Rop-depending) regularization of the three-point poten-
tial (4.4).
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