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PiBuauusa crany 3D isinromoai6uoi cucremu
M.II.Koznoscbkuii, P.B.Pomanik

Amnorariisi. Bukonano pospaxyHok BijbHOI eHepril F' Ta mapamerpa mo-
panky M mobsm3y touku dazoBoro mepexomy ist 3D iziHromomioHOT
cucremu B obnacti temmeparyp 1 < T,. Orpumanuit ssBHUiT BUpa3 Jist
F' ax dynkIiig TeMuepaTypu Ta 1oJjis Py JOBIIBHUX 3HAYEHHSX OCTaH-
HBOI'O. 3HANIEHO 3aJIeXKHICTh KOoeIIiEHTIB BUPa3y JJjisi BLIBHOI eHepril
Biz mapamerpis raminbroniany. [lasxom npsmoro gudepentioBanns F
3a 30BHINTHIM MOJIEM OTPUMAHO BUPA3 I HAMArHIYeHOCTI MOJENi, fIK
dyHKIIl TeMIepaTypu Ta 1oJisi. BCTAHOBJIEHO, IO Y BUMAJKY MaJuX I[I0-
JIiB IIOBeJiHKa HaMarHi9eHOCTI BU3HAYAETHCS KPUTHUIHUM IIOKA3HUKOM
B (M = My, (—7)%), y sunagxy T = T. MaeMO NOJLOBY 3aJIeXKHICTh
(M = Mo, h'/?).

The equation of state 3D Ising-like system
M.P.Kozlovskii, R.V.Romanik

Abstract. The free energy F' and the order parameter M are calcu-
lated near the phase transition point for a 3D Ising-like system in the
temperature region 7' < T.. Explicit expression for the free energy as a
function of temperature and field is obtained at arbitrary values of the
latter. Hamiltonian parameters dependence of coefficients of the free en-
ergy expression is found. Expression for the model’s magnetization as a
function of temperature and field is derived by direct differentiation of F’
with respect to external field. It is shown that in the case of small fields
the behavior of magnetization is determined by the critical exponent 3
(M = My, (—7)?), in the case T = T. we have the field dependence
(M = Moph'/%).
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1. Introduction

In the present work we obtain an explicit expression for the free energy of
the 3D Ising-like model with the exponentially decreasing potential of in-
terparticle interaction at T' < T, near the phase transition point 7' = T..
It is a continuation of the work [1] where such calculations are presented
at T' > T,. It should be noted that in the case T' = T, both free energy
expressions coincide, hence the derivates of this quantity with respect
to temperature and field are equal. For calculation purposes we use the
collective variables method (CV) [2] generalized in [3]| for the presence
of a constant external field. The technique of the calculation does not
impose any constraints on the field value h = SH (8 is the inverse tem-
perature, H is the magnetic field magnitude). It is known [4] that as the
temperature approaches T, one can distinguish two distinct regions on
the field-temperature plane. Far from T, the field h can take both small
and large values relative to the value h, = |7|%° (1 = (T — T.)/T.,
and 0 are the critical exponents of the order parameter: the temperature
and the field exponents respectively). As the temperature approaches T,
(as 7 decreases) the role of the field A becomes more important in the
formation of physical characteristics. Technically, in this value range of
7 and h the inequality h > h. always holds. Therefore, approaching T,
at a constant value of field H we get different values of the parameter
a = h/he. Far from T, o < 1; near T, we have o > 1. We used these
inequalities in previous works [3,4] to calculate explicit expressions for
the free energy in the boundary cases of small and large field values. In
the region o =~ 1 these expressions had to be "joined", which generally
speaking remains a drawback of these works. To overcome this difficulty
in [5] we applied the procedure for determining the point of exit from the
critical regime by means of a certain equation. The point of exit from the
critical fluctuation regime is determined by the block structure number
n = n,, whose linear sizes are proportional to the correlation length at
given 7 and h. Solutions of that equation were searched for computati-
onally. An advantage of this approach was the obtained scaling function
of the order parameter (graphically), which was in good agreement with
data from the parameter equation of state for an Ising model [6]. A draw-
back of the method was using the results from the numerical solution for
the point of exiting the critical fluctuation regime and the impossibility
of finding an explicit analytical expression for the quantities sought with
only graphical dependences possible to obtain.

To obtain results analytically and to avoid using the results of com-
putational calculations, we use the results of [7]. In this work the author
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has proposed an explicit expression for the point of exit from the critical
fluctuation regime as a function of temperature and field.

We note that the temperature region T' < T, differs significantly
from the region T' > T, for an Ising model. The reason is that in an
Ising spin system at T' < T, the order parameter appears spontaneously
thus causing the existence of its conjugate field. The presence of such a
field should be accounted for when determining field dependence of the
system’s point of exit from the critical fluctuation regime in the presence
of a constant external field. Below we will use the results of [8] where
the point of exit from the critical regime was found at T' < T,.

2. The model

We use notation and basic formulas of [1] to calculate free energy of an
Ising-like system at T' < T, with the Hamiltonian

1
H:—iizjq)(’l”ij)UiO'j-FH;Ui (21)

Here ®(r;;) is a short-range potential of interaction between particles i
and j that are located at site of a simple cubic lattice with a period c.
Variable o; takes two values 1, H is an external field.

The partition function of such a system near 7, is written in the form

Z = Zo[Q(d)|No <ﬁ Qn) ZIGR- (2.2)

n=1

Here 1
Zy = 2V (cosh b)Y exp(iNﬂ@(O)@) (2.3)

where N is the number of particles, h = H is a unitless field, ®(0) is the
value of the Fourier transform ®(r;;) at k = 0, and ® is its parameter
defined in [6,7]. Quantity Q(d) represents contribution of large values of
the wave vector to the statistical sum and is given in [1]. This work also
gives an explicit expression for the quantity @, which corresponds to
the partial partition function of a block structure n [9]. The product is
conducted up to the point n; that determines the point of the system’s
exit from the critical regime of the order parameter fluctuations. At
T < T, for n; we have

In(h% + h2,)
o T em) 2.4
"'p 2In B, (24)
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Here h = sg/ *(h/hy) is the renormalized external field and
hem() = |7 (2.5)

is a certain temperature field where

T = —Tck—lE;’O. (2.6)
fo
Here pg = In E1/In Es, E; are the eigen values of the matrix of the RG
transformation linearized near a fixed point [1], quantities fo, ¢1x denote
coordinates of the fixed point [1,8].

It should be noted that in the case T' > T. (see [1]) the temperature
field h, = |7|P° was introduced where 7 = Te¢1i/ fo. Variable 7 differs
from 71 in (2.6) since the factor E5° is absent. Quantity ng (at h = 0)
is the difference between the points of exit from the critical fluctuation
regime at T > T, (n,) and T < T¢. (ny,)

no = Ny — N, (2.7)
and implies the presence at T' < T, of a certain internal field conjugate
to the spontaneous order parameter.

In expression (2.2) the quantity Z;cr has the form

ZIGR — 2(Nn:/0*1)/2Q(Pn;)Nn;+lanp_‘rl, (28)

where Nn/p is the number of sites in an effective block lattice with the

period ¢, = cos™ (co = c- so), quantity Q(P,) is defined in [1] and for
Zn/p+1 we have the expression

N, (n+1) A,1/2 1
Zyy1 = /(dn) »Tlexp (al » Nn£+1770 ~5 Z dpy 11 (k) %

kGBn;+1

oD

X RNk 4TNW;1+1 Z n/zl o nE45§1+...+§4> (29)
k1,-k4

Here dp 41(k) = dp +1(0) + 28®(0)b%k?, where b is the range of an ex-

ponentially decreasing potential of interaction (®(r;;) = Aexp(—r;;/b))

and for a{", d,,(0) and a{"™ recurrence relations (RR) are valid. Their

explicit form is derived in [10]. Introducing notation

agn) =5 "wy, dp(0)=s""r,, ai") = s "y,
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RR can be written as follows

d+2

Wnp4+1 = S 2 Wp,
o1 = 82 [=q + (rn + @) N (z)],
Unt1 = SupE(xy,), (2.10)

Where the functions N(z,) and E(z,) are defined in [1]. The initial
values of quantities wy,, r, and u,, (at n = 0) are

wo = s2%h, 1o =ay— BRO)(1 - D), u=as, (2.11)

where the values of quantities as, a4 are given in [7].

A renormgroup symmetry in the system is present only for n < n;,
i.e. when the period ¢, of an effective block lattice is less than Cny - In
this case general RR (2.10) can be substituted by their linearized form
near a fixed point and used to calculate the product of partial partition
functions @, in the expression (2.2). At n > n;, the RG symmetry is
absent and the factor Z;qg reflects the contribution to the statistical
sum after the system’s exit from the critical regime of the order param-
eter fluctuations. Unlike CR it was named [11] the inverse Gauss regime
(IGR).

It should be noted that the calculations below relate to the tem-
perature region 7* < 7 < 0 where 7* ~ 1072. We do not impose any
restrictions on the field value.

3. The scheme for calculating free energy near 7.
(T <T.)

The free energy of one-component spins near the PTP is calculated based
on expression (2.2) that determines partition function at T < T,. Unlike
the case of field absence [11] the generalized point of exit from the critical
fluctuation regime is used here. In the case T < T, expression (2.4) is
valid. We present free energy as the sum of several terms

FZFQ—I—FéR)-i-F]GR. (3.1)

Each of them represents contribution of a certain factor in expression
(2.2). Thus the first term Fy which is also present in the expression for
the free energy at temperatures higher than 7T, [1] has the form

1
Fy = ~kTN[In2 + Incosh h] — ZN@(0)® (3.2)
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corresponds to the expression for Zy and describes free energy of non-
interacting spins.

The term Fé}) represents contribution of the critical fluctuation
regime region to the free energy. To calculate it we use the method
from [1]. In accordance with (2.2) we have an expression

’
n

P
FGR = =kT> " Nufa, (3.3)

n=1
where N,, = Np - s~3" and for the function f,,(x,,y,_1) we get
1 9 22
fn= 3 Iny,_1 + Zygzl + I" +InU(0,2,), (3.4)

where U(a,z) is Weber’s parabolic cylinder functions. Expressions for
arguments x,, and y,, can be found in [1]. First we note that due to (2.4)
the following equalities hold

S*(n/erl) _ (ﬁ2 + hfm)d%?, E;LPH _ (;Lz + hgm)—1/27
FEy T = —Hepw,  Hen = —7(R2 + h2,,)"1/20,
n’ +1 ~
Ey?" = Hap,  Hap = (B2 + h2,,)3/20, (3.5)
Here we have used notation
In s* In F5 InEy, d+2
YT By mE, P mE, 2 "V (36)

where A is the critical factor of the scaling correction, py is the crossover
critical factor. The value of the renormalization group parameter s = s*
where s* = 3.5977 corresponds to the case when the quantity z, in a
fixed point yields zero (z* = 0). For the model p? the critical factors
from (3.6) take the following values

v =0.605, A=0465 po=1512.
As a result of calculating (3.3) we get
Féi) = —kTNo(’Y(Jl + Yo2T + ’7037'2) + Fécl)% (3.7)

where the coefficients «; are presented in [1]. We point out that the
analytical part of expression (3.7) coincides with the case T' > T.. The
singular part of this expression has the form

FY), = kT Ny~ s~ 3+, (3.8)
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Coefficient 4~ is the function of H.,, and can be expressed as
7 =% — 2 Hem + B Hop, (3.9)

where 7; are constant quantities calculated in [1].
The term Frgr from (3.1) has the form

FIGR = —lenZIGR, (3.10)

where the expression for Z;gp is given in (2.8). We point out that Zn/erl
in (2.9) can be written as the product of partial partition function similar
to the way it is done for the contribution from the region of the critical
fluctuation regime. Then for contribution of the inverse Gauss regime to
the free energy (3.10) (similar to the contribution of the boundary Gauss
regime to the free energy at T > T,.) we can write

Figr=F\7) + F". (3.11)
Here
mo
F,I(,;%) = —kTNosig(n;+l) Z ng(mfl)fn;me, (312)
m=1

where for f/ 1, we have (3.4) at n = nj, + m,, and for I we obtain

F'=—kTNInZ". (3.13)

Here
Z/I _ 2(Nn//+1—1)/2 [Q(Pn”)]Nn//+l Zn”+17 (314)

where the quantity n” = nj,+my is the number of a spin block structure
and n" > nj,. For Z,» 1 expression (2.9) is valid; in this expression n;,
should be substituted by n”.

It should be noted that for n < n; the values of quantities z,, and
yn are close to their values in a fixed point (z, ~ x*, y, ~ y*) and for
the region n;, < n < nj, +mq their deviation from the fixed point should

be taken into account. Consequently, contributions of (3.3) to the free

energy Fé R) and those of (3.12) to F};{) are essentially different although
they have the same functional form.
In accordance with (3.11) the contribution to the free energy Frgr

contains two terms. To calculate the first term F:(F}) from (3.12) one
should find explicit dependence of fn;+m on m. We use solutions of RR
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that considering (3.5) take the form
Wt m = ho BT h(h? + h2,) 71/,
Tog+m = BO(0) fo(—1 = Hem B3 +
R(O)fo_lspal/202TE§n_lH3m), (315)
Unytm = (B9(0))%p0[1 + @ Hem B3~ + cor BY* ™' Hap).

Here ®; = fop, 1 2R§0). Near Near the PTP the quantity Hs,, from
(3.5) is small and at m > 1 the quantity E§*~' tends to zero (F3 < 1).
Thus we neglect the terms proportional to Hnggnfl.
Taking into account (3.15) and the explicit form for z,, from [1] we
find
ot sm = —ZE] " Hom (1 — @ EY ' Hep )12 (3.16)

where we denote T = fop, 1/2\/5. The absolute value of argument Tn/ +m
increases with the increase of m and depends on the value of H,,. It
is easy to verify that quantity H.,, for each value of h is determined
uniquely by the parameter

m = h/hem. (3.17)

For small fields quantity H.,, converges to value E5 " and with the
increase of «,, tends to zero. As a result, Tt +m from (3.16) has different
m dependence for large and small fields. The value my = 1 alone leads
to rather high absolute values of argument Tt fmot1 which allows one

to use the Gauss distribution of fluctuations for all p; with k| € B 12
So the contribution of the transition region of fluctuations to the free
energy (3.12) contains only one term, specifically

_a_
d+2

iy = —KTNofu 1 (B2 +02,) 7 (3.18)

where for f, 4, we have (3.4) at n = nj, + 1.

We point out that for calculation of the contribution of the transition
region to the free energy at T' < T, we use the value my = 1. There is
no need to separate the transition region at T' < T,. Parameter mg here
can take on values mgy < 1 but the purpose of calculating free energy
is to obtain an expression that would be valid for temperatures higher
and lower than T.. Thus following the scheme for calculating free energy
at T > T, [1] for the region of temperatures T' < T, we introduce a
transition region as well. It does not diminish the generalization of our
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study in any way but it does allow us to unify the calculation scheme.
Now we can derive the last contribution to the free energy of the system
F" from (3.11). For that we first need to calculate expression for Z”
from (3.13). We have

7" — 2(N /4o 1)/2[Q(Pn;+1)]anp+2Zn:’D+2 (319)

where

N,,
Zp 42 = [(dp) 7" exp(h\/ﬁpo -3 Zkezg%+2 dny +2(K)pgp_f —

(n;+2>

N o YR PR PR 5E1+,,,+E4> : (3.20)

’
For coefficients dn/ +2 and ai 2) we have

dn’p+2(k) = dn;)_i_g(O) + 26@(0)b2k2,
dn;)JrQ (0) = Si2(n;+2)’l”n;)+2,

o a2y, 3.21
4 »t

4. Extracting of the macroscopic part of the order
parameter

Let us consider explicit forms of coefficients r,,/ ;o and Ups 12 that are
part of the expression for quantity Zn;)+2 from {3.20)

Tn+2 = BP(0) fo(—1 — HemEs),
g 12 = (B8(0))200(1 — By Ho ). (11)

The second of them, specifically w,/ 2 , remains positive for any values
of 7 and h as a result the integral in (3.20) converges. In turn, coefficient
Ty +2 remains negative for all T' < T,. Therefore, it does not make sense
to use the Gauss approximation here. The situation can be improved by
introducing in (3.20) the substitution of variables

P =1+ VNOozo_, (4.2)

where o_ is a constant quantity. The basis for shifting variable pg (whose
average value is tied with the order parameter [11]) is the presence in the
system of a spontaneous order parameter. In the presence of an external
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field there exists an additional field-induced order parameter. Thus a
similar substitution of variables also takes place at T' > T if the system
is under an external field. As a result of (4.2) expression (3.20) would
take the form

, 1 ;
Zn/p+2 _ eNEo(U—) /(dn)N71p+2 exp |:A6\/NT]0 — —5 Z d/(k) X

k66n4)+2
1/2
Xﬁgﬁ_k—__b/Nnurz Z nkl les Eid..+ks —
- giha 5 ] (13

.....

Here

1 1 n+2 n
Eo(0-) = ho— = 5du, 12(0)0% = ay™" sttt (4.0)

and for coefficients A}, d’(k), b’ and CLZ; we have expressions
Af = h —dp 42(0)o— -1 Z +2 53(n;+2)a§,
d' (k) = d'(0) + 26@( Vb2 k2,
J/(O) _ 872(n’p+ )(T " + Un’ +2505(n +2) 2)
b= Un! +250 / HCRR ay = Un;+23_ Ay +2) (4.5)

Similar to [1], we find the shift quantity o_ from the condition

9Ey(0-)

9o 0.

Considering (4.4) we obtain an equation
A =0. (4.6)
We will be looking for the solution in the form
o_ = 065_(";"'2)/2. (4.7)
For quantity o(, we obtain a cubic equation

oy +p'og+q =0 (4.8)
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where for coefficients p’ and ¢’ we have expressions

! -3
p :650 Tn;)JrQ/un;JrQa

— —9/2 h h
q = —6s, S5/2WLW' (4.9)
In general, quantities p’ and ¢’ are functions of temperature and field.
The form of solutions (4.8) depends on the sign of the discriminant

Q=(1'/3)"+(d/2) (4.10)

As we know, for Q > 0 we have one real root and for a negative Q) we
have three real roots for equation (4.8). It is easy to verify that there
exists a value 7 = 79 (79 < 0) such that at 79 < 7 < 0 quantity Q > 0,
and at 7 < 19 quantity @ < 0. The value of 7y can be found from the
condition

Q=0. (4.11)

For all 79 < 7 < 0 we look for the solution of equation (4.8) using the
Kardano method o, = A + B where

A=(=d/2+ Q") B=—(d/2+Q"*)">
For the region 7 < 19 we have three real solutions

o} = 2(=p//3)/ cos(a /3),

0’273 = —2(—p’/3)1/2 cos (% + %) ,

Where the angle «,. can be determined from the relation

!

q
2=/ [3°7

The curve o (7) is presented at fig.1 for the field value h = 10~%. As
the external field decreases the value of 7y tends to zero. This dependence
is shown at Fig.2. It should be noted that similar to [1] we use here the
following numerical values of parameters

cos . = —

so=2, b/c=0.3, ho=0.760. (4.12)

With the decrease of the field the quantity o9 (T' > T.) decreases as
well [1] and yields zero at h = 0, whereas for all 7 < 0 (at h = 0) equation
(4.8) evidently has three real solutions, two of which are symmetric and
the third one is zero. Quantity o, takes one of the three possible real
values.

ICMP-09-07E 11

0.5 I,

0.005 0.01

Figure 1. Temperature dependence of solutions o, of equation (4.8) (the
region with 7 < 0), and quantity oo, found in [1] (the region with 7 > 0).
The external field value is h = 10~*
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Figure 2. External field dependence of 1y
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We express renormalized coefficients (4.5) as

d'(0) = s~ e,

’
by = 873(np+1),03%7

’
a = s Aty (4.13)
where
;o 1 3 /2
TR = Tn,+2 1 3Un! +25007
/ 3/2 /
VR = Uns 285" 0, UR = Un/ 42. (4.14)

Due to small values of coefficients v}, and u/, relative to 7 in (4.3)
we can use the Gauss approximation. Substituting the variables

77]; = pES(np+2) /2/7-3%

for Zy; 2 from (4.3) we get

oy g = VB (e N s (g i NN a2 7 (4.15)

where

Zic = /(dp)ﬁf,pJr2 exp[— Z (1 +26@(0)b2k232(”;+2)/r;3) X
E€B7l’p+2

—1/2
X ppp = asNoy Lo D PR PESOF b iR, T

-1
o IGNW;+2 Z pg1,~~~7g46/;1+~~~+g4:|' (416)
E1,....ks

Quantities x; have the form

\/5 ! 1 2

T5 = —3-UR (rR)*?, w6 = gulR/(T%) (4.17)

and are small compared to unity, in particular near T' = T,. Therefore
(4.16) reduces to the product of singular integrals

2 ’
Zig = HISEB”/ +2 f dpg P (_ (1 - 26(1)(0)%?1#82(”?-’_2)) P;;P_;;> .
P
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Contribution of (4.15) to the free energy has the form

Fn;)+2 = —kTNEo(O',) — %kTNn;)+2 Inm—
—kT Ny o(nj, +2) Ins + §kT Ny 4o lnry, +
3T Sie, 1n(1 + 23 (0)b2k2 52+ /7“3%). (4.18)

Here
1 _d_
Bolo-) =heg ) (B2 +12,) 7 el (A2 +02,) 7 (@19)

where we have introduced the notation (similar to the one in the case of
T>T. [1])

) ols~1/2,

(=) _1.72.-3 1 3 /2
ey ' = 50045 T'ns+2 + 13 Un!, +25000 | - (420)

The sum over k € Bp; 12 in (4.18) can be calculated by switching to
integration using the technique from [1].

Now we write down the contribution of (3.19) to the free energy as
the sum of two terms (see (4.15))

F'=F7 +F (4.21)
where the term
F\7) = —kTNE
0o = o(o-) (4.22)

corresponds to the extracted macroscopic part of the order parameter,
and for F; we have
Fr = —kT' Ny, 2 f1. (4.23)

Coeflicient f; has the form

fr= %1112— %ln?)—i—lns—i— %lnun;_H — %lnr;% —

AU (2 11) - S = 317 (4.24)

S 2
8 yn’p+1

Here

tny 41 = (B9(0))200(1 — @ Hep),
— o . —1/2
Ty 11 = —THem (1 — @ Hep) /2, (4.25)
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and for f’ we have

2 2 2
7 =1In(1 +a?) — 3 + a_% — a_?j arctanay (4.26)
where 1o
b (2890
a,_1—< 5,( )> . (4.27)
S0 ¢ '

Let us add up the contributions to the system free energy that we
have found near the PTP at T' < T¢. In according with representation
(3.1) we have several types of terms. Expression for Fy from (3.2) con-
tains only analytical dependence on field h. Since the first term in the
expression for Fé}) depends on the field only analytically too, we can
combine these contributions by introducing the notation

Fy=Fy+ (FS7 — Fég). (4.28)

An identical term is present in the expression for the free energy at
T > T, [1]. Tt is the analytical part of the free energy. It has the form

F,=—kTNlIncoshh — %N@(O)@ — kTN (y0 + 17 + v272) (4.29)

where coefficients ~; are found also in [1].

Contributions to the free energy that come from Fécl)%(3.8), F};{)
(3.18) and F” (4.22, 4.23) contain only non-analytical dependence on
temperature 7 and field h. Their sum can be expressed with two terms.
One of them Fé_) is related to the shift of variable pg and has the form

(4.22). The other one Fs(7) is the sum of the remaining non-analytical
contributions (the region of T' < T)

F&O) = FSy+ FS) + Fr (4.30)
and can be written as
F) = _gTNAO) (iﬂ + him) 7 (4.31)
where
7 = Sag(fn'pﬂ — 57 + f1/8%). (4.32)

So the free energy of the system can be written as

F=F,+F") +F" (4.33)
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where F,, has the form (4.29), for F{) we have (4.31) and the term Féf)
from (4.22) takes on the form

1 _d_
F\7) = —kTN (hea (72 4+ 02,) 7 — 5 (2 +02,,) M) (4.34)

Free energy representations (3.1) and (4.33) are equivalent.

Comparing temperature regions above and below the T, we point
out that expressions for the free energy are functionally similar. The
main difference is that for T < T, the value of the exit point of the
critical fluctuation regime is somewhat smaller than for T' > T,. This is
caused by the presence in the system of a spontaneous order parameter
at temperatures that are lower than T,.. For the same reason we have
different temperature measurement scales for each temperature interval.
They are tied as follows

T = —TEJ°. (4.35)

Thus using the results of [1] we can write a general expression for the
free energy
F=F,+F,+ F (4.36)

where the analytical part F, is common to both temperature intervals
and the contributions of F and Fjy are given by expression

(=)
Fs at T < T,
F, = ’ 4.37
{ FP atT>T, (437)
and o
Fy at T < T,
Fy = 9. N 4.38
0 {Fé”, at T >T. (4:38)
respectively.

5. The order parameter of a spin system near the
PTP under an external field

We use (4.36) to calculate temperature and field dependence of the sys-
tem magnetization. For this we use the definition

M= _% (3—5) . (5.1)

For convenience we express quantity M as the sum of three terms

M =M, + M + m® (5.2)
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that correspond to the contributions of different terms (4.36) and have
the form

M=~ (%),
+
M = — L (48
MY = L (4 (5.3)

”

Here the signs “+” and “—" indicate the regions the system is at (above
and below the T, respectively). The following calculations are done in
detail for the temperature region of T' < T..

According to (4.29) the first term in (5.2) which corresponds to the
analytical part, has the form

M, = tanh h =~ h. (5.4)
For the region of T' < T, quantity M, S(_)
(4.31) and can be expressed as

is calculated in accordance with

M7 = (B +02,) SN

d~(=) =
: ( i (2 02) 2 + 073 W) 9

The derivative of ng) is calculated in accordance with (4.32) where an
explicit expression for each term is known.

To calculate Mé_) we use relation (4.34) which is valid for T' < T..
Here the derivatives of o lead to an expression that is identical with
condition (4.6). Therefore when calculating Méf) we consider quantity
o, independent of the field

M7 = (12 4 12,7 (o) (14 At ) -

—) 3/2 h 7 de
4 e - 24 60

Based on (5.2) we find the total contribution to the order parameter
M) in the presence of an external field

1
MO = o) (h2 + R )2”“) (5.7)

where for coefficient O'(()a) we have

U((JS) = ( ) (1 + 5h2+h2 ) +e go)m +€((Jg). (5.8)
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Here quantity eéf) is defined in (4.20) and for e(()g) and e(()g) we find
expression

$3/2 _ _
’222—0(%5 _ ),

€00
el 1/2
602 ( dh’ a7 )(h2 hgm) : (5.9)

The first two terms on the right side of equality (5.8) depend only on

variable «,, from (3.17). For amplitude ‘7(()0_) to be a function of only «,y,,
it is necessary for coefficient eé;) to be such a function. One can verify

this by direct differentiation of quantities 75‘) and eé_). We get

deg_) 53/2 ! 512 o2\ (72 2 \ /2
=—-—1" 14+ = h h 1
dh’ ho 459 ( + 12 )( * cm) (5.10)

where

= on 6(1)( )fOS_3Hcm(1+zW7 q = q)fsgsDOf(;lﬁ(I)(o)

And for the derivative of 75‘) from (4.32) we find

dv(*) Sg/2 —1/2

B = 5 fl(ﬁ2+h§m) (5.11)

where
for =502 (fy +7, +5 7 f10) -

Quantities 7,7, 7, , fr, depend only on a,, and are presented in Ap-

pendix A. The final explicit expression for the critical magnetization

(=)

amplitude o, in the low-temperature region can be written as

2
(=) _ () 1 _ay (<) Om (=)
O'OO = 60 <1 =+ g 1 T O(?n) + 600 W + 602 (512)

where for e(()g) we have
o 32
€o2” = —20 (fzh + qio (1 "' 12 02)) (5.13)

Based on the results of [1] we can in a similar way calculate magne-
tization at T' > T,.. We obtain an expression

1
MO = ol (B4 2) "7, (5.14)
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Figure 3. Temperature dependence of the critical magnetization ampli-
tude ogg. External field value h = 107°

0.05 -

-0.002 ~0.001 0 0.001 0.002

Figure 4. Magnetization of the spin system versus reduced temperature
7. External field value h = 10~°
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where U(()Br) depends on variable a (o = h/h.) only. When passing the

point of T = T the critical amplitude U((JO_) gradually turns into Uég)
which has the same sense but now for the region with 7' > T,. This allows
us to construct a general expression for magnetization of the system near
the phase transition point both for the region with 7' > T, and that with

T<T,
- 1
M = oo (h* + kg g) 2@, (5.15)

where the critical amplitude ogg is given by expression

()
_ 00 at T < T,
00 = . 5.16

% { o\, at T>T, (5.16)

Quantity hcogr equals hey, at temperatures lower than 7. and equals
h. at temperatures higher than 7.. At Fig. 3 one can see a graph of
critical amplitude of the order parameter for both temperature intervals.
Magnetization of the system depending on reduced temperature 7 is
shown at Fig. 4.

Therefore, equation of state for a 3D Ising-like system in the pres-
ence of a field is described by expression (5.15). For convenience we will
be referring to it as the crossover equation of state. We use the term
"crossover" here for the reason that expression (5.15) allows for a natu-
ral transition to cases when one of the variables (temperature or field)
determines the behavior of the order parameter.

For small values of the field we have

M = My, |7|° (5.17)

Where quantity My, can be written in the form

(—) 2 L Cik N0 a+2
ogo (1 + ag,) =@ (_Ez ) , T <T,
My, = 1 o : (5.18)
agg>(1+a2)m(cfl_;) T >T,

And the critical exponent 8 = po/(d + 2) = 0.302. Evidently, in the
absence of an external field the order parameter appears at the point T' =
T, (7 = 0) which can be seen at Fig. 5. Here the results are presented for
different values of the ratio of the potential range to the lattice constant
[11]. In particular, b/c = by = 0.2887 corresponds to the nearest neighbor
approximation, b/c = by = 0.3379 applies when we take into account
interaction of the second neighbors, b/c = byr; = 0.3584 corresponds
to interaction of the third neighbors. In addition, we have made some
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0.36:
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Figure 5. Magnetization of the spin system in the absence of an external
field. MC are the results of work [12]

M
0.15+ PSS S cahn
0.14
0.057
0.0 :
0 2 4 6 8 10
10°°
° MC
ffffffffff b/c=0.2887
b/c=0.3379
b/c=0.3584

Figure 6. Field dependence of the order parameter of the spin system at
the point T' = T,.. MC are the results of work [12]
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comparisons with the corresponding results that were obtained in [12]
by numerical methods.
In cases when external field is the determining variable, equation of
state is written
M = My,h'/? (5.19)

where for the scaling function My, we have

1

Mo = 0 (14 (Y2 (307 5.20
e C = L
And the critical exponent 6 = d + 2 = 5. Field dependence of the order
parameter at temperature T = T, (7 = 0) is shown at Fig. 6. These
results are obtained for different values of the potential range and com-
pared to the results of work [12].

As we have previously noted, the critical amplitude of the equation
of state (5.15) depends only on quantities a,, (T < T¢) or a (T > T).
But in turn, they are functions of the microscopic parameters of the
hamiltonian. Notably, they depend on quantity s¢ that characterizes the
Fourier transform of the interaction potential

P
= (532 /ho) (Lo 70) " om0, (5.21)
Cik
P
a= (53/2/h0)(ﬁ) ad (5.22)
Cik
Here variable z -

is a certain ratio of the initial temperature-to-field values. For this reason
dependence of the critical amplitude Uéa) or the scaling functions M.,
and Mgy, specifically on the variable z is more common. A similar variable
x=1/M 1/8 is used in the equation of state that was proposed by Widom
[13]. But it contains an order parameter M which from the standpoint
of the microscopic approach has to be derived, not introduced from the
"outside". Thus, using variable z is more natural than using variable x,
although at small and large values of 7 these quantities are equivalent.
Dependence of the scaling function of the equation of state (5.19) on
variable z is shown at Fig. 7.
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2.5 b/c=0.2887

o oo >MC

2.0 °°o°°
.
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0 e G
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Figure 7. Scaling function of the equation of state (5.7) versus z. MC are
the results of work [12]

6. Conclusions

In this work we have found an explicit expression for the free energy of a
3D Ising-like system near the phase transition point (PTP) for tempera-
tures T' < T, as a function of temperature and field. Based on the method
proposed in [1], the free energy is expressed as the sum of contributions
coming from different regions of fluctuation of the order parameter. In
particular, contributions come from the region of the critical fluctua-
tion regime (CR), in which general recurrence relations (RR) for the
coeflicient of block structures can be substituted by their approximated
(linearized near a fixed point) solutions, as well as from the region of the
inverse Gauss regime (IGR) that is characterized by the Gauss distribu-
tion of fluctuations. Using [1] we have proposed an expression for F' of a
3D Ising-like system, which describes critical behavior at temperatures
that are higher and lower than T.

By direct differentiation of free energy F with respect to external
field we have obtained an explicit expression for magnetization of the
system as a function of temperature and field. Expression (5.15) is a
new form of the equation of state. We have referred to this form of
the equation of state as the crossover, since in boundary cases it turns
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into the well known representations of this equation. We have found
the scaling function of the equation of state in terms of its conventional
representation.
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