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Про утримуючi взаємодiї в нелiнiйних узагальненнях моделi
Вiка-Куткоського

Ю.Даревич, А.Дувiряк

Анотацiя. Розглядаються узагальнення моделi Вiка-Куткоського з
нелiнiйним полем-посередником. Шляхом розкладу за параметром
нелiнiйности та вилученням поля-посередника з допомогою кова-
рiянтної функцiї Ґрiна отримано лаґранжiян iз часо-нелокальними
багато-точковими членами взаємодiї. У нижчих наближеннях теорiї
ϕ3 отримано звичнi дво-струмовi взаємодiї та три-струмову взаємо-
дiю типу конфайнменту. Цей же результат отримано точно для версiї
дипольної моделi. При гамiльтонiзацiї та канонiчному квантуваннi
наближено враховано часову нелокальнiсть. Релятивiстичнi дво- та
три-частинковi хвильовi рiвняння отримано варiяцiйним методом iз
застосуванням багато-частинкових пробних станiв у просторi Фока.
Отримано нерелятивiстичнi границi цих рiвнянь, аналiзуються та
коротко обговорюються їх властивостi.

On confinement interactions in nonlinear generalizations of the
Wick-Cutkosky model

Yu.W.Darewych, A.Duviryak

Abstract. We consider nonlinear-mediating-field generalizations of the
Wick-Cutkosky model. Using an expansion in the nonlinearity parameter
and eliminating the mediating field by means of the covariant Green func-
tion we derive a Lagrangian with many-point time-nonlocal interaction
terms. In low-order approximations of ϕ3 theory we obtain the usual two-
current interaction and a three-current confining one. The same result is
obtained exactly for a version of the dipole model. The Hamiltonization
and canonical quantization is performed with time non-locality taken
into account approximately. Relativistic two- and three-particle wave
equations are derived variationally by using many-particle Fock space
trial states. The non-relativistic limits of these equations are obtained
and their properties are analyzed and discussed briefly.
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1. Introduction

The so-called partially reduced QFT complemented by the variational
method is a promising and powerful approach to the relativistic bound
state problem [1–9]. The use of many-particle Fock-space sectors in the
variational trial states leads to wave equations with lower (and thus
improved) energy levels of bound states. This has been shown on the
example of the simple scalar Yukawa model [8, 9]. The incorporation of
many-particle cluster interactions requires nonlinear terms to be added
to the Lagrangian of the model. The purpose of this study is to shed
light on the question: might confinement be governed by many-body
interactions?

In this paper we analyse the interactions that arise from the non-
linear terms in the mediating-field sector of the QFT Lagrangian. As an
example we consider the ϕ3-generalization of the Wick-Cutkosky (i.e.
massless scalar Yukawa) model [10] and of a version of the dipole model.

2. Nonlocal Lagrangian from a non-linear Wick-

Cutkosky model

We proceed from the classical action integral:

I =

∫

d4xL(x), (2.1)

with the Lagrangian (~ = c = 1)

L = ∂µφ
∗∂µφ−m2φ∗φ+ ρχ+ 1

2
∂µχ∂

µχ− κV(χ), (2.2)

where φ(x) is a complex scalar “matter" field with rest mass m, χ(x) is
a real massless scalar field interacting with φ via the scalar density ρ =
−gφ∗φ and with itself via the potential κV(χ); here g, κ are interaction
constants.

The stationary property of the action (2.1)-(2.2), i.e. δI(x) = 0, leads
to the coupled set of the Euler-Lagrange equations,

(� +m2)φ = −gφχ, (2.3)

(� +m2)φ∗ = −gφ∗χ, (2.4)

�χ = ρ− κV ′(χ), (2.5)

which determine the field dynamics (here V ′(χ) ≡ dV(χ)/dχ).
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Equation (2.5) can be formally solved by means of an iterative ex-
pansion in the parameter κ (cf. ref. [11]). In 1st-order approximation we
have

χ =
0
χ+ κ

1
χ+ . . . = D ∗ (ρ− κV ′(D ∗ ρ) + . . .), (2.6)

where
0
χ = D ∗ ρ is the solution of (2.6) with κ = 0, D(x) = 1

4π δ(x
2) is

the symmetric Green function of the d’Alembert equation, and “ ∗ ” de-
notes the convolution [D ∗ ρ] (x) ≡

∫

d4x ′D(x−x′)ρ(x′). The arbitrary
solution of the homogeneous d’Alembert equation is omitted because the
free χ field plays no role in the investigation considered here. The use of
the formal solution (2.6) in equations (2.3) and (2.4) leads to a coupled
set of integro-differential equations for the fields φ(x) and φ∗(x), which
we shall refer to as partially-reduced field equations. Alternatively, these
equations can be derived from the partially reduced action obtained, in
turn, by the use of (2.6) directly in the Lagrangian (2.2). In the 1st order
this gives,

L ' ∂µφ
∗∂µφ−m2φ∗φ+ ρ

(

0
χ+ κ

1
χ

)

− 1

2

(

0
χ+ κ

1
χ

)

�

(

0
χ+ κ

1
χ

)

− κV(
0
χ)

' ∂µφ
∗∂µφ−m2φ∗φ+

0
χ

(

ρ− 1

2
�

0
χ

)

+ κ
1
χ

(

ρ− �
0
χ

)

− κV(
0
χ)

' ∂µφ
∗∂µφ−m2φ∗φ+ 1

2
ρD ∗ ρ− κV(D ∗ ρ)

≡ Lfree + L(2)
int + L(>2)

int (2.7)

where ' denotes equality modulo surface terms. This Lagrangian is non-
local in the space-time, and the action (2.1), (2.7) includes 1-, 2- and
>2 -fold integrations over the Minkowsky space. The treatment of non-
local theories of this type is a conceptually complicated, but practically
realisable procedure [7].

3. Nonlocal Lagrangian from nonlinear dipole model

The non-local Lagrangian (2.7) is the 1st-order approximate result of the
reduction procedure applied to nonlinear generalizations of the Wick-
Cutkosky model. Here we propose another local model which can be
reduced to the Lagrangian (2.7) exactly. The model is built in analogy
to the linear “dipole" model [12] that simulates the confinement inter-
action of quarks in mesons. The present model is nonlinear and gives
Yukawa + cluster interactions.
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Let us consider the Lagrangian

L = ∂µφ
∗∂µφ−m2φ∗φ+ ρ (χ+ 1

2
ϕ) + ∂µχ∂

µϕ− κV(ϕ), (3.1)

where both the χ(x) and ϕ(x) are real massless scalar fields and ρ =
−gφ∗φ as in (2.2).

The variation of the action (2.1), (3.1) leads to the coupled set of the
Euler-Lagrange equations,

(� +m2)φ = −g φ (χ+ 1

2
ϕ), (3.2)

(� +m2)φ∗ = −g φ∗ (χ+ 1

2
ϕ), (3.3)

�ϕ = ρ, (3.4)

�χ = 1

2
ρ− κV ′(ϕ), (3.5)

which determine the field dynamics.
Equations (3.4) and (3.5) possess exact formal solution:

ϕ = D ∗ ρ, (3.6)

χ = D ∗ { 1

2
ρ− κV ′(ϕ)} = D ∗ { 1

2
ρ− κV ′(D ∗ ρ)} , (3.7)

which can immediately be used in the r.h.s. of eqs. (3.2), (3.3):

(� +m2)φ = −gφD ∗ {ρ− κV ′(D ∗ ρ)} , (3.8)

and similarly for φ∗. These equations can be derived from δ I = 0, with
a Lagrangian identical to (2.7) (but note that no iterative expansions in
κ need to be made in this case).

4. ϕ
3–interaction

We consider the simplest non-linear Wick-Cutkosky model, namely that
where

V(ϕ) = 1

3
ϕ3. (4.1)

Then, the corresponding term in the non-local action integral has the
form:

I
(3)
int = − 1

3
κ

∫∫∫∫

d4xd4x ′d4x ′′d4x ′′′D(x − x′)D(x − x′′)D(x− x′′′)×

×ρ(x′)ρ(x′′)ρ(x′′′). (4.2)

In subsequent sections we will discuss the role of this term in the quan-
tized version of this model. However, it is of interest to examine first the
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physical content of (4.2) at the classical level. Had the action term (4.2)
the standard form I

(3)
int =

∫

dtL(3)[ρ], where L(3)[ρ] is a time-independent

functional of the field source ρ, the contribution of I(3)
int to the ener-

gy of the system would be H(3) = −L(3). This is not the case unless
we use the static approximation where the source is considered to be
time-independent: ρ(x) = ρ(x). In that (static) case the choice of the
Green function is not important and we choose the retarded function,
D+(x − x′) = 1

4π δ(t − t′ − |x − x′|)/|x − x′|, instead of the symmetric
one (though, with a little more effort, the same result is obtained if the
symmetric function is used). Then, we have

I
(3)
int = − 1

3
κ

∫

dt′
∫

d3x ′
∫

d3x ′′
∫

d3x ′′′ρ(x′)ρ(x′′)ρ(x′′′) ×

×
∫

dt′′
∫

dt′′′
∫

d4xD+(x− x′)D+(x− x′′)D+(x− x′′′)

= − κ

3(4π)3

∫

dt

∫

d3x ′
∫

d3x ′′
∫

d3x ′′′ρ(x′)ρ(x′′)ρ(x′′′)×

×U(x′,x′′,x′′′), (4.3)

where the kernel

U(x′,x′′,x′′′) =

∫

d3x

|x − x′||x − x′′||x − x′′′| (4.4)

is a time-independent function which has the structure (modulo a con-
stant factor) of a three-point interaction potential. Its properties are
studied in the Appendix A. It is shown there (Prop. 2) that the integral
(4.4) diverges. However, the corresponding force is well behaved, as can
be seen from the potential difference

∆U(x′,x′′,x′′′) ≡ ∆U(a→x′, b→x′′, c→x′′′)

= U(a, b, c) − U(x′,x′′,x′′′), (4.5)

where a, b, c are arbitrary constant vectors. This can be expressed as
the sum

∆U(a→x′, b→x′′, c→x′′′) = ∆U(a, b, c→x′′′) + ∆U(x′′′,a, b→x′′)

+ ∆U(x′′,x′′′a→x) (4.6)

of the partial potential differences of the form ∆U(a, b, c→r) =
U(a, b, c) − U(a, b, r) (see (A2)). These are well defined (see Prop. 3)
and indicate logarithmic confinement (Prop. 4). The calculation of the
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∆U

z/a
/aρ

0

1

2

3

1

2

3

0

5

10

Figure 1. The potential ∆U(a,−a,0→r) as a function of r = {x, y, z};
ρ =

√

x2 + y2. The function is symmetric under the inversion z → −z
and rotation around 0z. In particular, ∆U = 4πθ(|z|−a) log 1

2
(|z|/a+1)

if ρ = 0.

integral ∆U(a, b, c→r) is complicated, and we illustrate the behavior of
this function in Figure 1 for the particular case b = −a, c = 0.

The subtraction procedure (4.5) can be regarded as a regularisation of
the divergent integral (4.4). Another version of the subtraction procedure
is presented in the Appendix B. It is possible to use other regularisation
procedures, such as inserting a cut-off factor, for example e−b|x| with
b > 0, into the integrand of (4.4) (whereupon the integral converges)
and studying the results in the limit of b → 0. Evidently, the cut-off
procedure is not unique.

5. Quantization: the V =
1

3
ϕ

3 model

Following Refs. [7, 9] we proceed to the Hamiltonian formalism and
canonical quantization. Formally, the Hamiltonization procedure is as
follows. We construct the Hamiltonian density,

H = Hfree + H(2)
int + H(3)

int , (5.1)

where H(2)
int = − 1

2

∫

dx′ρ(x)D(x − x′)ρ(x′) and H(3)
int = −L(3)

int is specifi-

ed by I
(3)
int =

∫

d4xL(3)
int , given in equation (4.2). The total interaction
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Hamiltonian density (5.1) is then expressed in terms of the Fourier am-
plitudes Ak, Bk and A†

k, B†
k, of the field φ(x) (see eq. (2.14) in [9]).

Upon quantization these amplitudes satisfy the standard commutation
relations and become the creation and annihilation operators. Then the
canonical Hamiltonian operator is given by

H =

∫

d3x : H(t=0,x) : , (5.2)

where “: :" denotes the normal ordering of operators. Other canonical
generators, such as linear and angular momentum, can be easily ob-
tained.

The term Hfree is the standard Hamiltonian of the free complex scalar
field. The explicit form of the pair interaction term H

(2)
int is known (see

[3]b, [4, 7]) and so we shall concentrate on the H
(3)
int term. It has the

following somewhat cumbersome form:

H
(3)
int = − κg3

24(2π)6

∫

d3k 1 . . . d
3k 6√

k10 . . . k60

∑

η1=±...η6=±
D̃(η1k1 + η2k2)×

×D̃(η3k3 + η4k4)D̃(η5k5 + η6k6)δ(η1k1 + . . .+ η6k6)×

× :
η1

Bk1

η2

Ak2

η3

Bk3

η4

Ak4

η5

Bk5

η6

Ak6
:, (5.3)

where
+

B = B,
−
B = A†,

+

A = A,
−
A = B† and the Fourier trans-

form, D̃(k) = −P/k2, of the symmetric Green function of d’Alembert
equation depends on the on-shell 4-momentum k = {k0,k}, where

k0 =
√

m2 + k2. The expression (5.3) includes 26 = 64 terms.

6. Variational three-particle wave equations

In the variational approach to QFT the trial state of the system is built
of few particle channel components [8, 9] such as the two-particle state
vector |2〉 = 1√

2

∫

d3p1 d3p2 F2(p1,p3)A
†
p1
A†

p2
|0〉, the particle-antiparticle

one |1 + 1̄〉 =
∫

d3p1 d3p2 G(p1,p3)A
†
p1
B†

p2
|0〉, and so on. The three-

particle component has the form

|3〉 =
1√
3!

∫

d3p1 d3p2 d3p3 F (p1,p2,p3)A
†
p1
A†

p2
A†

p3
|0〉, (6.1)

where the channel wave function F , which is to be determined variati-
onally, is completely symmetric under the permutation of particle vari-
ables: p1,p2,p3. In the variational method the channel components, |ψi〉,
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are used to determine the matrix elements of the Hamiltonian, namely
〈ψi|H |ψj〉, where i, j stand for 1, 1̄, 2, 1+1̄, 2̄, 3, 2+1̄, 2+2̄, . . .

Here, we are interested in the matrix element of the interactionHint =

H
(2)
int + H

(3)
int of the Hamiltonian. We note that 〈1+1̄|H(3)

int |1+1̄〉 = 0,

〈2|H(3)
int |2〉 = 0. In other words, purely two-particle trial states, and so

the resulting variational wave equations, do not sample the term H
(3)
int .

Thus we first consider the three-particle case and calculate the matrix
element

〈3|Hint|3〉 =

∫

d3p′1 ...d
3p′3 d3p 1...d

3p 3 F
∗(p′

1...p
′
3)F (p1...p3)×

×K33(p
′
1...p

′
3,p1...p3), (6.2)

where the kernel K33 = K(2)
33 +K(3)

33 consists of the following components:

K(2)
33 (p′

1...p
′
3,p1...p3) = − 3g2

4(2π)3
δ(p′

1 + p′
2 + p′

3 − p1 − p2 − p3)×

× D̃(p′2 − p2)δ(p
′
3 − p3)

√

p′10p
′
20p10p20

, (6.3)

K(3)
33 (p′

1...p
′
3,p1...p3) = − κg3

4(2π)6
δ(p′

1 + p′
2 + p′

3 − p1 − p2 − p3)×

× D̃(p′1 − p1)D̃(p′2 − p2)D̃(p′3 − p3)
√

p′10...p
′
30p10...p30

, (6.4)

and pi0 =
√

m2 + p2
i and similarly for p′j0.

This kernel determines the interaction in the relativistic three-
particle wave equation that follows from the variational principle δ 〈3|H−
E|3〉 = 0, namely

{p10 + p20 + p30 − E}F (p1,p2,p3)

+

∫

d3p′1 d3p′2 d3p′3 K33(p1,p2,p3,p
′
1,p

′
2,p

′
3)F (p′

1,p
′
2,p

′
3) = 0, (6.5)

where the kernel is understood to be the completely symmetrized ex-
pression (with respect to the variables p′

1,p
′
2,p

′
3 and p1,p2,p3) of (6.3)

and (6.4).
The term K(2)

33 of the kernel corresponds to the attractive interaction

via massless boson exchange between each pair of particles while K(3)
33

describes a cluster three-particle interaction.
In order to have some understanding of the properties of the cluster

interaction we consider the non-relativistic limit of the equation (6.5).
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In coordinate space, it is the Schrödinger equation for the three-particle
eigenfunction Ψ(x1,x2,x3) (see [8]) and eigenenergy ε = E − 3m:

{

1

2m
(p2

1 + p2
2 + p2

3) + V (x1,x2,x3) − ε

}

Ψ(x1,x2,x3) = 0, (6.6)

where pa = − i∇a (a = 1, 2, 3), and the potential V (x1,x2,x3), like the
relativistic kernel, consists of two parts, V = V

(2)
33 + V

(3)
33 :

V
(2)
33 (x1,x2,x3) = − g2

16πm2

{

1

|x1 − x2|

+
1

|x2 − x3|
+

1

|x3 − x1|

}

, (6.7)

V
(3)
33 (x1,x2,x3) = − 2κg3

(8πm)3

∫

d3z

|z − x1||z − x2||z − x3|

≡ − 2κg3

(8πm)3
U(x1,x2,x3). (6.8)

The function U(x1,x2,x3) on the r.h.s. of (6.8) is discussed in Sec. 4 and
Appendix A. It is a divergent and thus equation (6.6) may seem to be
meaningless. However, one can resort to regularisation, as already noted
in section 4. One way would be to subtract an infinite constant from the
potential V (3)

33 and add it to the eigenenergy ε as follows:

V
(3)
33 (x1,x2,x3) → Ṽ

(3)
33 (x1,x2,x3)

= − 2κg3

(8πm)3
{U(x1,x2,x3) − U(a, b, c)}

≡ 2κg3

(8πm)3
∆U(x1,x2,x3), (6.9)

ε → ε̃ = E − 3m− 2κg3

(8πm)3
U(a, b, c), (6.10)

where a, b and c are arbitrary constant vectors. The potential Ṽ (3)
33 is

well defined and possesses the confining property, provided that κ > 0.
Thus, equation (6.6) with V

(3)
33 replaced by the finite quantity Ṽ (3)

33 and
ε replaced by ε̃, makes sense and presumably possesses bound states
solutions only. Of course, the results would be meaningful to the extent
that they were independent of the choice of the regularisation procedure
(choice of a, b and c in the subtraction procedure).

The problem of divergences is expected in the relativistic case too.
But the analysis of the integral equation (6.5) is a more subtle problem
which shall not be undertaken in this work.
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7. An improved treatment of the particle-antiparticle

system

It was pointed out in the previous section that the simple variational
particle-antiparticle trial state |1+1̄〉 =

∫

d3p1 d3p2 F (p1,p3)A
†
p1
B†

p2
|0〉

does not sample the H(3)
int term of the Hamiltonian. Thus, this term does

not influence the variational wave equation derived by using only |1+1̄〉.
But the inclusion of both the |1+1̄〉 and |2+2̄〉 sectors [9] does show the
effect of the H(3)

int term. Indeed,

〈1+1̄|H(3)
int |2+2̄〉 =

∫

d3p′1 d3p′2 d3p 1...d
3p 4 F

∗(p′
1,p

′
2)G(p1...p4)×

×K(3)
24 (p′

1,p
′
2,p1...p4), (7.1)

〈2+2̄|H(3)
int |2+2̄〉 =

∫

d3p′1 ...d
3p′4 d3p1 ...d

3p4 G
∗(p′

1...p
′
4)G(p1...p4)×

×K(3)
44 (p′

1...p
′
4,p1...p4), (7.2)

where

K(3)
24 (p′

1,p
′
2,p1 . . .p4) = − κg3

4(2π)6
δ(p′

1 + p′
2 − p1 − · · · − p4)×

×D̃(p3 + p4)
2D̃(p′1 − p1)D̃(p′2 − p2) + D̃(p′1 + p′2)D̃(p1 + p2)

√

p′10p
′
20p10 . . . p40

, (7.3)

K(3)
44 (p′

1 . . .p
′
4,p1 . . .p4) = − κg3

2(2π)6
δ(p′

1 + · · · + p′
4 − p1 − · · · − p4)×

×
{

2D̃(p3 + p4)

[

D̃(p′1 + p′4)D̃(p′3 − p1)δ(p
′
2 − p2)

√

p′10p
′
30p

′
40p10p30p40

+
D̃(p′2 + p′3)D̃(p′4 − p2)δ(p

′
1 − p1)

√

p′20p
′
30p

′
40p20p30p40

]

+ D̃(p′3 − p3)D(p′4 − p4)

[

D̃(p′1 − p1)δ(p
′
2 − p2)

√

p′10p
′
30p

′
40p10p30p40

+
D̃(p′2 − p2)δ(p

′
1 − p1)

√

p′20p
′
30p

′
40p20p30p40

]}

. (7.4)

Therefore, if we use the trial state |Ψ〉 = |1+1̄〉 + |2+2̄〉 and vary
the energy expectation value Ē = 〈Ψ|H |Ψ〉/〈Ψ|Ψ〉 with respect to the
channel amplitudes F and G, we obtain the coupled pair of relativistic
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wave equations:

{p10 + p20 − E}F (p1,p2) +

∫

d3p′1 d3p′2 K(2)
22 (p1,p2,p

′
1p

′
2)F (p′

1,p
′
2)

+

∫

d3p′1 ...d
3p′4 K24(p1,p2,p

′
1...p

′
4)G(p′

1...p
′
4) = 0, (7.5)

{p10 + · · · + p40 − E}G(p1...p4)

+

∫

d3p′1 ...d
3p′4 K44(p1...p4,p

′
1...p

′
4)G(p′

1...p
′
4)

+

∫

d3p′1 d3p′2 K24(p
′
1,p

′
2,p1...p4)F (p′

1p
′
2) = 0 (7.6)

with K24 = K(2)
24 + K(3)

24 , K44 = K(2)
44 + K(3)

44 , where K(2)
22 , K(2)

24 and K(2)
44

are contributions of the pair interaction defined in [8, 9] (with the mass
of mediating field µ = 0), and K(3)

24 , K(3)
44 are defined in (7.3), (7.4). We

note that the kernels K24 and K44 in (7.6) are the expressions given in
(7.3) and (7.4), symmetrized with respect to variables p1, p3 and p2, p4.

In the domain E ∼ 2m, equations (7.5), (7.6) can be regarded as
describing a two-body particle-antiparticle system in which account is
taken of a virtual pair. Similarly, in the domain E ∼ 4m they can be
regarded as describing a four-body (two-pair) system in which account is
taken of the virtual annihilation of a pair. Of course, if F = 0, equation
(7.5) does not arise, and (7.6) becomes a relativistic equation for the
four-body, two-pair system (“quadronium"), analogous to (6.2) for the
three-body system.

As before, it is of interest to consider the non-relativistic limit of the
wave equations (7.5), (7.6). In this approximation the equations (7.5),
(7.6) reduce to a coupled set of Schrödinger-like equations (see (4.8),
(4.9) in [9]). The three-particle interaction does not change the non-
relativistic potential V22 ((4.10) in [9]) and contributes in V24 and V44

((4.11), (4.12) of [9]) as

V
(3)
24 =

g3κ

(2π)2(2m)5
δ(x3 − x4)

|x1 − x3||x2 − x4|

+
2g3κ

(2π)3(2m)9
δ(x1 − x3)δ(x2 − x4)δ(x3 − x4) (7.7)

V
(3)
44 = − g3κ

4(4πm)3

∫

d3z

{

1

|z − x1||z − x3|

[

1

|z − x2|
+

1

|z − x4|

]

+

[

1

|z − x1|
+

1

|z − x3|

]

1

|z − x2||z − x4|

}
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− g3κ

2π(2m)7

{

[δ(x1 − x2) + δ(x3 − x4)]

[

1

|x1 − x4|
+

1

|x2 − x3|

]

+ [δ(x1 − x4) + δ(x2 − x3)]

[

1

|x1 − x2|
+

1

|x3 − x4|

]}

(7.8)

Divergent integrals in the potential V (3)
44 should be regularized givi-

ng confining terms in the non-relativistic version of the equation (7.6),
similarly to the potential V (3)

33 (6.8) in the three-particle case. There are

no divergent terms in V
(3)
24 (and all the more in V22) so confining po-

tentials are absent in the non-relativistic limit of (7.5). This disparity
of equations (7.5) and (7.6) makes the simple subtractive regularization
scheme, used in the three-particle case (by re-definition of the energy),
not applicable (unless F = 0, that is, a pure four-body problem), so that
another regularisation procedure must be used. In any case, the role of
the three-point interaction in the particle-antiparticle problem needs to
be investigated further.

8. Concluding remarks

We have considered generalizations of the Wick-Cutkosky (massless
scalar Yukawa) model to include nonlinear mediating fields. Covariant
Green functions were used to eliminate the mediating field, thus arriv-
ing at a Lagrangian that contains nonlocal interaction terms. In the
case of a massless mediating field with a 1

3κϕ
3 nonlinearity, we evalu-

ate the corresponding interaction term explicitly and show that, in the
non-relativistic limit, the kernel has the form of a non-local three-point
potential that exhibits a logarithmic-confinement form.

We consider the quantized version of this model in the Hamiltonian
formalism, and use the variational method, with trial states built from
Fock-space components, to derive relativistic integral wave equations for
three-particle and particle-antiparticle systems. The kernels (relativis-
tic potentials) are shown to contain local (one-quantum exchange) and
three-point non-local terms. In the non-relativistic limit we evaluate the
explicit coordinate-space form of the interaction potentials and show
that they consist of local Coulombic potentials and nonlocal three-point
confining potentials. The nonlocal potentials, which arise from the 1

3κϕ
3

term in the Hamiltonian, are divergent (and so need regularisation), but
the potential differences are finite.

The many-body wave-equations derived in this paper are quite com-
plicated and must be solved using approximation methods. This will be
the subject of forthcoming work.
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Appendix A. Properties of the three-point potential

First of all we list some obvious properties of the potential U(a, b, c),
(4.4):

1. translational invariance: U(a+λ, b+λ, c+λ) = U(a, b, c), where
λ ∈ R

3;

2. rotational invariance: U(Ra,Rb,Rc) = U(a, b, c), where R ∈
SO(3);

3. scaling invariance: U(λa, λb, λc) = U(a, b, c), where λ ∈ R;

4. permutational invariance: U(b,a, c) = U(a, c, b) = U(a, b, c).

These formal properties apply provided the potential U(a, b, c) is
well defined. Actually, the integral (4.4) does not exist. To this show we
first introduce the convenient notation:

U(A) ≡ U(a, b, c;A) =

∫

A

d3x

|x − a||x − b||x − c| (A.1)

where A ⊂ R
3 is an integration volume. Let d(a, ε) be a sphere of radius

ε with center at a. We consider the space R
3 to be affine and use the

same notation for vectors a, b . . . and their end points (if the starting
point is 0).

Proposition 1. If a 6= b 6= c and R > |a|, |b|, |c| then
U(a, b, c; d(0, R)) <∞.

Proof. It is evident that U(a, b, c;A) <∞ if A is compact and does not
include the singular points a, b, c of the integrand of (A.1).

Consider a neighbourhood of, say, the point c, namely the sphere
d(c, ε), where ε � |a − c|, |b − c|. Shifting the integration variable x →
x − c in (A.1) we have

U(a, b, c; d(c, ε)) =

∫

d(c,ε)

d3x

|x||x − a + c||x − b + c|

≈
∫

d(c,ε)

d3x

|x||a − c||b − c| =
4π

|a − c||b − c|

ε
∫

0

r dr =
2πε2

|a − c||b − c|
ε→0−→ 0.

The same result holds for neighbourhoods of the other singular points a

and b.
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Proposition 2. Let Ā = R
3\d(0, R) where R � |a|, |b|, |c|. Then

U(a, b, c; Ā) = ∞.

Proof.

U(a, b, c; Ā) ≈
∫

Ā

d3x

|x|3 = 4π

∞
∫

R

dr

r
= 4π lim

r→∞
log(r/R) = ∞.

Thus, the integral (4.4) diverges logarithmically at ∞. Neverthe-
less, one can define the force generated by the potential, Fc =
−∂U(a, b, c)/∂c, and prove it is a well defined quantity. Alternative-
ly, we consider the potential difference when a test particle is moved
from, say, the point c to r:

∆U(a, b, c → r) ≡ U(a, b, c) − U(a, b, r)

=

∫

d3x

|x − a||x − b|

{

1

|x − c| −
1

|x − r|

}

(A.2a)

=

∫

d3x {|x− r| − |x − c|}
|x − a||x − b||x − c||x − r| (A.2b)

=

∫

d3x (r + c − 2x) · (r − c)

|x − a||x − b||x − c||x − r|{|x− c| + |x − r|} (A.2c)

We show next that ∆U(a, b, c → r) is a well defined finite function:
It follows from (A.2a) and Prop. 1 that the integral ∆U(a, b, c → r;A)
is well defined in a neighbourhood of every singular point a . . .r of inte-
grand except, perhaps, ∞. For the last case we verify the following:

Proposition 3. |∆U(a, b, c → r; Ā)| <∞ where Ā = R
3\d(0, R), R �

|a|, |b|, |c|, |r|.
Proof. Taking the expression (A.2b) and using the inequality
||x − r| − |x − c|| ≤ |r − c| we have

|∆U(a, b, c → r; Ā)| ≤
∫

Ā

d3x |r − c|
|x − a||x − b||x − c||x − r|

≈ 4π|r − c|
∞
∫

R

dr

r2
= 4π|r − c|/R <∞

We next consider some properties of the function ∆U(a, b, c → r).
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Proposition 4. Let r ≡ |r| � q ≡ |max(|a|, |b|, |c|). Then
|∆U(a, b, c → r)| ∼ 4π log(r/q).

Proof. We divide R
3 into three domains: R

3 = A1 ∪ A2 ∪ A3, where
A1 = d(0, 2q), A2 = d(0, r/k)\d(0, 2q), A3 = R

3\d(0, r/k) and k > 2.
From (A.2b) it follows that

|∆U(A1)| ≤
∫

A1

d3x |r − c|
|x − a||x − b||x − c||x − r| ≈

∫

A1

d3x

|x − a||x − b||x − c| .

Note that the function U(a, b, c;A1), which is finite (by Prop. 1) and
independent of r, appears on the r.h.s. of this inequality.

Performing the change of variable ξ = x/r in the integral ∆U(A3)
and using the notation α = a/r, β = b/r, γ = c/r, n = r/r, we have:

|∆U(A3)| ≤
∫

A3

d3x |r − c|
|x − a||x − b||x − c||x − r|

=

∫

Ã3

d3ξ |n − γ|
|ξ − α||ξ − β||ξ − γ||ξ − n| ≈

∫

Ã3

d3ξ

|ξ|3|ξ − n| ,

where Ã3 = A3/r = d(0, 1/k). The integral on r.h.s. is finite and r-
independent.

For the integral ∆U(A2) we use the expression (A.2c) and the same
change of variables:

∆U(A2) =

∫

Ã2

d3ξ (n + γ − 2ξ) · (n − γ)

|ξ − α||ξ − β||ξ − γ||ξ − n|{|ξ − n| + |ξ − γ|} , (A.3)

where Ã2 = A2/r = d(0, 1/k)\d(0, 2δ) and δ = q/r.
We note the following inequalities for the integrand of (A.3):

(n + γ − 2ξ) · (n − γ) ≥ 1 − γ2 − 2ξ(1 + γ) > (1 + γ)(1 − γ − 2/k);

1 − 1/k ≤ |n| − |ξ| ≤ |ξ − n| ≤ |ξ| + |n| ≤ 1 + 1/k;

|ξ| − δ ≤ |ξ − α|, |ξ − β|, |ξ − γ| ≤ |ξ| + δ.

Thus,

∆U(A2) > K−

∫

Ã2

d3ξ

(|ξ| + δ)3
= 4πK−

1/k
∫

2δ

ξ2d3ξ

(ξ + δ)3
,
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∆U(A2) < K+

∫

Ã2

d3ξ

(|ξ| − δ)3
= 4πK+

1/k
∫

2δ

ξ2d3ξ

(ξ − δ)3
,

where

K− =
(1 + δ)(1 − δ − 2/k)

(1 + 1/k)(1 + δ + 2/k)
= 1 +O(δ, 1/k),

K+ =
(1 + δ)

(1 − 1/k)
= 1 +O(δ, 1/k).

Calculating the integrals

1/k
∫

2δ

ξ2d3ξ

(ξ ± δ)3
= −4π log δ +O(1)

and choosing k sufficiently large, establishes the desired result.

Appendix B. One-parametric subtraction procedure

The subtraction procedure (4.5) depends on the choice of three arbitrary
vectors a, b, c (i.e., nine arbitraty parameters) which is not satisfactory.
It is tempting to remove this arbitrariness or, at least, to reduce a number
of parameters. At first sight one can put a = b = c = 0 in (4.5).
In this case the term U(0,0,0) compensates an infinite contribution of
the integral (4.4) over a far integration volume (where the integration
variable |x| → ∞), but brings divergency from a close volume |x| → 0.

Instead, we propose another subtraction procedure. We proceed from
the formal expression ∆̃U(x′,x′′,x′′′) ≡ 1

2
U(0,0,0) − U(x′,x′′,x′′′)

which is free of any arbitrary parameter. Actually, this expression is
not defined unambiguously. We specify it as follows:

∆̃U(x′,x′′,x′′′) ≡ 1

2
U(0,0,0) − U(x′,x′′,x′′′)

= lim
R→∞

R
∫

ε=R2

0
/R

r2dr

∫

d2Ω

{

1

2|x|3 − 1

|x − x′||x − x′′||x − x′′′|

}

, (B.1)

where Ω is a solid angle, r = |x|, and R0 is an arbitrary length pa-
rameter. Dividing the integration segment (ε,R) into two parts (ε,R0)
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and (R0, R), and using in the first one the change of integration variable
r̃ = R2

0/r, we present the first term of (B.1) in the form:

1

2

R
∫

R2

0
/R

r2dr

∫

d2Ω

|x|3 = 2π







R0
∫

R2

0
/R

+

R
∫

R0







dr

r

= 4π

R
∫

R0

dr

r
= 4π ln(R/R0) =

R
∫

R0

r2dr

∫

d2Ω

|x|3 . (B.2)

Then

∆̃U(x′,x′′,x′′′) =

R0
∫

0

r2dr

∫

d2Ω

|x − x′||x − x′′||x − x′′′|

+ lim
R→∞





R
∫

R0

r2dr

∫

d2Ω

{

1

|x − x′||x − x′′||x − x′′′| −
1

|x|3
}



 . (B.3)

It follows evidently from Appendix A that both terms of this expressi-
on are finite. Thus the subtraction procedure (B.1) represent the one-
parametric (i.e., R0-depending) regularization of the three-point poten-
tial (4.4).

References

1. M. Barham and J. Darewych, J. Phys. A 31, 3481 (1998).
2. J. Darewych, Canadian J. Phys. 76, 523 (1998).
3. J. Darewych, Cond. Mat. Phys. 1, 593 (1998) and 3, 633 (2000).
4. B. Ding and J. Darewych, J. Phys. G 26, 97 (2000).
5. V. Shpytko and J. Darewych, Phys. Rev. D, 64 045012 (2001).
6. J. Darewych and A. Duviryak, Phys. Rev. A, 66 032102 (2002).
7. A. Duviryak and J. Darewych, J. Phys. A 37, 8365 (2004).
8. M. Emami-Razavi and J. Darewych, J. Phys. G 31, 1095 (2005).
9. M. Emami-Razavi and J. Darewych, J. Phys. G 32, 1171 (2006).

10. G. C. Wick, Phys. Rev. 96, 1124 (1954); R. E. Cutkosky, Phys. Rev.
96, 1135 (1954).

11. V. Y. Shpytko and J. W. Darewych, J. Phys. Studies 6, 289 (2002)
12. J. Kiskis, Phys. Rev. D 11, 2178 (1975).

CONDENSED MATTER PHYSICS

The journal Condensed Matter Physics is founded in 1993 and
published by Institute for Condensed Matter Physics of the National
Academy of Sciences of Ukraine.

AIMS AND SCOPE: The journal Condensed Matter Physics con-
tains research and review articles in the field of statistical mechanics
and condensed matter theory. The main attention is paid to physics of
solid, liquid and amorphous systems, phase equilibria and phase tran-
sitions, thermal, structural, electric, magnetic and optical properties of
condensed matter. Condensed Matter Physics is published quarterly.

ABSTRACTED/INDEXED IN:

• Chemical Abstract Service, Current Contents/Physical,
Chemical&Earth Sciences

• ISI Science Citation Index-Expanded, ISI Alrting Services
• INSPEC
• Elsevier Bibliographic Databases (EMBASE, EMNursing,

Compendex, GEOBASE, Scopus)
• “Referativnyi Zhurnal”
• “Dzherelo”

EDITOR IN CHIEF: Ihor Yukhnovskii

EDITORIAL BOARD: T. Arimitsu, Tsukuba; J.-P. Badiali, Paris;
B. Berche, Nancy; T. Bryk, Lviv; J.-M. Caillol, Orsay; C. von Ferber,
Freiburg; R. Folk, Linz; D. Henderson, Provo; F. Hirata, Okazaki;
Yu. Holovatch, Lviv; M. Holovko, Lviv; O. Ivankiv, Lviv; W. Janke,
Leipzig; M. Korynevskii, Lviv; Yu. Kozitsky, Lublin; M. Kozlovskii, Lviv;
H. Krienke, Regensburg; R. Levitskii, Lviv; V. Morozov, Moscow; I. Mry-
glod, Lviv; O. Patsahan (Assistant Editor), Lviv; N. Plakida, Dubna;
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