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CywminieHHs1 onTUYHUX 300pakeHb B obj1acti Apobosoro dbyp’e-
nepeTBOPEHHSI.

FO.M. Kosznoscbkuii, M.B. ITlosreniok

Amwnoranist. JlocmimkeHo 0coOIMBOCTI ONTHIHOTO CYMIIIEHHST JBOX 3Mi-
IEHUX 1 TPOMO/TYJIbOBAHUX TIJIOCKOIO XBUJIEIO 300pazkeHb B 00J1acTi 1po-
6oBoro ¢yp’e-ieperBopenns. TeopeTudHo OOrpyHTOBAHA MTPUHITUIIOBA
MOKJIUBICTH CYMIIlIeHHsI ABOX 300paxkenb B obsacti JAPII nmpu m0BiTH-
nomy 3uadenui mapamerpa JIPII p.Haseneni uncenbui pesynbratn, axi
UIIOCTPYIOTh (DOPMYBaHHSI BUCOKOKOHTPACHOI iHTepdEepeHITiitHOT KapTu-
uu B obsacti JAPII. derambro mocmimxkeno obmacti peanizamii JIPIT B
ONTUYHUX CACTEMAX.

Optical images superposition in the fractional fourier transform
domain.

Yu.M.Kozlovskii, M.V.Shovgenyuk

Abstract. The FFT images optical superposition regularities are inves-
tigated for the general case of two shifted and modulated by the plane
wave optical signals. Principal possibility of the optical superposition of
two images in the FFT domain at an arbitrary value of parameter p
is theoretically proved. Numerical reults which demonstrate forming of
the hight-contrast interference band pattern in the FFT images optical
superposition point are given. Domains of the FFT realization in the
optical systems are investigated in detail.
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1. Introduction

One of the perspective trends of the optical information proccesing
shemes investigagation is associated with using the methodology of the
fractional Fourier transform (FFT), as generalization of the Fourier
optics methods. Physical basis of this theory was first introduced by
Namias [1] for the quantum mechanics problems.

Basis of the FFT theory was investigated in the first works [2, 3].
In particular, it was shown in [2,4,5] that based on Wingner distribu-
tion function, FFT can be interpretated as rotation of the optical signal
distribution on the informational diagram, on an angle proportiolan to
the FFT parameter p. It is known many works [6-10], in which differ-
ent FFT optical interpretation is given. Different cases of the optical
signals correlation analysis in the FFT domain were investigated. The
purpose of such investigations was to constract principally new sheme of
generalizated correlator [12-14].

In the present paper theory of the FFT conjugate images forming
is given based on the signal distribution method, for the general case
of two shifted and modulated by the plane wave input optical signals.
Theoretical background of the principally new possibility of two optical
signals superposition in the FFT domains at an arbitrary value of the
FFT parameter p is given.

2. Images forming in the FFT domain

It us known that the FFT is described by the equation

up() = F[f(x)] = / )y (@, y)dy. (1)

where the FFT kernel

|k 4 2
Kp(I,Zj) = 27Td0 m
K[z? + 42 . kxy
X exp (m) exp <_2d0 sin¢> : @)

where u,(x) is the fractional Fourier image of the function f(z), do -
constant factor, ¢ = pw/2, p - is the FFT parameter.
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We introduse conjugate FFT

= (£2)] = ok [ (&)
(3)

Let us consider the general case of two modulated by the plane wave
optical signals [15]

g(x) = fi(x + b) exp(iwix) £ fa(z — b) exp(—iwx), 4)

Then, for image calculation in the FFT donain the next general for-
mula can be obtained [16]

1

lwp (@) = F~ [Aflf* (a12wo; azowo) exp (i [azzb + arowi] wo)]
+ F! [A + (a12w0; azawo ) exp(— ilageb + algwl])wo]
+ F1 [A 82 (a12wo + 2b; agawp — 2w1)}
+ F- [Af2 f; (@12wo — 2b; agowo + 2wr)] . (5)

where Ay, f+(z0,wo) - is the ambiguity function, (zo,wo) - are conju-
gate difference coordinates, a;; - coefficients of the general matrix [18]

do
ain T
A=lagl=| (6)
d—oazl a22
Two first terms describe shifted FFT images from two input signals
Jup (35, w1)[* = [up (2 + [azab + arzwn])|?, (7)
[op (3 b, w1)[” = [vp (2 — [a2b + a12w1])|*. (8)

Accordingly, third and fourth terms of equation (5) form the inter-
ference term of the FFT intensity distribution

Zp(xa b7 wl) = U’;D(x7 ba wl)’U;('x7 ba Wl)
Fup(w; b, wr vy (23 b,w1)]" (9)
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For the first term of the interference member we obtain

up(xa ba wl)v;(z‘, b7 UJl) =
= exp (2i [a12b + azow1] x)
XUp (1‘ + [a22b + (112(,01]) ’U; (ac - [aggb + algwﬂ) . (10)

As a result we obtain the next general formula which form the FFT
image of two shifted and modulated optical signals

|wp (a3 By, Q)| =
= |up(x + By) exp (iQ4) vy (x — By) exp (—iQqpz)[*,  (11)
The structure of this Equation is equivalent to the form of an input signal

(4). The generalized shifting parameter By and modulation frequency Qg4
of the FFT image can be determined by the matrix equation

do
By az2 7 G2 b
= k (1 — a2 ) 5 (12)
Qy 22 a22 w1
do a2

in other words elements of general matrix A are factors of the linear
equations system Thus, we can conclude that the FFT image forming of
two optical signals may be interpreted as a parallel process of the FFT
image cross shifting proportionally to the value By and the FFT image
modulation by the plane wave with frequency 4. In this connection,
the more cross shifting of the FFT images the less its modulation and
vise versa.
In the case of two isolated slits we can obtain the formula [16]

[up(2)[* =
1/sin ¢
_2 / sin[dn Fy wcos ¢(1 — wsin )] cos(dmFoxw)dw, (13)
T wcos ¢ 0 ’
0

where Fy = a? /Adp - is Frenels number. This formula is generalization
of Assakura formula [17] at FFT. Note, that in the FFT case in integral
formula top limit of integration is variable (1 + oo) and depends of the
distribution rotation angle ¢.

In the same way formula for the FFT conjugate imagea calculation
on isolated slit can be obtained
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For the interference term (9) we obtain

1/sin¢
2
i(x; By) = - / S(w; +Bg) cos (47TF0 {w+ si§¢] x) dw
0

1/sin¢
2 B
+ p S(w; —Bg) cos (47rF0 [w - sinqﬁ} x) dw, (14)
where 5 = b/a and
S(w;£Bg) = 4nFp(1 — wsin @)
By
Si 4F + —| |1 —wsi . 1
X bmc< 0 COS @ [w sinqbcosqb] [ wbqu]) (15)
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Figure 1. Superposition of two shifted and modulated by the plane wave
slits in the FFT domain.

Using solution (11) and matrix equation (12), we obtain the next
condition of images optical superposition in the FFT domain

B¢:bcos¢—w1%sin¢:0. (16)

It is important to note that at condition of normal incidence of the
plane wave (w1 = 0) images optical superposition can be realized only in
Fourier plane (¢ = 7/2). It is classical sheme of join Fourier transform
correlator. In the general case of oblique icidence of the plane wave (wy #
0) optical superposition condition can be realized in the FFT donain at
an arbitrary values of parameter p (p # 1). Then, superposition forming
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describes by the next formula
Jwp (3 0, 23| =
= [up(@)[* + [0y (2)|* + up(@)vy (z) exp (2025 )
+u, (z)vp(z) exp (—22’93‘“3@) , (17)

where 3% - is maximum modulation frequency. It is obviously that
at condition of the FFT images optical superposition maximum cross
shifting By*** of the FFT conjugate images is realized. Values Bj*** and
Q3 can be find using the matrix Eq.(12).

On figure 1 typical dependences of the two FFT images from two
cross shifted infinity slits full circle at optical superposition in the point
¢ = /3 are given. In the superposition points of the FFT images high-
contrast pattern of the interference band is forming.

In this connection, the more cross shifting of the FFT images, the
less influence of the interference pattern. In the case of the FFT conju-
gate images in that point maximum cross shifting By is realized but
interference influence is missing (€24 = 0). Such pattern is periodically
repeated accordingly to parameter p.

At the condition By = 0 under integral function S(w;0) is equal
to Eq.(13). Thus, we can conclude that in the arbitrary FFT domain
optically superimposed images from two slits are described by the next
general formula

F
|wp(ac;07Qg‘ax)|2 = 4 cos? (27TS,T$) |up()]?, (18)

In the close FFT domains before and after the optical superposition
point interference band contrast abruptly drop. Interference influence is
stronger in the central part of the shifted FFT images, because diffractive
intensity distribution is non-central. In is clear that the more By, the less
influence of the interference effects on images forming. In the boundary
point BZ*** above mentioned influence is wanting.

3. Domains of the FTT realization in optical systems

The FFT parameter p can changes from 0 to 47 and than it is possible
to investigate four domains of the FFT realization. Such domains can
be realized in one or double optical stages. For more detailed investiga-
tion of such approach let us consider different domain of the generalized
FFT. For this purpose we elucidate the physical meaning of the invariant
parameters a;;.
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Rotational matrix T, gives the possibility of the symetrical case
(dy = dg) realization only, and with the restricted by 2F distances.
Due to the form of generalized matrix (5), for the generalized FFT the
nonsymetric case (d; # da) can be considered. Superposition of the input
signals at arbitrary distances as before and behind the lens is realized.

Let us describe the methodology of the stage parameters calculation
at the optical superposition of the input images. For the optical stage
the elements a12 and ags (the invariant parameters of such stage) of ma-
trix (5) are calculated where the "effective" rotation angle pgrpr at the
generalized FFT is defined from (9). The expediency of the "effective"
rotation angle using is caused by the fact that in the optical stage the
rotation matrix 7, can not be realized. The angle ¢rp lets calculate
the value of the relative distance d; from the input plane and the cor-
responding value of the relative distance dy to the output plane of the
optical stage. The signes of the invariant coefficients determine the do-
main of the FFT realization. Let us consider the "motion" of images on
the informational diagram. Each domain has the two boundary points.
The FFT domain is placed between these points. One can see that to any
point on the informational diagram correponds the certain construction
of the optical stage where the generalized FFT is realized.

3.1. Fractional Fourier transform domain

The first domain Fig. 2(a) of the gereralized FFT image formation cor-
responds to the values of the FFT parameter (0 < p < 1). The extreme
cases p = 0 (the coordinate plane) and p = 1 (the frequency plane) corre-
spond to the usual FT. Between these planes the FFT domain is placed
and the FFT parameter in this domain changes continually from 0 to 1.
Such domain is discribed by the matrix (5) at the following conditions
of invariant parameters (a2 > 0;as2 > 0). This domain may be realized
in two types of optical stages.

First of them optical stage Fig. 2(b). In the FFT domain point (a2 =
0) correponds the next construction of the optical stage. Input image is
placed at the Focal distance before the lens and output image is placed
at the Focal distance after the lens. This case corresponds to the common
Fourier transform. The fist domain on the informational diagram Fig. 2
corresponds to the crosshatched region on Fig. 2(b).

The FFT domain may be also realized in the doble stage Fig. 2(c)
and accordingly this domain corresponds to the crosshatched region on
Fig. 2(c).
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Figure 2. The FFT domain.

3.2. Conjugate fractional Fourier transform domain

In the conjugate FFT domain Fig. 3(a) invariant parameters have the
next values (aj2 > 0;a22 < 0). The boundary points of this domain are
(1 < p < 2). The point (a12 = 0) is peculiar, i.e. this point corresponds
to the identical operation.

Conjugate FFT domain also has two variants of realization in the
optical systems. In the optical stage this domain corresponds to the
crosshatched region on Fig. 3(b) and in the double optical stage the
conjugate FFT domain corresponds to the crosshatched region on Fig.

3(c).

3.3. Inverse fractional Fourier transform domain

At the point (a12 = 0) the inverse image of the input signal is formed,
whereas in the domain Fig. 4(a) between the extreme points (p = 2)
and (p = 3) the conjugate FFT is formed. Whereas the third domain of
the generalized FFT exists and describes the inverse image of the input
signal.

Variants of realization in the following. In the optical stage this do-
main corresponds to the crosshatched region on Fig. 4(b) and in the dou-
ble optical stage the inverse FFT domain corresponds to the crosshatched
region on Fig. 4(c).
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Figure 3. Conjugate FFT domain.
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Figure 4. Inverse FFT domain.
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Figure 5. Conjugate inverse FFT domain.

3.4. Conjugate inverse fractional Fourier transform domain

Conjugate inverse fractional Fourier transform domain Fig. 5(a) has its
perticularties becouse it is not realized in the optical stage. Realization
in the double stage is shown on Fig. 5(b) (crosshatched region on this
Figure corresponds to the conjugate inverse FF'T domain).

4. Conclusion

Conjugate images forming is theoretically described based on ambiguity
function. Obtained results of investigations give theoretical background
of the two images optical superposition in the FFT domain, which are
modulated by hight-constrast interference band pattern. Four domains
of the FFT realization are investigated. It is shown that each domain
may be realized as in optical and in double optical stage. These results
may be used for generalizated fractional optical correlator construction.
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