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Математична теорiя моделi Iзiнга та її узагальнення: вступ

Юрiй Козицький

Анотацiя. Стаття є вступом в строгу теорiю рiвноважного стану
множини граткових моделей класичної та квантової статистичної фi-
зики. Розглядаються узагальненi моделi Iзiнга з дискретними, непе-
рервними, обмеженими i необмеженими спiнами, трансляцiйно iва-
рiнтнi та з iєрархiчною структурою; квантовi спiновi моделi, моделi
квантових ангармонiчних осциляторiв. Для класичних моделей об-
говорюються деякi властивостi гiбсових станiв, такi як теорема Лi-
Янга, кореляцiйнi нерiвностi, фазовi переходи, самоподiбнiсть. Для
квантових моделей на елементарному рiвнi описано пiдхiд, побудо-
ваний на функцiональному iнтегруваннi.

Mathematical theory of the Ising model and its generalizations:
an introduction

Yuri Kozitsky

Abstract. An introduction into the rigorous theory of equilibrium states
of a number of lattice models of classical and quantum statistical physics
is given. Generalized Ising models with discrete, continuous, bounded
and unbounded spins, translation invariant and with a hierarchical struc-
ture; quantum spin models, models of interacting quantum anharmonic
oscillators are considered. For the classical models, certain properties of
local Gibbs states, such as the Lee-Yang theorem, correlation inequal-
ities, phase transitions, self-similarity, are discussed. For the quantum
models, an approach based on functional integration is presented on an
introductory level.
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1. Introduction

This article is addressed to those physicists working in statistical physics
who would want to learn modern mathematical methods and concepts
used by mathematicians also working in this area. Although both com-
munities study the same object, there exists a serious gap between the
ways of getting and expressing knowledge, which quite often impedes
substantially the exchange of this knowledge between them. The inten-
tion of the article is to help to make just first steps towards treating
equilibrium states, phase transitions, critical points, etc., as mathemati-
cal objects. As a continuation, a serious work on such classical sources as
Refs. [1]– [14] is recommended. The article is more or less self-contained,
nevertheless the reader is supposed to possess certain knowledge in
functional analysis (linear operators on Banach and Hilbert spaces, see
Ref. [15]), analytic functions (holomorphic functions of one and several
complex variables, entire functions, see Refs. [16], [17]), measure theory,
see Refs. [18]– [20], probability and stochastic processes, see Ref. [21].
The article is mainly a review, although certain results and approach-
es are new. Among them – a new approach to the description of the
critical point in one-dimensional models (classical and quantum) with
long-range interactions.

The Ising model was introduced in 1925. Ising solved the model in
the one-dimensional case [22] (see also Refs. [23], [24]) and came to the
conclusion that it has no phase transitions in all dimensions. Later, due
to Onsager’s solution [25], it had become clear that the two-dimensional
version of the model does have a phase transition and a critical point.
Since that time, the Ising model has become one of the most popular
models of statistical physics. A very important conclusion, which one can
come up to by analyzing Onsager’s solution, is that the phase transition
singularities of thermodynamic functions, such as the free energy density,
magnetization etc., occur only in the infinite-volume (thermodynamic)
limit. Another important peculiarity of Onsager’s solution is that it can-
not be extended to the three-dimensional case1. This fact stimulated a
more serious mathematical approach to the description of lattice models
of this kind. The state of the art account in this area may be found in
the monographs Refs. [13], [14].

Originally the Ising model was considered as a quantum model de-
scribed in terms of spin operators. Later, it was understood [29] that

1It is believed [26] that the three-dimensional and two-dimensional Ising models
have different types of time complexity. The 3D-model has a non-polynomial time
complexity, whereas the 2D-model – polynomial. More about complexity – a very
popular conception of modern science – see Refs. [27], [28].
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there exists a deep connection between the Ising model, the ϕ4-models of
the Euclidean quantum field theory and classical lattice models. More-
over, due to its diagonality, the Ising model may be considered as a
classical model as well. In accordance with this duality the main body
of the article consists of two parts dedicated to classical and quantum
models respectively. In the first part (section 2) we consider a number
of generalizations of the Ising model, which may be described in terms
of systems of depending random variables (spins) indexed by the ele-
ments of a d-dimensional simple cubic lattice of unit spacing Zd. In this
context the Ising model describes a system of interacting spins taking
values ±1. In its generalizations the spins take values: (a) from a finite
sets s1, . . . , sn (discrete spins), (b) from intervals like [a, b] (bounded
continuous spins); (c) from the whole real line (unbounded spins). These
values are taken with certain probability (in the Ising model both ±1 are
taken with probability 1/2). Different types of probability laws, which
prescribe these probabilities are discussed. Local Gibbs states are intro-
duced as probability measures, which are constructed by means of local
Hamiltonians and the probability laws discussed above. Here and below
local means related to a finite subset of the lattice Zd. The central no-
tion of this part is the infinite-volume Gibbs state, which is defined by
means of local Gibbs states as a probability measure. As it has been
pointed out above, the only possibility to describe phase transitions in
such models is to construct these infinite-volume states, or at least to get
information about their properties. Such information may be obtained
by studying local Gibbs states, in particular analytic properties of local
partition functions. Valuable information may be obtains with the help
of correlation inequalities, which we discuss in subsection 2.3 . In sub-
section 2.6 we show how to prove that the infinite-volume Gibbs state
of the Ising model with a nonzero external field is unique at all tem-
peratures. This uniqueness means that only one phase may exist hence
no phase transitions are possible. The proof is based on the correlation
inequalities and analytic properties of the model partition function as
a function of the external field. Among the main problems of statistical
physics a special place belongs to the problem of criticality. At a critical
point the infinite-volume Gibbs state possesses unusual properties. In
particular, it is characterized by large fluctuations due to which the usu-
al central limit theorem fails to hold whereas the law of large numbers
is still valid. Such a phenomenon is interesting not only for physicists
- the appearance of the strong dependence between random patterns is
studied in population genetics, mathematical finance, etc. In subsection
2.7 we consider some new aspects of the theory of critical points in a
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number of models discussed in this section.
In section 2 we have restricted ourselves to real-valued spin models.

Therefore, we do not consider classical models with vector spins, taking
values in R

n with n > 1. We also leave without consideration models
like the Potts model, the clock model, etc. Finally, we do not consider a
very interesting class of spin models on graphs (like the Bethe lattices),
which now are getting more and more popular (see e.g., Refs. [30], [31]
and pp.170-173 in the book Ref. [13]).

In the second part (section 3) we discuss how to construct local Gibbs
states of quantum lattice models, which can be considered as general-
izations of the Ising model. We consider two types of such models: (a)
non-diagonal spin models (like the Heisenberg spin model), which may be
described by means of finite complex matrices; (b) models of interacting
localized quantum particles, described by unbounded momentum and
position operators. A typical example of the latter models is the model
of quantum anharmonic oscillators, which now is extensively employed
in the theory of structural phase transitions [32]. The local Gibbs states
of quantum models are constructed as positive linear normalized func-
tionals on non-commutative algebras of observables. Such functionals are
defined by means of density matrices, which in turn are defined in terms
of local Hamiltonians. All these objects - local Hamiltonians, density ma-
trices, observables, may be realized as operators acting on certain Hilbert
spaces. In subsection 3.1 we give a brief introduction and some exam-
ples on this matter, including a number of facts from the theory of such
operators. In subsection 3.2 we discuss the main technical tool in quan-
tum statistical physics which gives a possibility to describe local Gibbs
states by means of Matsubara functions constructed for observables tak-
en from a commutative subalgebra of the algebra of all observables. In
the approach to the description of the models of quantum anharmonic
oscillators initiated in Ref. [33], the Matsubara functions are written as
integrals on function spaces, which makes this description similar to the
description of models of classical statistical physics, the models consid-
ered in section 2 in particular. The only difference is that now the spins
are infinite-dimensional. This approach is called Euclidean because of
its similarity to the corresponding approach in quantum field theory.
Within this approach it is possible to construct infinite-volume Gibbs
states on the same base as in the case of classical models. We present
here certain aspects of this approach, a full description of which may
be found in Ref. [34]. In subsection 3.3 we give some statements regard-
ing phase transitions and critical phenomena in the models of quantum
anharmonic oscillators obtained in the Euclidean approach.
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2. Classical Models

2.1. Local Hamiltonians and Gibbs states

We denote by N, N0, Z, R, C the sets of positive integer, nonnegative
integer, integer, real and complex numbers respectively. For simplicity
reasons, we consider a simple cubic lattice of unit spacing, i.e., our lattice
is Zd, d ∈ N. Let ∆ be a finite subset of the lattice Zd. Among such
subsets we will distinguish boxes

Λ = (−L,L]d ∩ Z
d, L ∈ N. (2.1)

Below, otherwise explicitly stated, ∆, respectively Λ, will always stand
for an arbitrary finite subset of Zd, respectively a box (2.1). The number
of lattice points in ∆, Λ will be denoted by |∆|, |Λ|. Since Λ is a particular
case of ∆, everything stated for subsets ∆ will be valid also for boxes Λ.

We start the description of the models we consider by introducing
the measure % on R which describes a priori probability distribution
of a random variable corresponding to a “particle". The measure which
would describe a system of non-interacting such particles, each of which
is labelled by an element of a subset ∆, should be the product of this %
taken over ∆. If the particles interact with each other, the measure which
describes this system is obtained [6] as a “Gibbsian reconstruction" of
the product measure performed by means of the energy functional. In
the simplest case this is a quadratic form on the Euclidean space R|∆|

consisting of vectors σ∆ = (σl)l∈∆ with the components σl , l ∈ ∆, which
reads

H∆ = −1

2

∑

l,l′∈∆

Jll′σlσl′ −
∑

l∈∆

hlσl, (2.2)

where Jll′ = Jl′l, hl are real parameters of the model defined for all l, l′ ∈
Zd. By means of these objects, we introduce the following probability
measure on the space R|∆|

dν∆(σ∆) = Z−1
β,∆ exp (−βH∆)

∏

l∈∆

d%(σl), (2.3)

Zβ,∆ =

∫

R|∆|

exp (−βH∆)
∏

l∈∆

d%(σl),

where β is the inverse temperature measured in energy units. This mea-
sure is called the local Gibbs measure, or equivalently the local Gibbs
state, corresponding to the zero condition on the boundary (i.e., outside)
of ∆. The mentioned reconstruction was performed by multiplying the



5 Препринт

product measure in (2.3) by the corresponding factor, which turns to
be one for β = 0 when the particles become non-interacting. The nor-
malization constant Zβ,∆, which provides that

∫

dν∆ = 1, is called the
partition function in the subset ∆ and

Fβ,∆ = − 1

β|∆| lnZβ,∆, (2.4)

is called the free energy density.
A particular case of the above model, where the reference measure %

is

d%(σl) = δ(σ2
l − 1)dσl =

1

2
[δ(σl − 1) + δ(σl + 1)] dσl, (2.5)

is nothing else but the Ising model with the interaction potential Jll′

in the external field hl. This field is called homogeneous if hl = h for
all l ∈ Z

d. In (2.5) δ is the Dirac δ-function, thus the above measure is
symmetric and concentrated at ±1.

Due to the fact that the Ising model is a particular case of the model
described by (2), the random variables in a general situation are called
“spins", the energy functional (2.2) is called “Hamiltonian", the measure
% is called “single-spin measure". The models for which, like for the Ising
model, the measure % is concentrated at points s1, s2, . . . sn ∈ R are
called models with discrete spin. Such a model with s1 = −1, s2 =
0, s3 = 1 and with the single-spin measure

d%(σl) = c[δ(σl + 1) + δ(σl − 1)] + (1 − 2c)δ(σl), c ∈ (0, 1/2),

was studied in Ref. [35]. The models for which the measure % is not
concentrated at any points are called models with continuous spin. As
an example here one may take the model with the single-spin measure

d%(σl) =
1

2
$[−1,1](σl)dσl, (2.6)

where $[−1,1](t) = 1 if t ∈ [−1, 1] and $[−1,1](t) = 0 otherwise. The
models for which there exists a > 0 such that

∫

[−a,a]

d%
def
=

∫ a

−a

d% = 1,

are called models with bounded (compact) spins. Thus, discrete spins are
always bounded. The models for which the measure % is not concentrated
on a bounded interval are called models with unbounded spins. Among
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such models, a significant role belongs to the so called polynomial models,
for which

d%(σl) = C−1 exp (−P (σl)) dσl, C =

∫

R

exp (−P (σl)) dσl, (2.7)

where P is a polynomial, i.e.,

P (σl) = b1σl + . . . b2rσ
2r
l , b2r > 0. (2.8)

Such a polynomial is semi-bounded, which means that for all its argu-
ments P (σl) ≥ b0 for some real b0. A measure % on R is called symmetric
if for every 0 ≤ a < b,

∫ b

a

d% =

∫ −a

−b

d%.

The measure (2.7) is symmetric if P is even, i.e., only even powers ap-
pear in (2.8). A typical example of such a measure is the symmetric
Gaussian measure, for which P (σl) = (b/2)σ2

l
. Another typical example

one obtains by setting r = 2,

d%(σl) = C−1 exp
(

−aσ2
l − bσ4

l

)

dσl, a ∈ R, b > 0; (2.9)

C =

∫

R

exp (−P (σl)) dσl,

which is known as the ϕ4 measure.
Such polynomial models have another interpretation. For the above

P and the Hamiltonian (2.1), set

E∆ = −1

2

∑

l,l′∈∆

Jll′σlσl′ −
∑

l∈∆

hlσl +
∑

l∈∆

P (σl). (2.10)

This functional may be considered as the potential energy of a sys-
tem of interacting classical (non-quantum) oscillators, in which the first
term is responsible for the inter-particle interaction whereas the second
and the third ones represent the single-particle potential energy. In case
P (σl) = (b/2)σ2

l
, b > 0, for all l ∈ Zd, these oscillators are harmonic. A

generalization of (2.7) and (2.10) may be made by replacing the polyno-
mial P by a differentiable semi-bounded function. With the help of the
potential energy (2.10) the measure (2.3) may be written in the form

dν∆(σ∆) = Z−1
β,∆ exp (−βE∆)

∏

l∈∆

dσl, (2.11)
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which is the Gibbs measure of a system of classical oscillators, it is Gaus-
sian if they are harmonic. Let us describe the latter case in more details.
For P (σl) = (b/2)σ2

l
, we set

Sll′ = bδll′ − Jll′ , l, l′ ∈ ∆, (2.12)

where δll′ is the Kronecker delta. Let S be the |∆|×|∆| symmetric matrix
which elements are given by (2.12). It may be diagonalized and all its
eigenvalues have to be real. The measure (2.11) will exist for all d ∈ N if
all these eigenvalues are strictly positive. In this case the inverse matrix
S−1 exists and the partition function may be written explicitly

Zβ,∆ = (2π)|∆|/2 [detS]−1/2 exp







1

2

∑

l,l′∈∆

(S−1)ll′hlhl′







. (2.13)

If Jll′ ≥ 0 for all l, l′ ∈ Zd, the necessary and sufficient condition for the
mentioned eigenvalues to be positive is

b > max
l∈∆

∑

l′∈∆

Jll′ . (2.14)

The thermodynamic properties of the model make sense to consider only
if the following

∑

l′∈Zd

Jll′ <∞, (2.15)

holds for all l ∈ Zd. In this case the condition (2.14) will be satisfied for
any ∆ if

b > sup
l∈Zd

∑

l′∈Zd

Jll′ . (2.16)

If the latter condition fails to hold, the same will be with (2.14) for suf-
ficiently large subsets ∆. In this case the infinite-volume Gibbs measure
does not exist.

By means of the local Gibbs measure (2.3), one obtains physical
quantities as the integrals

∫

Ω∆

f(σ∆)dν∆(σ∆)
def
= 〈f〉ν∆ , (2.17)

where we have set Ω∆ = R|∆|. Such integrals are called expectation
values of the functions f with respect to the measure ν∆. In particular,
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the mean magnetization in the set ∆, the two-point correlation function
and the susceptibility of the model read respectively

M∆ =
1

|∆|
∑

l∈∆

〈σl〉ν∆ , K∆
ll′ = 〈σlσl′〉ν∆ − 〈σl〉ν∆〈σl′ 〉ν∆ , (2.18)

χ∆ =
1

|∆|
∑

l,l′∈∆

K∆
ll′ . (2.19)

The infinite-volume limit of such quantities, if it exists, will describe
thermodynamic properties of the model. In general, the integrals (2.17)
exist not for all functions f : Ω∆ → R. If such a function is continu-
ous and polynomially bounded, its expectation value 〈f〉ν∆ exists for all
measures % of the type of (2.7). A polynomially bounded function by
definition is a function f : Ω∆ → R, which satisfies the condition

|f(σ∆)| ≤ f0 +

[

∑

l∈∆

σ2
l

]n

, (2.20)

with certain f0 > 0 and n ∈ N. In the case of compact spins, the inte-
grals (2.17) exist for all continuous functions. It should be pointed out
here that the integrals (2.17) exist not only for continuous function, but
their extension to wider classes of functions will complicate mathemat-
ics, which we are going to avoid in this article. Moreover, all functions,
for which the expectations 〈f〉ν∆ have a physical reason, are continu-
ous, hence we may restrict ourselves to considering such functions only.
Thereby, by F∆ we denote the set of all polynomially bounded contin-
uous functions f : Ω∆ → R. All the single-spin measures we consider in
this article are supposed to satisfy the condition

∫

R

exp
(

as2
)

d%(s) <∞, (2.21)

with a certain a > 0. In this case all function from F∆ will be integrable
with respect to the local Gibbs measures (2.3).

2.2. Analytic properties of local Gibbs states

In this subsection we study the dependence of the partition function
Zβ,∆, and hence of the free energy density Fβ,∆, on the parameters Jll′

and hl. Here we extensively use notions and fact from the theory of entire
functions, which may be found in the books Refs. [16], [17].
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For discrete spins, the partition function Zβ,∆, as a sum of ex-
ponents, may be extended to an exponential type entire function of
h∆ = (hl)l∈∆ ∈ C|∆|. The same remains true for all types of bound-
ed spins – a fact which follows from the Paley-Wiener theorem (see. e.g.,
Ref. [17]). For the model of classical harmonic oscillators, i.e., for Gaus-
sian ν∆, it may be extended to an entire function of h∆ of order two (see
(2.13)). For unbounded spins with the measure % in the form (2.7), Zβ,∆

may be extended to an entire function of order between one and two, de-
pending on the degree of the polynomial P (see below). Since for real hl,
the function exp (−βH∆) takes positive values only, the partition func-
tion Zβ,∆ is also positive, which means that the free energy density Fβ,∆

is an analytic function on a domain in C
|∆|, which contains R

|∆|. This
shows one more time that no phase transitions can arise until the volume
(i.e., the subset ∆) remains finite since these phenomena are connected
with the singularities of the free energy density (see Refs. [8], [10], [14]).
On the other hand, by (2.4), the singularities of the free energy densi-
ty may be connected with the zero points of the partition function. A
classical result in this domain, known as the Lee-Yang theorem [36], see
also Refs. [10], [11], states that for the Ising model, the only point of the
real line which such zeros may reach in the infinite-volume limit is the
origin. Here we present a generalization of this statement proved in the
article Ref. [37]. To this end we introduce the following notion.

Definition 1: A symmetric probability measure % on the real line R is
said to possess the Lee-Yang property if

ϕ%(z) =

∫

R

eztd%(t), z ∈ C, (2.22)

is an entire function which has imaginary zeros only or has them none.

Then the Lee-Yang theorem in the version of E.H. Lieb and A.D. Sokal
may be formulated as follows.

Proposition 2: Let the spin model defined by the Hamiltonian (2.2)
and the single-spin measure % possess the properties: (a) Jll′ ≥ 0 for all
l, l′ ∈ Zd; (b) the measure % has the Lee-Yang property . Then, for every
finite subset ∆ ⊂ Zd and every β > 0, the partition function (2.3), as a
function of h∆, can be extended to an entire function, which has nonzero
values whenever <(hl) > 0 for all l ∈ ∆.

Here <(z) stands for the real part of z ∈ C. The spin model for which
Jll′ ≥ 0 is called ferromagnetic . A corollary of the above statement, a
particular case of which is equivalent to the original theorem proved by
T.D. Lee and C.N. Yang (see below), is formulated as follows.
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Proposition 3: Let the conditions of the above proposition be satisfied
and let hl = z for all l ∈ ∆. Then, for every β > 0, the partition function
(2.3), as a function of z ∈ C, can be extended to an entire function,
which has nonzero values whenever <(z) 6= 0.

Let us analyze this statement in more details. For hl = z, one has from
(2.2) and (2.3)

Zβ,∆(z) =

∫

Ω∆

exp



βz
∑

l∈∆

σl +
β

2

∑

l,l′∈∆

Jll′σlσl′





∏

l∈∆

d%(σl). (2.23)

As it has been mentioned, the order ρ of Zβ,∆, as an entire function of
z, belongs to the interval ρ ∈ [1, 2]. Since the measure % is supposed to
be symmetric, this function ought to be even. Thus, it can be written as
the following infinite product (see e.g., Ref. [17])

Zβ,∆(z) = Zβ,∆(0) exp
(

γ0(β,∆)z2
)

∞
∏

j=1

(

1 + γj(β,∆)z2
)

, (2.24)

where Zβ,∆(0) > 0, γj(β,∆) ≥ 0, for all j = 0, 1, 2, . . . . The case of all
γj(β,∆) = 0 is degenerate, it holds if and only if the single-spin measure
is concentrated at zero, i.e., d%(s) = δ(s)ds. The case γ0(β,∆) > 0 and
γj(β,∆) = 0 for j ∈ N, corresponds to the model of harmonic oscillators,
for which the single-spin measure is Gaussian. In this case the function
(2.24) may be written (see (2.13))

Zβ,∆(z) = Zβ,∆(0) exp











β2

2

∑

l,l′∈∆

(S−1)ll′



 z2







.

It has no zeros at all and the corresponding infinite-volume free energy
density exists and has no singularities. For polynomial models with even
polynomials, for which the single-spin measure has the form (2.7), (2.8)
with r ≥ 2, one has γ0(β,∆) = 0 and γj(β,∆) > 0 for all j ∈ N. In this
case the order of grows of the function (2.24) is ρ = 2r/(2r − 1). This
function has imaginary zeros at the points z = ±i/

√

γj(β,∆), j ∈ N. An
immediate consequence of the above analysis is that the only value of
the homogeneous external field hl = z at which the infinite-volume free
energy density may have a singularity is z = 0. It occurs, when the zeros
of Zβ,∆(z) reach the origin as ∆ → Zd. Further analysis of measures
with the Lee-Yang property may be found in Refs. [38], [39]. So far, we
have had no examples of measures % possessing the Lee-Yang property.
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Two such measures are well-known. These are the measure (2.5) and
the symmetric Gaussian measure, i.e., a polynomial measure (2.7) with
P (σl) = (b/2)σ2

l

d%(s) = [b/2π]1/2 exp
(

−(b/2)s2
)

ds, b > 0. (2.25)

In fact, for the former measure, one has ϕ%(z) = cosh(z), whereas for
the latter one, ϕ%(z) = exp

(

z2/2b
)

. The original Lee-Yang theorem is
equivalent to Proposition 3 with the single-spin measure (2.5) and with
the nearest-neighbor interaction potential Jll′ = Jδ1,|l−l′|, J > 0.

Another examples of measures possessing the Lee-Yang property are
described by the following statement, which was proved in Ref. [40] (see
also Refs. [41], [42]). Let L stand for the class of entire functions of a
single complex variable, which are the polynomials possessing real non-
positive zeros only or the limits of sequences of such polynomials, taken
in the topology of uniform convergence on compact subsets of C. Such
functions are called Laguerre entire functions, their theory may be found
in Ref. [16].

Proposition 4: Given an entire function g : C → C let: (a) for every
real z ∈ [0,+∞), this function have real values; (b) there exist b > 0
such that the function φ(z) = b + g′(z), where g′ = dg/dz, belongs to
the class L. Then the measure

d%(s) = C exp
(

−g(s2)
)

ds, C =

∫

R

exp
(

−g(s2)
)

ds, (2.26)

possesses the Lee-Yang property. For this measure, ϕ% is of order ρ =
2r/(2r − 1) if g is a polynomial of degree r ∈ N, and ρ = 1, if g is a
transcendental function.

An immediate consequence of this statement is that the ϕ4 measure (2.9)
possesses this property (see also Theorem IX.15 in Ref. [11]).

2.3. Correlation inequalities

As it was mentioned in Introduction, correlation inequalities constitute
the base of a number of powerful methods in the theory of models we
consider. Here we describe the most important of them, a more detailed
description of such inequalities and their applications may be found in
the book Ref. [3]. Mostly these inequalities hold for ferromagnetic spin
models only, i.e., for the models with Jll′ ≥ 0, though some of them may
be extended to more general interaction potentials. Therefore, in the
statements presented below all inequalities hold for ferromagnetic spin
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models described by the Hamiltonian (2.2) and a single-spin measure %,
which satisfies (2.21). In some cases we impose more specific conditions
on the measure %. The model with hl ≥ 0 (respectively hl = 0) will be
called a model with a nonnegative (respectively with the zero) external
field.

The first example is known as the Fortuin-Kastelyn-Ginibre (FKG)
inequality [43]. To formulate it we will need the following notion. For
σ∆ = (σl)l∈∆ and σ′

∆ = (σ′
l
)l∈∆, we write σ∆ ≤ σ′

∆ if σl ≤ σl′ for all l ∈
∆. A function f ∈ F∆ is said to be monotone on Ω∆ if f(σ∆) ≤ f(σ′

∆),
whenever σ∆ ≤ σ′

∆.

Proposition 5: For any two monotone functions f, g ∈ F∆

〈fg〉ν∆ ≥ 〈f〉ν∆〈g〉ν∆ . (2.27)

The next correlation inequalities are known mostly due to R.B. Griffiths
[44], they are called Griffiths-Kelly-Sherman (GKS) inequalities.

Proposition 6: Let the functions f1, . . . , fn, g1, . . . , gn ∈ F∆ be giv-
en. Suppose that each of them satisfies the following conditions: (a) it
depends on one component σl of the vector σ∆ only; (b) as a function
of this σl, it is either odd and monotone or even and monotone as a
function of |σl|. Then for any ferromagnetic spin model with the zero
external field,

〈f1 . . . fn〉ν∆ ≥ 0; (2.28)

〈f1 . . . fng1 . . . gn〉ν∆ ≥ 〈f1 . . . fn〉ν∆〈g1 . . . gn〉ν∆ . (2.29)

Definition 7: A probability measure % on the real line R is said to be a
Bridges-Fröhlich-Spencer (BFS) measure if it is of the form

d%(s) = C−1 exp
(

−v(s2)
)

ds, C =

∫

R

exp
(

−v(s2)
)

ds, (2.30)

where the function v : [0,+∞) → R has the following properties: (a)
there exist v0 ∈ R, v1 > 0 such that v(s2) ≥ v0 + v1s

2 for all s ∈ R; (b)
it is convex on [0,+∞), i.e., for any τ1, τ2 ≥ 0 and θ ∈ [0, 1], it obeys
v(θτ1 + (1 − θ)τ2) ≤ θv(τ1) + (1 − θ)v(τ2).

Definition 8: A probability measure % on the real line R is said to
be a Ellis-Monroe (EM) measure if it has the form (2.7) with an even
polynomial (2.8), in which b2 ∈ R, b4, . . . , b2r−2 ≥ 0, b2r > 0.
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The Gaussian measure (2.25), the ϕ4 -measure (2.9), the measures (2.26)
are both BFS- and EM-measures. Moreover, every EM-measure is a BFS-
measure.

Now we introduce the Griffiths-Hurst-Sherman (GHS) inequality, its
proof may be found in the article Ref. [45].

Proposition 9: For any ferromagnetic model with a nonnegative exter-
nal field and a EM single-spin measure %, the following inequality

〈σl1σl2σl3 〉ν∆ ≤ 〈σl1〉ν∆〈σl2σl3〉ν∆ + 〈σl2〉ν∆〈σl1σl3〉ν∆ + (2.31)

+〈σl3〉ν∆〈σl1σl2〉ν∆ − 2〈σl1〉ν∆〈σl2〉ν∆〈σl3〉ν∆ ,

holds for any l1, l2, l3 ∈ ∆.

The proof of the Lebowitz inequality, which we formulate below, may be
found in the book Ref. [3].

Proposition 10: For any ferromagnetic model with the zero external
field and a BFS single-spin measure %, the following inequality

〈σl1σl2σl3σl4〉ν∆ ≤ 〈σl1σl2 〉ν∆〈σl3σl4〉ν∆ + 〈σl1σl3〉ν∆〈σl2σl4〉ν∆ +

+〈σl1σl4〉ν∆〈σl2σl3〉ν∆ , (2.32)

holds for any l1, l2, l3, l4 ∈ ∆.

Remark 11: All the above correlation inequalities hold for the ferro-
magnetic Ising model with the corresponding external field.

The proof of this statement follows from the fact that the Ising model
can be approximated by the model with the single-spin measure of the
form (2.9), for which all these inequalities hold. Let us provide some
more details. The measure

d%λ(σl) = C−1
λ exp

(

−λ(σ2
l − 1)2

)

dσl, Cλ =

∫

R

exp
(

−λ(σ2
l − 1)2

)

dσl

(2.33)
with λ > 0 is evidently of the type of (2.9). By means of the Laplace
method [46], one may prove the following statement. For any continuous
polynomially bounded function f : R → R,

lim
λ→+∞

∫

R

f(σl)d%λ(σl) =

∫

R

f(σl)d%
I(σl) =

1

2
[f(1) + f(−1)] , (2.34)

where %I is the measure (2.5). This statement has the following important
corollary. Let νI

∆ (respectively νλ
∆) denote the local Gibbs measure (2.3)
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corresponding to the Ising mode, i.e., the model with the single-spin
measure (2.5) (respectively to the model with the single-spin measure
( 2.33)). Then for any continuous polynomially bounded function f :
R

|∆| → R, the following holds

lim
λ→+∞

∫

Ω∆

f(σ∆)dνλ
∆(σ∆) =

∫

Ω∆

f(σ∆)dνI
∆(σ∆), (2.35)

which proves Remark 2.3. On the other hand, for any λ > 0 the measure
νλ
∆ may be approximated by νI

∆ [29].
For the measure νI

∆ with the zero external field, the function

ψ∆(z) =

∫

Ω∆

exp

(

z
∑

l∈∆

σl

)

dνI
∆(σ∆), (2.36)

may be written also as ψ∆(z) = Zβ,∆(β−1z)/Zβ,∆(0), where Zβ,∆(β−1z)
is defined by (2.23) with the single-spin measure %I. By the Bochner
theorem [18], there exists a unique probability measure %∆ on R, such
that this ψ∆ may be written (c.f., the equation (2.22))

ψ∆(z) =

∫

R

exp(zt)d%∆(t).

The measure %∆ defines the probability distribution of the total spin

S∆ =
∑

l∈∆

sl.

By (2.24) and Definition 1, this measure has the Lee-Yang property.
Let D be a sequence of subsets ∆ ⊂ Zd, such that for any two its

elements ∆,∆′, one of them is contained in the other one. We also sup-
pose that this sequence exhausts the lattice Zd, which means that any
finite subset A ⊂ Zd is contained in a certain ∆ ∈ D. As a countable set,
the sequence D can be enumerated in such a way that for any two its
elements ∆n, ∆m, their numbers satisfy n < m if and only if ∆n ⊂ ∆m.
Then we may write D = {∆n}n∈N. For a sequence {c∆}∆∈D indexed by
the elements of such D, we write limD c∆ or, if the sequence D has been
specified, lim∆→Zd c∆ meaning limn→+∞ c∆n

.

Definition 12: A sequence of probability measures {µn}n∈N is said to
converge weakly to the measure µ if for any bounded continuous function
f : R → R,

lim
n→+∞

∫

R

f(t)dµn(t) =

∫

R

f(t)dµ(t). (2.37)



15 Препринт

Definition 13: A probability measure % on R is called a Griffiths-Simon
(GS) measure if it may be written as the defined above %∆ with corre-
sponding ∆ and nonnegative Jll′ or it is the weak limit of a sequence
{%∆}∆∈D of such measures.

Thus by Ref. [29], the ϕ4-measure is a GS-measure. Another example is

d%(t) =
1

3
[δ(t− 1) + δ(t) + δ(t+ 1)]dt.

One may show that the sequence of ϕµn
, defined by (2.22) for the above

measures µn converges uniformly on bounded closed (i.e., compact) sub-
sets of the complex plane C to the function ϕµ, which means that ϕµ

has the representation (2.24) and hence the measure µ possesses the
Lee-Yang property. It should be pointed out that not all of the EM- and
BFS-measures possess this property (c.f., Proposition 4 ).

The Lebowitz inequality (2.32) may be generalized to the case of
nonzero external field, but for another type of single-spin measures. The
result presented below was proven in Ref. [45].

Proposition 14: For any ferromagnetic model with a nonnegative ex-
ternal field and a single-spin measure %, which is either of EM or of GS
type, the following inequality

〈σl1σl2σl3σl4〉ν∆ ≤ 〈σl1σl2 〉ν∆〈σl3σl4〉ν∆ + 〈σl1σl3〉ν∆〈σl2σl4〉ν∆ +

+〈σl1σl4〉ν∆〈σl2σl3〉ν∆ − 2〈σl1〉ν∆〈σl2 〉ν∆〈σl3 〉ν∆〈σl4〉ν∆ , (2.38)

holds for any l1, l2, l3, l4 ∈ ∆.

Yet another result connected with the Lebowitz inequality (2.32) was
proven in Ref. [47], it is called the Aizenman-Fröhlich inequality (see
also Ref. [3]).

Proposition 15: For any ferromagnetic model with the zero external
field and a GS single-spin measure %, the following inequality

〈σl1σl2σl3σl4〉ν∆ − 〈σl1σl2〉ν∆〈σl3σl4〉ν∆〈σl1σl3〉ν∆〈σl2σl4〉ν∆ − (2.39)

−〈σl1σl4〉ν∆〈σl2σl3〉ν∆ ≥ −2
∑

l∈∆

〈σl1σl〉ν∆〈σl2σl〉ν∆〈σl3σl〉ν∆〈σl4σl〉ν∆ ,

holds for any l1, l2, l3, l4 ∈ ∆.

It is worth noting that the Lebowitz inequality (2.32) gives an upper
bound (it is zero) for the left-hand side of (2.39), whereas the latter
inequality gives its lower bound.
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By Proposition 2, the partition function of the Ising model Zβ,∆(h∆)
can be extended to an entire function of complex h∆, which does not
vanish in the vicinity of the point h∆ = 0. Therefore, in this vicinity its
logarithm will be holomorphic and hence may be written

Φβ,∆(h∆)
def
= lnZβ,∆(h∆) = lnZβ,∆(0) + (2.40)

+

∞
∑

n=1

1

(2n)!

∑

l1,...,l2n∈∆

U
(2n)
β,∆ (l1, . . . , l2n)hl1 . . . hl2n

,

where

U
(2n)
β,∆ (l1, . . . , l2n) =

(

∂2n

∂hl1 . . . ∂hl2n

Φβ,∆

)

(0), n ∈ N, (2.41)

are called Ursell functions. They are also called cumulants or semiinvari-
ants. By direct calculation,

U
(2)
β,∆(l1, l2) = K∆

l1l2
(0),

where the latter is the correlation function for this model with the zero
external field (see (2.18)). By Remark 2.3 and Propositions 2.3, 2.3

− 2
∑

l∈∆

U
(2)
β,∆(l1, l)U

(2)
β,∆(l2, l)U

(2)
β,∆(l3, l)U

(2)
β,∆(l4, l) ≤

≤ U
(4)
β,∆(l1, . . . , l4) ≤ 0. (2.42)

For certain models, U
(2n)
β,∆ (l1, . . . , l2n), n ∈ N satisfy the following sign

rule [48].

Proposition 16: For all β > 0 and any finite subset ∆, the Ursell
functions (2.41) for the ferromagnetic model with the zero external field
and a GS single-spin measure, satisfy the sign rule

(−1)n−1U
(2n)
β,∆ (l1, . . . , l2n) ≥ 0, n ∈ N. (2.43)

Moreover, equality in (2.43) occurs either if the single-spin measure %
is Gaussian, or if and only if among the indices l1, . . . , l2n one finds the
pair li, lj such that ∆ may be divided onto disjoint ∆1,∆2, li ∈ ∆1 and
lj ∈ ∆2, such that for any l ∈ ∆1 and l

′ ∈ ∆2, one has Jll′ = 0.

The following statements are important corollaries of the inequalities
presented above. First, we obtain a property of the correlation functions
K∆

ll′
(h∆) defined by (2.18).
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Corollary 17: For any ferromagnetic model with a nonnegative external
field

K∆
ll′(h∆) ≥ 0. (2.44)

Proof: By (2.18),

K∆
ll′(h∆) = 〈fg〉ν∆ − 〈f〉ν∆〈g〉ν∆ ≥ 0,

where we have set f(σ∆) = σl, g(σ∆) = σl′ and employed the FKG
inequality (2.27).

Recall that h∆ ≤ h′∆ means hl ≤ h′
l
for all l ∈ ∆, moreover, 0∆ stands

for such a vector h∆ with all hl = 0.

Corollary 18: For any ferromagnetic model with a EM single-spin mea-
sure %, the correlation function, has the property

K∆
ll′(h

′
∆) ≤ K∆

ll′(h∆) ≤ K∆
ll′(0∆), (2.45)

for any h∆, h′∆ such that 0∆ ≤ h∆ ≤ h′∆.

Proof: By (2.18) and (2.2), (2.3), one has

∂

∂hl′′

K∆
ll′(h∆) = 〈σlσl′σl′′〉ν∆ − 〈σlσl′〉ν∆〈σl′′〉ν∆ − 〈σlσl′′ 〉ν∆〈σl′〉ν∆ −

−〈σl′σl′′〉ν∆〈σl〉ν∆ + 2〈σl〉ν∆〈σl′ 〉ν∆〈σl′′ 〉ν∆ ≤ 0,

where we have used the GHS-inequality (2.31). Thus, as a function of
h∆, K∆

ll′
(h∆) is monotone decreasing for all h∆, for which (2.31) is valid,

i.e., for h∆ ≥ 0.

Corollary 19: For every monotone function f ∈ F∆, the expectation
value 〈f〉ν∆ is a monotone function of the external field h∆. This means
that for any h∆, h′∆, such that h∆ ≤ h′∆, the following holds

〈f〉ν∆ ≤ 〈f〉ν′
∆
, (2.46)

where ν∆ (respectively ν′∆) is the local Gibbs measure (2.3) correspond-
ing to the local Hamiltonian (2.2) with the external field h∆ (respectively
h′∆).

Proof: For t ∈ [0, 1] and the mentioned h∆, h′∆, we set x∆(t) = h∆ +
t(h′∆ − h∆) and let ν∆(t) be the measure (2.3) corresponding to the
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external field x∆(t), which obviously satisfies the following “boundary
condition" ν∆(0) = ν∆ and ν∆(1) = ν′∆. Then

〈f〉ν∆(t) = (2.47)

=
1

Zβ,∆(t)

∫

Ω∆

f(σ∆) exp





β

2

∑

l,l′∈∆

Jll′σlσl′ + β
∑

l∈∆

xl(t)σl





∏

l∈∆

d%(σl),

where

Zβ,∆(t) =

∫

Ω∆

exp





β

2

∑

l,l′∈∆

Jll′σlσl′ + β
∑

l∈∆

xl(t)σl





∏

l∈∆

d%(σl).

(2.48)
Differentiating both parts of (2.47) and taking into account (2.48) one
obtains

∂

∂t
〈f〉ν∆(t) = 〈fg〉ν∆(t) − 〈f〉ν∆(t)〈g〉ν∆(t), (2.49)

where
g(σ∆)

def
= β

∑

l∈∆

(h′l − hl)σl,

which is a monotone function since h∆ ≤ h′∆. Now we apply in (2.49)
the FKG-inequality, which obviously holds for the measure ν∆(t) with
any t ∈ [0, 1], and obtain

∂

∂t
〈f〉ν∆(t) ≥ 0,

for all t ∈ [0, 1]. Therefore, 〈f〉ν∆(t) is a monotone function of t, which
yields (2.46).

Corollary 20: For every monotone function f ∈ F∆ and for any ferro-
magnetic model with the zero external field, the expectation value 〈f〉ν∆

is a monotone function of the interaction parameter Jll′ . This means that
for 0 ≤ Jll′ ≤ J ′

ll′
for all l, l′ ∈ ∆, the following holds

〈f〉ν∆ ≤ 〈f〉ν′
∆
, (2.50)

where ν∆ (respectively ν′∆) is the local Gibbs measure (2.3) correspond-
ing to the local Hamiltonian (2.2) with the interaction potential Jll′

(respectively J ′
ll′

).

The proof of this statement is almost the same as the proof of the for-
mer one and is based on the GKS-inequalities. Below we give another
applications of the above inequalities.

A wide variety of correlation inequalities and examples of their ap-
plications are presented in the book Ref. [3], see also Ref. [49].
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2.4. Infinite-volume Gibbs states

As has been pointed out above, phase transitions are possible only in
the infinite-volume limit ∆ → Z

d. In order to pass to such a limit, we
have to relate with each other functions belonging to F∆ and F∆′ with
∆ ⊂ ∆′. Thus, each f ∈ F∆ will be considered also as an element of F∆′ ,
which is independent of σl with l ∈ ∆′ \ ∆. This defines an embedding
F∆ ⊂ F∆′ for ∆ ⊂ ∆′. We recall that a sequence D of subsets ∆ is called
increasing if, for every two its elements, one of them is a subset of the
other one. It exhausts the lattice Zd if every finite subset of the latter is
contained in an element of D. For such a sequence D, we set

F =
⋃

∆∈D

F∆. (2.51)

Therefore, for every f ∈ F , one may find ∆1, such that f ∈ F∆1, and
a sequence D in which this ∆1 is the first element. Then the infinite-
volume limit limD〈f〉ν∆ will make sense. By limD we mean the limit
in which ∆ → Z

d along the sequence D. At first glance, this setting
is sufficient to describe possible phase transitions in our model. But a
more detailed consideration immediately yields that it is not. For exam-
ple, in the case of symmetric % and all hl = 0 there is no way to break
the symmetry σl → −σl of the model in such a limit. This means that
certain thermodynamic properties of the model, especially those related
to phase transitions, are described by quantities, which cannot be ob-
tained as infinite-volume limits of expectations (averages) with respect
to the measures (2.3). To obtain such quantities N.N. Bogolyubov [50]
introduced a notion of quasi-averages. They are obtained by adding to
the Hamiltonian (2.2) corresponding infinitesimal fields, which are to be
removed after passing to the infinite-volume limit. At the same time,
an approach to the construction of “all possible" infinite-volume Gibbs
measures2 on the base of conditional probabilities was elaborated by
R.L. Dobrushin [51], [52] and by O.E. Lanford and D. Ruelle [53]. In
this approach such measures are obtained as solutions of a certain equa-
tion, now known as the Dobrushin-Lanford-Ruelle (DLR) equation. A
detailed description of this approach is given in the book Ref. [4]. Here
we present a short introduction into this theory.

First of all we will need the space on which such infinite-volume
measures are defined. Set

Ω = {σ = (σl)l∈Zd | σl ∈ R}. (2.52)

2More details on the relation between infinite-volume Gibbs states and phase
transitions are given in the next susection.

ICMP–03–08E 20

This set consists of vectors σ, which have infinitely many real compo-
nents σl indexed by the points of the lattice. Such vectors are called
configurations. This set can be metrized by introducing the following
“distance" between any two its elements σ, σ′

d(σ, σ′) =
∑

l∈Zd

1

2|l|
· |σl − σ′

l
|

1 + |σl − σ′
l
| , (2.53)

where |l| =
√

|l1|2 + · · · + |ld|2. This enables us to introduce the set of all
probability measures on Ω , which will be denoted by P(Ω). It appears,
see Ref. [4] p. 59, that the above introduced set of functions F separates
the points of P(Ω). This means that if the measures µ1, µ2 ∈ P(Ω) have
the property 〈f〉µ1 = 〈f〉µ2 for all f ∈ F , then they coincide. Here we
write

〈f〉µ =

∫

Ω

fdµ. (2.54)

In order to have the things we deal with as much simple as we can
we suppose in this subsection that the interaction potential Jll′ in the
Hamiltonian (2.2) has a finite range, which means that this potential
takes zero values whenever the distance |l − l

′| exceeds a certain R > 0.
Given a subset ∆ and a configuration ξ ∈ Ω, we define the following
probability measures

dν∆(σ∆|ξ) = Z−1
β,∆(ξ) exp (−βH∆(ξ))

∏

l∈∆

d%(σl), (2.55)

dπ∆(σ|ξ) = dν∆(σ∆|ξ)
∏

l∈∆c

[δ(σl − ξl)dσl] , (2.56)

where

H∆(ξ) = −1

2

∑

l,l′∈∆

Jll′σlσl′ −
∑

l∈∆

hlσl −
∑

l∈∆,l′∈∆c

Jll′σlξl′ , (2.57)

Zβ,∆(ξ) =

∫

Ω∆

exp (−βH∆(ξ))
∏

l∈∆

d%(σl), (2.58)

and ∆c = Zd \∆. The first two terms of the latter Hamiltonian describe
the energy of the self-interaction of the spins located in ∆ whereas the
third term corresponds to the interaction of these spins with the fixed
configuration ξ outside ∆. Due to our assumption regarding the range
of Jll′ , the sum in this term is finite hence no convergence problems
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appear. The essential difference between the above introduced measures
is that ν∆(·|ξ)3 is defined on the space Ω∆ consisting of vectors σ∆ of
finitely many components. The measure π∆(·|ξ) is defined on the space
Ω, but due to the presence of the δ-functions on the right-hand side of
(2.56), the components of σ labelled by l ∈ ∆c are “frozen", i.e., they
should coincide with the corresponding components of the configuration
ξ. The partition function Zβ,∆(ξ) is defined in the same way as in (2.3).
In what follows, the measure (2.3) is a particular case of (2.55), which
corresponds to the zero configuration ξ = 0. Hence ν∆ is called the
local Gibbs measure with the zero boundary condition, whereas ν∆(·|ξ)
is the local Gibbs measure with the boundary condition defined by the
configuration ξ, or simply, with the boundary condition ξ. For a function
f ∈ F∆, one readily has

∫

Ω∆

f(σ∆)dνβ,∆(σ∆|ξ) =

∫

Ω

f(σ)dπβ,∆(σ|ξ),

where the function under the integral on the right-hand side is the same f
but considered as a function defined on the whole Ω, which is independent
of the components of σ labelled by l ∈ ∆c. The measure πβ,∆ has the
following property. For every µ ∈ P(Ω), the integral

∫

Ω

dπβ,∆(σ|ξ)dµ(ξ),

is again a probability measure on Ω. We will denote this new measure
by πβ,∆ ◦ µ, that is we set

d(πβ,∆ ◦ µ)(σ) =

∫

Ω

dπβ,∆(σ|ξ)dµ(ξ). (2.59)

The above integration has the following interpretation. Given a configu-
ration ξ ∈ Ω, the measure πβ,∆(·|ξ) defines a probability distribution of
configurations σ ∈ Ω which ought to coincide with this ξ outside ∆. In
the course of integration (2.59) the boundary conditions are averaged,
i.e., they are taken with their weights which are prescribed by the mea-
sure µ. Suppose now that this new measure (2.59) coincides with the
averaging measure µ and this takes place for every finite subset ∆. Then
for any f ∈ F , one finds ∆ such that f ∈ F∆ and then

∫

Ω

fdµ =

∫

Ω

(∫

Ω

f(σ)dπβ,∆(σ|ξ)
)

dµ(ξ) =

∫

Ω

fd(πβ,Λ ◦ µ),

3In this way we indicate the dependence of ν∆, π∆ on ξ.
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which means that the expectation value of f with respect to the local
Gibbs measure with averaged boundary conditions is the same as its
expectation taken directly with respect to the measure µ. In other words,
a kind of equilibrium between configurations inside and outside each such
a ∆ holds.

Definition 21: A probability measure µ ∈ P(Ω) is called an equilibrium
(Gibbs) measure if, for any finite ∆ ⊂ Zd, the following equilibrium
condition holds

πβ,∆ ◦ µ = µ. (2.60)

The set of all Gibbs measures existing at a given β will be denoted by Gβ .
It is defined by the family of all local Hamiltonians (2.2). The equality
(2.60) may be considered as an equation, in which the unknown is µ. It
is called the Dobrushin-Lanford-Ruelle equation. On can show (see e.g.,
Ref. [4]) that under the assumptions (2.21) made regarding the single-
spin measure % the set Gβ in nonempty for all β > 0. Its elements are
also called phases . If for a given β, it contains more than one element,
the system considered may exists in more than one phases at the same
conditions. And alternatively, if this set consists of exactly one element
at all temperatures, no phase transitions are possible for this system.
Suppose now that µ1, µ2 are two different elements of Gβ . Then, for
every θ ∈ [0, 1], the combination

µ = θµ1 + (1 − θ)µ2, (2.61)

which is called a mixture of the measures µ1 and µ2, is a probability
measure (it is normalized since θ + (1 − θ) = 1). It solves the DLR
equation (2.60) hence belongs to Gβ . This means that the latter set may
contain either one or infinitely many elements. If an element µ ∈ Gβ

cannot be written as a convex combination (2.61) with θ 6= 1, 0 of any
other elements of this set, it is called a pure state. In the case of the
Ising model such pure states µ± may be obtained as infinite-volume
limits of the measures (2.55) corresponding to the boundary conditions
ξ±, all elements of which are equal ±1. For d ≥ 2 and large enough β,
µ+ 6= µ−.

Now let us discuss how, for a given model, one may get its Gibbs
states or at least how to get information regarding such states. Another
question of this kind is whether one can get such states as infinite volume
limits of local states, which would be very natural. The direct construc-
tion of Gibbs states may be made only for simple models, for example in
the case of the Gaussian single-spin measure %. In more nontrivial situa-
tions such states are studied by means of the DLR equation without their
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explicit construction. As for the second question, the answer is yes. It
was obtained recently [54] and even for much more general objects than
those we consider. In order to formulate the corresponding statement we
have to make precise the notion of convergence. Recall that the set F
consists of local polynomially bounded continuous functions f : Ω → R,
where “local" means that there exists a finite subset ∆, depending on f ,
such that f depends on σl, l ∈ ∆ only. By F (0) we denote the subset of F
consisting of bounded functions. Let again D be an increasing sequence
of subsets ∆, which exhausts the lattice Zd and for which we write limD

meaning the limit ∆ → Zd taken along this sequence.

Definition 22: A sequence of probability measures {µ∆}∆∈D, defined
on the configuration space Ω is said to converge locally weakly to a
probability measure µ if for every f ∈ F (0),

lim
D

(∫

Ω

fdµ∆

)

=

∫

Ω

fdµ. (2.62)

Then we have the following result [54].

Proposition 23: For every ξ ∈ Ω and any sequence D, the locally weak
limit of the sequence of {πβ,∆(·|ξ)}∆∈D, if it exists, is a Gibbs measure.

Another result of this kind is taken from the book Ref. [4]. Pure states,
i.e., the Gibbs measures which cannot be written as nontrivial convex
combinations (2.61), are called extreme elements 4 of Gβ . Theorem 7.26
of Ref. [4], p.13 has the following corollary.

Proposition 24: The set of extreme elements Gex
β ⊂ Gβ is nonempty. If

|Gex
β | = 1, then |Gβ | = 1.

Another result of this book (Theorem 7.12 on p.122) reads as follows.

Proposition 25: For every µ ∈ Gex
β and any sequence D, the sequence

{πβ,∆(·|ξ)}∆∈D locally weakly converges to µ for almost all ξ. The latter
means that this convergence may fail to hold only for boundary condi-
tions ξ, which belong to a subset A ⊂ Ω, such that µ(A) = 0.

Given l0 ∈ Zd and a configuration σ = (σl)l∈Zd , we set ϑl0σ =
(σl+l0)l∈Zd . Now for a function f ∈ F , we set

tl0(f)(σ) = f(ϑl0σ), (2.63)

i.e., ϑl0 and tl0 are translations defined on the set of configurations and
real valued functions of configurations respectively.

4The extreme elements of a plane triangle are its vertices.
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Definition 26: The model, described by the family of Hamiltonians
(2.2) with all possible finite ∆ ⊂ Zd, is called translation invariant if, for
every l0 ∈ Zd, its parameters satisfy the following conditions

∀l, l′ ∈ Z
d : Jll′ = J(l+l0)(l′+l0), ∀l ∈ Z

d : hl = hl+l0 .

The external field hl which satisfies the above condition is homogeneous,
i.e., it is constant hl = h. A particular case of the translation invariant
interaction potentials is Jll′ = φ(|l−l

′|), where φ is a real valued function.
One has to remark here that each Hamiltonian (2.2) is not translation
invariant but for a translation invariant model, in accordance with (2.63),

tl0H∆ = H∆′ ,

where ∆′ is obtained as a translation of ∆ on the vector l0.

Definition 27: A Gibbs measure µ is called translation invariant if, for
every f ∈ F and l0 ∈ Z

d,

〈f〉µ = 〈tl0(f)〉µ.

One can show that, for any l0 ∈ Z
d and every µ ∈ P(Ω), there exists

µ̃ ∈ P(Ω) such that, for every f ∈ F ,

〈f〉µ̃ = 〈tl0(f)〉µ.

If this µ is translation invariant, then µ̃ = µ. On the other hand, since F
separates the points of P(Ω) , there exists exactly one such µ̃. By Defi-
nition 21, for every µ ∈ Gβ and every l0 ∈ Zd, its µ̃ will also belong to
Gβ provided the model is translation invariant. Therefore if, for a trans-
lation invariant model, the set of all Gibbs measures consists of one µ,
this element should be a translation invariant measure. R.L. Dobrushin
proved in Ref. [55] that, for the three-dimensional Ising model with the
zero external field, below its critical point there exist infinitely many
non-translation invariant phases. This is a consequence of the fact, also
proved by R.L. Dobrushin [56], that in the Ising model on the lattice Zd

with d ≥ 3, below TC different phases may coexist separated by stable
surfaces, which is impossible in the case d = 2 (see also Refs. [57], [58]).

Now we present some facts about the infinite volume convergence of
thermodynamic functions. By means of estimates proven by D. Ruelle
[59] , J.L. Lebowitz and E. Presutti [60] proved the existence of the
infinite-volume free energy density, which is independent of the boundary
conditions. Below we present this result in a simplified version, for more



25 Препринт

details and generalizations we refer the reader to the original work Ref.
[60]. Given N ∈ N and a finite ∆ ⊂ Zd, we set

Ω(N,∆) = {σ ∈ Ω |
∑

l∈∆

σ2
l
≤ N2|∆|}. (2.64)

The set of tempered configurations Ωt by definition consist of those σ ∈ Ω
for which there exists N ∈ N such that, for any finite ∆, σ ∈ Ω(N,∆).
Of course, the zero configuration, for which all σl = 0, is tempered. Let
L be the sequence of cubes (2.1) defined by a sequence {Ln}n∈N such
that Ln+1 > Ln, henceforth Ln → +∞. We say that the external field
is bounded if there exists a constant a such that for all l ∈ Zd, |hl| ≤ a.

Proposition 28: For the spin model described by the Hamiltonian (2.2)
with a bounded external field and with the single-spin measure % which
has the form (2.7), (2.8) with r ≥ 2 or (2.5), the free energy density

Fβ,Λ(ξ) = − 1

β|Λ| lnZβ,Λ(ξ), (2.65)

with ξ ∈ Ωt converges, as Λ → Zd along any sequence L, to a limit,
which does not depend on the choice of L and on ξ, hence it is the same
as for the zero boundary condition.

We complete this subsection by describing a special kind of transla-
tion invariant Gibbs measures. Of course, they may be constructed for
translation invariant models only. We suppose that the interaction po-
tential has the form Jll′ = φ(|l− l

′|). These measures are built by means
of cubes (2.1). Given such a cube Λ , we define

|l − l
′|Λ =

√

| l1 − l′1|2Λ + · · · + | ld − l′d|2Λ,

where | lj − l′j |Λ = min{| lj − l′j |; 2L − | lj − l′j |}, j = 1, . . . , d. The
above introduced function gives a periodic distance between the points
l, l′ ∈ Λ, it may be interpreted as a distance on the torus which one
obtains by identifying the opposite walls of the cube Λ. Thereby, we set
JΛ
ll′

= φ(|l − l
′|Λ) with the same φ. The Hamiltonian

HΛ = −1

2

∑

l,l′∈Λ

JΛ
ll′σlσl′ −

∑

l∈Λ

hσl, (2.66)

is invariant with respect to translations on the mentioned torus. Such
Hamiltonians are said to satisfy the Born-von Karman boundary condi-
tion. By means of this Hamiltonian, one may construct the corresponding
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(periodic) local Gibbs state ν
(p)
Λ exactly as it was done in (2.3) for the

zero boundary condition. The only difference is that such periodic local
Gibbs states may be defined only for boxes like (2.1) or their translates.
The following statement may be proven on the base of the results of
Refs. [54], [61].

Proposition 29: There exists a tending to +∞ sequence {Ln}n∈N ⊂
N, which defines by (2.1) the sequence of boxes {Λn}n∈N, such that

the sequence of periodic local Gibbs states {ν(p)
β,Λn

}n∈N locally weakly
converges to an element of Gβ , which is a translation invariant Gibbs
state.

2.5. Phase transitions and critical points

As it has been pointed out in the preceding subsection, phase transitions
correspond to the fact that the set Gβ contains more than one element
– i.e., more than one phase. There exist several methods to prove that
|Gβ | > 1, depending on the model considered. A profound and extended
description to this problem is done in Part IV of the book Ref. [4].
We recommend also Refs. [8], [62]– [66] for further information on this
subject.

In the case of the Ising model, the most known result, which inspired
many of the approaches developed in the sequel, is due to R. Peierls [67]
who proposed his famous contour method. One of its offsprings is now
known as the Pirogov-Sinai theory, first publications on which are due
to S.A. Pirogov and Ya. G. Sinai [68]. Its further development was done
by several mathematicians, a complete description of this theory may be
found in the article Ref. [69].

If the model possesses a symmetry, this symmetry should be pre-
served in the case |Gβ | = 1, i.e., a phase should possess this symmetry if
it is unique. A typical example here is translation invariance, which was
discussed in the preceding subsection. If |Gβ | > 1, the symmetry may be
“distributed" among the different phases, whereas each of them does not
possess this symmetry. Then the phase transition is connected with the
loss of symmetry and is often called “spontaneous symmetry breaking".
Another example, appropriate for our model (2.2), is the Z2-symmetry,
i.e., the symmetry with respect to the transformation σl → −σl for all
l ∈ Zd. Of course, to have this symmetry one has to take hl = 0 at all
l ∈ Zd. In the following section we show that in the case of the Ising mod-
el |Gβ | = 1 at all temperatures for a nonzero external field. Therefore,
the only possibility to get a phase transition in this model is connected
with the Z2-symmetry breaking.
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Here one has to point out that phase transitions may occur without
symmetry breaking (see Chapter 19 in Ref. [4] and the references there-
in). An example here is the model (2.2) with d ≥ 3, a nearest neighbor
interaction, zero external field and with the polynomial single-spin mea-
sure (2.7) for which the polynomial P has two asymmetric wells. If one
well is deep and steep and the other one is wide and shallow, and if the
barrier which separates the wells is high enough, there exist the phases
in which the particles are located mostly near the deep wells (one phase)
and near the shallow wells (the other one). This result was proved by
R.L. Dobrushin and S.B. Shlosman [70].

Now let us discuss how to detect that |Gβ | > 1, i.e., how to prove a
phase transition. One way may be described as follows. For the model
(2.2) with the homogeneous external field which takes two values hl = ±h
and with a symmetric single-spin measure %, one calculates the mean
magnetization M±

∆(h), corresponding to these values (see (2.18)). Then
one has to show that there exists βC such that, for β > βC

lim
h→0+

lim
∆→Zd

M+
∆(h) 6= lim

h→0+
lim

∆→Zd
M−

∆ (h),

which obviously contradicts uniqueness of Gibbs states. In fact, if the
phase is unique, both limits ought to coincide with the mean magnetiza-
tion calculated for this phase. This way is very natural from the physical
point of view but its mathematical realization may be technically impos-
sible. Of course, instead of calculating M±

∆ (h) and then the above limits,
one may just to show that the difference M+

∆(h) −M−
∆(h) is separated

from zero for all h > 0 and ∆, but this task may be too difficult as well.
Another way to show that |Gβ | > 1 is based on the following impor-

tant notion. For a probability measure µ on the set Ω, defined by (2.52),
and a subset A ⊂ Ω, we write

µ(A) =

∫

A

dµ, (2.67)

if the above integral exists5. Given such a subset A and l0 ∈ Zd, we set
ϑl0A = {ϑl0σ | σ ∈ A}, i.e., this set is obtained by translating on l0

every configuration which belongs to A. For A,B ⊂ Ω , we denote by
A4 B = (A ∪B) \ (A ∩B) their symmetric difference, i.e, the new set
consists of those configurations which belong to exactly one of these sets.

5Such integrals exist for measurable subsets, which form a σ -algebra – a family
of subsets of Ω, which contains Ω and is closed with respect to taking complements
and countable unions. In our case this is the Borel σ-algebra – the smallest σ-algebra
which contains all open subsets of Ω. To define which subsets are open one uses the
metric (2.53).
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Definition 30: A translation invariant probability measure µ on the
set of all configurations Ω is said to be ergodic, if it has the following
property. For every subset A such that, for all l0 ∈ Zd

µ((ϑl0A) 4A) = 0, (2.68)

one has µ(A) = 0 or µ(A) = 1.

Below we present a number of statements, proven in the book Ref. [13],
which describe the properties of such ergodic measures.

Proposition 31: A translation invariant Gibbs state µ ∈ Gβ is ergodic
if and only if it is a pure state. If |Gβ | = 1, then its unique element is
ergodic.

Thus, in order to prove that |Gβ | > 1 it is enough to show that there exists
a nonergodic Gibbs state. This may be done on the base of the following
von Neumann ergodic theorem (see Theorem III.1.8 in Ref. [13]).

Proposition 32: A translation invariant state µ ∈ Gβ is ergodic if and
only if, for every f, g ∈ F ,

lim
Λ→Zd

1

|Λ|

{

∑

l0∈Λ

[〈(tl0f)g〉µ − 〈f〉µ〈g〉µ]

}

= 0, (2.69)

where Λ is defined by (2.1) and the above limit is taken in the sense
L→ +∞.

Now let µ ∈ Gβ be the periodic Gibbs measure to which a sequence
of periodic local Gibbs states converges by Proposition 29. Let us take
in (2.69) f(σ) = g(σ) = σ0. Set in (2.66) h = 0, then the state µ is
Z2-invariant, hence 〈f〉µ = 〈g〉µ = 0. By Proposition 29, one has

〈σl0σ0〉µ = lim
n→+∞

〈σl0σ0〉ν(p)
β,Λn

. (2.70)

In view of the von Neumann ergodic theorem this immediately yields
that the state µ is nonergodic if

lim
n→+∞

1

|Λn|
∑

l0∈Λn

〈σl0σ0〉ν(p)
β,Λn

> 0, (2.71)

for a certain sequence of boxes {Λn}n∈N. Since the local Gibbs state ν
(p)
β,Λ

is invariant with respect to the translations on the corresponding torus,
the above condition is equivalent to the following

P (β)
def
= lim

n→+∞

1

|Λn|2
∑

l,l′∈Λn

〈σlσl′〉ν(p)
β,Λn

> 0. (2.72)
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This P (β) is called an order parameter. By (2.28), P (β) ≥ 0. If P (β) > 0,
there exists a periodic nonergodic Gibbs state, which contradicts |Gβ | = 1
since if Gβ is a singleton, its unique element has to be ergodic. Therefore,
P (β) > 0 implies nonuniqueness of phases, i.e., a phase transition. On
the other hand, by (2.18),

χ = lim
Λ→Zd

χΛ = lim
Λ→Zd

1

|Λ|
∑

l,l′∈Λ

〈σlσl′〉ν(p)
β,Λ

, (2.73)

is the infinite-volume susceptibility if the above order parameter P (β) is
zero, i.e., above the Curie temperature TC = β−1

C . The Curie temperature
is defined as the supremum of the values of β−1 for which P (β) > 0.
Comparing (2.72) and (2.73) one comes to the following conclusion:

• If χ <∞, then certainly P (β) = 0 and T > TC .

• If P (β) > 0, then certainly the right-hand side of (2.73) is equal
to +∞, then there exist many phases, i.e., T < TC and one has to
calculate susceptibility taking into account this fact.

• If χ = ∞ but P (β) = 0, then T = TC?

The answer on the latter question depends on the model. It may be
negative if one has a first order phase transition at T = TC . In this case
the third possibility does not occur. If it occurs, one has a second order
phase transition at T = TC , or TC is also called a critical point. At this
point one may find λ ∈ (0, 1) such that

0 < lim
Λ→Zd

1

|Λ|1+λ

∑

l,l′∈Λ

〈σlσl′〉ν(p)
β,Λ

<∞. (2.74)

Such λ is known as a critical exponent. Calculation of such exponents
for a given model is the main goal of many works in this field. Finally,
let us remark that for the model described by (2.2) with hl = h 6= 0 and
with the single-spin measure possessing the Lee-Yang property, χ < ∞
for all temperatures. This fact was proven in Ref. [71].

2.6. Uniqueness of Gibbs states for the Ising model

In this subsection we prove that the set of Gibbs states Gβ of the fer-
romagnetic Ising model with a homogeneous external field h is unique
at all temperatures and all dimensions of the lattice if h 6= 0. Our proof
will be an extended version of the proof given by J.L Lebowitz and A.
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Martin-Löf [72]. On the other hand, it is a simplified version of the proof
given in Refs. [73], [74] for quantum Gibbs states.

We consider a ferromagnetic Ising model with the homogeneous ex-
ternal field, i.e., hl = h for all l ∈ Z

d, with the interaction Jll′ ≥ 0, which
satisfies the condition (2.15).

Theorem 33: For every β > 0 and d ∈ N, the set of Gibbs measures
Gβ of the Ising model with a homogeneous external field h consists of
exactly one element if h 6= 0.

To prove this statement we will need a number of new notions and aux-
iliary facts. For the Ising model, the set of local continuous functions F
defined on the space of all configurations Ω is measure defining, i.e., it
has the following property. If for given measures µ1, µ2 ∈ Gβ , the expec-
tations 〈f〉µ1 , 〈f〉µ2 coincide for all f ∈ F , then µ1 = µ2. One could use
this property in proving our theorem but the set F is too big and it would
be natural to look for a smaller set possessing the same property. Before
formulating a statement, which describes the properties of such sets, we
remark that F is closed under pointwise multiplication, i.e., if one defines
that for f, g ∈ F , their product fg has the value (fg)(σ) = f(σ)g(σ) at
every σ ∈ Ω, then fg ∈ F . The following statement is a corollary of the
monotone class theorems (see e.g., Ref. [21], p.6).

Proposition 34: A subset Φ ⊂ F is measure defining if it has the
following properties: (a) it is countable; (b) it is closed under pointwise
multiplication; (c) for any σ ∈ Ω, σ′ ∈ Ω one finds f ∈ Φ such that
f(σ) 6= f(σ′) if σ 6= σ′.

Given n ∈ N and l1, . . . , ln ∈ Zd , we set

f(σ) = σl1 . . . σln . (2.75)

Every such a function is continuous and local, the set Φ of all such
functions (all possible choices of n ∈ N and l1, . . . , ln ∈ Zd) is a subset of
F . This set is countable since the set of all finite subsets of the countable
set Z

d is countable. For every f, g ∈ Φ, fg ∈ Φ. Finally, it separates the
points of Ω. In fact, if σ 6= σ′, then one finds l ∈ Zd such that σl 6= σ′

l
.

The function f(σ) = σl takes different values on such σ, σ′.
Now we introduce two specific configurations of spins, i.e., two specific

elements of Ω. Recall that for the Ising model, all spins take values
±1, thus the set Ω consists of vectors σ = (σl)l∈Zd , σl = ±1. We set
ξ+ = (σl)l∈Zd , with all σl = 1 and ξ− = (σl)l∈Zd , with all σl = −1.

Let L be a sequence of boxes Λ defined by (2.1). The following lemma
plays a key role in the proof of our uniqueness theorem.
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Lemma 35: Suppose that for any l ∈ Zd and for a sequence of boxes L,
each of which contains this l, the following convergence

〈σl〉νβ,∆(·|ξ+) − 〈σl〉νβ,∆(·|ξ−) → 0, as Λ → Z
d, (2.76)

holds. Then the set of all Gibbs measures Gβ contains exactly one ele-
ment.

Here the expectations are taken with respect to the conditional Gibbs
measures (2.55) with the corresponding boundary conditions ξ±.

Proof: We prove this lemma by showing that for any f ∈ Φ and two
arbitrarily chosen Gibbs measures µ1 and µ2, one has 〈f〉µ1 = 〈f〉µ2 if
the condition (2.76) holds. This should yield µ1 = µ2 since Φ is measure
defining. Hence all elements of Gβ coincide, which means |Gβ | = 1.

Take an arbitrary f ∈ Φ and write it in the form (2.75) with certain
l1, . . . , ln. For this f , one may pick up λ > 0 such that the function

φ(σ) = λ

n
∑

j=1

σlj + θf(σ), (2.77)

will be monotone for both values θ = ±1. Indeed, for any σ, σ′ ∈ Ω, such
that σ′ ≥ σ, one has σ′

lj
≥ σlj with j = 1, 2, . . . n. Then by means of the

following identity

a′1a
′
2 . . . a

′
n − a1a2 . . . an =

n
∑

j=1

a′1a
′
2 . . . a

′
j−1[a′j − aj ]aj+1 . . . an,

which holds for any n and any sets of numbers a1, . . . , an, a′1, . . . a
′
n, we

get

φ(σ′) − φ(σ) =

n
∑

j=1

(σ′
lj
− σlj )

[

λ+ θσ′
l1
. . . σ′

lj−1
σlj+1 . . . σln

]

. (2.78)

Obviously, the latter sum is non-negative if λ > 1.
We recall that Gex

β denotes the set of extreme elements of Gβ , i.e.,
the elements which cannot be written as nontrivial convex combinations
(2.61) of other elements of Gβ . By Proposition 25, |Gβ | = 1 if |Gex

β | = 16.
Thus, the lemma may be proven by showing that for any f ∈ Φ and any
two µ1, µ2 ∈ Gex

β , one has 〈f〉µ1 = 〈f〉µ2 if (2.76) holds. By (2.55), (2.56),

〈f〉νΛ(·|ξ±) = 〈f〉πΛ(·|ξ±), (2.79)

6Like a triangle with just one vertex.
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which holds for any Λ such that l1, l2, . . . ln ∈ Λ. Then by Proposition
25,

〈f〉µ1 = 〈f〉µ2 (2.80)

provided

〈f〉ν∆(·|ξ+) − 〈f〉ν∆(·|ξ−) → 0, as Λ → Z
d, (2.81)

along a sequence L each element of which contains l1, l2, . . . ln. Thus,
it remains to show that (2.76) implies (2.81). To this end we employ
Corollary 19. Recall that for the case considered, the Hamiltonian which
determines νΛ(·|ξ) has the form (2.57), see also (2.55), with the external
field hl = h for all l ∈ Z

d. Then for ξ = ξ±, it can be rewritten

HΛ = −1

2

∑

l,l′∈Λ

Jll′σlσl′ −
∑

l∈Λ

[

h±
∑

l′∈Λc

Jll′

]

σl = (2.82)

= −1

2

∑

l,l′∈Λ

Jll′σlσl′ −
∑

l∈Λ

h±
l

(Λ)σl,

where h±
l

(Λ) = h±∑
l′∈Λc Jll′ . Our model is ferromagnetic, i.e., all Jll′

are nonnegative, which yields h+
l

(Λ) ≥ h−
l

(Λ). Then by Corollary 19,

〈φ〉νΛ(·|ξ+) ≥ 〈φ〉νΛ(·|ξ−), (2.83)

since the function φ defined by (2.77) is monotone. Then by (2.77), one
gets

λ

n
∑

j=1

[

〈σlj 〉νΛ(·|ξ+) − 〈σlj 〉νΛ(·|ξ−)

]

≥ θ
[

〈f〉νΛ(·|ξ+) − 〈f〉νΛ(·|ξ−)

]

.

Since the latter estimate holds for both θ = ±1, it may be rewritten

λ

n
∑

j=1

[

〈σlj 〉νΛ(·|ξ+) − 〈σlj 〉νΛ(·|ξ−)

]

≥
∣

∣〈f〉νΛ(·|ξ+) − 〈f〉νΛ(·|ξ−)

∣

∣ , (2.84)

which yields (2.81) if (2.76) holds.

The next step in proving Theorem 33 is to show that (2.76) always
holds if h 6= 0. To this end we employ the infinite-volume free energy
density and its properties as a function of the external field h. We recall
that a function f : R → R is called convex if for every θ ∈ [0, 1] and any
s, t ∈ R, one has f(θt+ (1− θ)s) ≤ θf(t) + (1− θ)f(s). A wide variety of
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the properties of convex functions and their applications in the theory
of lattice models may be found in Refs. [5], [13]. In particular, they have
the following property (see Ref. [13], pp.35 -39).

Proposition 36: Let a sequence of convex function {fn}n∈N converge
pointwise on R to a function f . Then this function is also convex, it is
differentiable for all but countable values of its argument. If all fn and
f are differentiable at a given x0 ∈ R, then f ′

n(x0) → f ′(x0).

For the model considered, the partition function in a box Λ with the
external field h = z and with the zero boundary condition is given by
(2.23) with the single-spin measure (2.5), it also may be written in the
form (2.24). We set

pΛ(z) =
1

|Λ| lnZβ,Λ(z). (2.85)

In the lattice gas terminology [13], such a function is called pressure. Its
connection with the free energy density Fβ,Λ(0), where 0 means the zero
boundary conditions, may be established by means of (2.65). Taking into
account Proposition 28, we can state the following.

Proposition 37: For every z ∈ R and β > 0, the sequence {pΛ(z)}Λ∈L

converges as Λ → Zd. Its limit p(z) is a convex function of z. Moreover,
for any ξ ∈ Ω,

p(z) = −β lim
Λ→Zd

Fβ,Λ(ξ) (2.86)

where Fβ,Λ(ξ) is the free energy density of the model with the homoge-
neous external field hl = z.

Let us prove that the only point at which p(z) may fail to be differentiable
is z = 0. To this end we employ the Lee-Yang theorem in the form of
Proposition 3, which yields (2.24), as well as the following well-known
theorem of complex analysis ( Vitali’s theorem, see e.g., Theorem VIII.19
in Ref. [11]).

Proposition 38: Given a domainD ⊂ C, let a sequence of functions fn :
D → C, n ∈ N have the following properties: (a) each fn is holomorphic
on D; (b) for every bounded closed subset K ⊂ D, there exists CK > 0
such that |fn(z)| ≤ CK for all n ∈ N and z ∈ K; (c) there exists a subset
F ⊂ D, which has an accumulation point, such that, for every z ∈ F ,
the sequence {fn(z)}n∈N converges to a function f : D → C. Then this
function is also holomorphic on D.

This theorem has the following interpretation. If a sequence of holomor-
phic on D functions has the properties: (a) it is uniformly bounded on
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compact subsets of D; (b) it converges pointwise on D to a function,
which is just defined on D. Then this sequence converges to the latter
function uniformly on compact subsets of D, hence the limiting function
is holomorphic on D.

Now we may prove the following result.

Lemma 39: For every β > 0, the limit of the sequence {pΛ(z)}Λ∈L is
an infinitely differentiable function at any z ∈ R \ {0}.
Proof: For the Ising model, one has in (2.24) γ0(β,Λ) = 0 (see the
analysis following after (2.24)), which yields

pΛ(z) = lnZβ,Λ(0) +

∞
∑

j=1

ln
[

1 + γj(β,Λ)z2
]

,

and hence
p′Λ(z)

z
=

∞
∑

j=1

2γj(β,Λ)

1 + γj(β,Λ)z2
. (2.87)

This means that all the functions pΛ are holomorphic in the domain
C \A, where A = A+ ∪A−, A± = {z = ±it | t ∈ [(γ1(β,Λ))−1/2,+∞)},
which includes the whole real line R. Then, for z = x+ iy ∈ C \ A, one
has

∣

∣

∣

∣

2γj(β,Λ)

1 + γj(β,Λ)z2

∣

∣

∣

∣

2

=
4γ2

j (β,Λ)

[1 + γj(β,Λ)(x2 − y2)]2 + 4γ2
j (β,Λ)x2y2

≤

≤
4γ2

j (β,Λ)

[1 + γj(β,Λ)(x2 − y2)]2
.

Given θ > 0, we set

Bθ = {z = x+ iy ∈ C | x ≥ 0, x2 − y2 ≥ θ2}.

Applying the above estimate in (2.87) we get for z ∈ Bθ

∣

∣

∣

∣

p′Λ(z)

z

∣

∣

∣

∣

≤
∞
∑

j=1

2γj(βΛ)

1 + γj(β,Λ)θ2
=
p′Λ(θ)

θ
. (2.88)

By Proposition 37, the limiting function p(z) is convex on R hence it
is not differentiable on a subset E ⊂ R, which is at most countable.
This means that for any ε > 0, the interval (0, ε) contains points at
which p′(z) exists. Moreover, by the same statement, p′Λ(z) → p′(z), as
Λ → Z

d, at each such a point. Thus, we take an arbitrary ε and pick up



35 Препринт

θ ∈ (0, ε) such that p′(θ) exists. Then the sequence {p′Λ(θ)} converges to
p′(θ) hence this sequence is bounded. Now we take t > θ and set

Bθ,t = {z = x+ iy ∈ C | x2 − y2 ≥ θ2, x ∈ [0, t]}. (2.89)

This set contains [θ, t] ⊂ R. Then, for z ∈ Bθ,t, one has

|z| =
√

x2 + y2 ≤
√

2x2 − θ2 ≤
√

2t2 − θ2,

and, by the estimate (2.88),

|p′Λ(z)| ≤
(

√

2(t/θ)2 − 1
)

p′Λ(θ).

Since the sequence {p′Λ(θ)}Λ∈L is bounded, the sequence of holomorphic
in Bθ,t functions {p′Λ}Λ∈L is uniformly bounded on Bθ,t. Moreover, one
has p′Λ(z) → p′(z) for all z ∈ [θ, t] except possibly for a countable subset
of this interval. Thus, the subset of [θ, t] on which p′Λ(z) → p′(z) has
an accumulation point, which yields by Proposition 38 that p′ is holo-
morphic on Bθ,t, hence p is infinitely differentiable on (θ, t). Since this is
true for any t > θ and θ may be chosen arbitrarily close to zero (recall
that θ ∈ (0, ε) with any ε > 0), this is true for all z ∈ (0,+∞). Since all
the functions pΛ and p are even, the same is true also for z ∈ (−∞, 0).
Thus, the only point where it may fail to hold is z = 0.

The next step is based on the following simple result.

Lemma 40: The Ising model with the homogeneous external field h and
the zero boundary condition has the following property. For any ∆ and
f ∈ F∆,

lim
h→+∞

〈f〉ν∆(h) = f(σ+
∆), (2.90)

where σ+
∆ is the configuration σ∆ = (σl)l∈∆ for which σl = 1 for all

l ∈ ∆.

Proof: Set S∆ =
∑

l∈∆ σl. The values of this total spin variable consti-
tute the set S∆ = {−|∆|,−(|∆| − 2), . . . , |∆| − 2, |∆|}. Furthermore, let
S′

∆ = S∆ \ {|∆|} (i.e., the latter set coincides with the former one up to
the element |∆|). Then

〈f〉ν∆(h) = (2.91)

=
1

Zβ,∆(h)

∑

S∈S∆

∑

σ∆: S∆=S

f(σ∆) exp



βhS∆ +
β

2

∑

l,l′∈∆

Jll′σlσl′



 .
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When dealing with the Ising model, for which spin variables take discrete
values, it is more convenient to use notations in which expectations with
respect to the corresponding local Gibbs measures are written as sums
over the values of spins instead of integrals. Thus, for a given ∆, the sum
∑

σ∆
is taken over all values of σl with l ∈ ∆. The second sum in the

above expression is taken over all such values but with the restriction
∑

l∈∆ σl = S∆ = S. In such notations the partition function is

Zβ,∆(h) =
∑

S∈S∆

∑

σ∆: S∆=S

exp



βhS∆ +
β

2

∑

l,l′∈∆

Jll′σlσl′



 ,

which may be written in the form

Zβ,∆(h) = exp



βh|∆| +
β

2

∑

l,l′∈∆

Jll′



× (2.92)

×







1 +
∑

S∈S′
∆

exp (βh(S − |∆|))
∑

σ∆: S∆=S

exp





β

2

∑

l,l′∈∆

Jll′ [σlσl′ − 1]











.

Similarly (2.91) may be written as

〈f〉ν∆ = f(σ+
∆) +

1

1 +A∆(h)

∑

S∈S′
∆

exp (βh(S − |∆|)) × (2.93)

×
∑

σ∆: S∆=S

f(σ∆) exp





β

2

∑

l,l′∈∆

Jll′ [σlσl′ − 1]



 ,

where A∆(h) stands for the second term in the figure brackets in (2.92).
For all S ∈ S′

∆, one has S < |∆|, which yields exp[βh(S − |∆|)] → 0 as
h → +∞. Furthermore, the sums over S′

∆ are finite, hence both A∆(h)
and the second term in (2.93) tend to zero as h→ +∞, which completes
the proof.

Another result which we use to prove our theorem describes the expec-
tations 〈f〉ν∆(·|ξ+).

Lemma 41: The ferromagnetic Ising model with an arbitrary external
field h∆ = (hl)l∈∆ has the following property. For every β > 0, any
finite subsets ∆, ∆′, such that ∆′ ⊂ ∆, and for any monotone function
f ∈ F∆′ ,

〈f〉ν∆(·|ξ+) ≤ 〈f〉ν∆′(·|ξ+). (2.94)
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Proof For ∆′ ⊂ ∆, we write ∆′′ = ∆ \ ∆′. By ξ∆′ × η∆′′ we denote the
configuration ζ∆ such that ζl = ξl for l ∈ ∆′, and ζl = ηl for l ∈ ∆′′.
Then for the mentioned ∆, ∆′, we may write σ∆ = σ∆′×σ∆′′ . Obviously,
for appropriate functions,

∑

σ∆

f(σ∆) =
∑

σ′
∆

∑

σ′′
∆

f(σ∆′ × σ∆′′).

Then the Hamiltonian H∆ (2.2) may be written

H∆ = H∆′ +H∆′′ −
∑

l1∈∆′,l2∈∆′′

Jl1l2σl1σl2 . (2.95)

For t ∈ [0,+∞), we set

φ(t) =
1

Zβ,∆(t)

∑

σ∆

f(σ∆) × (2.96)

× exp

(

−βH∆ + β
∑

l∈∆

σl

∑

l′∈∆c

Jll′ + t
∑

l∈∆′′

σl

)

,

where

Zβ,∆(t) =
∑

σ∆

exp

(

−βH∆ + β
∑

l∈∆

σl

∑

l′∈∆c

Jll′ + t
∑

l∈∆′′

σl

)

(2.97)

Here the terms
∑

l∈∆ σl

∑

l′∈∆c Jll′ describe interaction with the external

spins ξ, fixed at ξ = ξ+ (recall that ∆c = Zd \ ∆). Thus, we have

φ(0) = 〈f〉ν∆(·|ξ+). (2.98)

Taking into account (2.95) and the fact that f ∈ F∆′ (which means f is
independent of the components of σ∆ with l ∈ ∆′′, i.e., f(σ∆) = f(σ∆′)),
one can rewrite the above expressions as follows.

φ(t) =
1

Zβ,∆(t)

∑

σ∆′

f(σ∆′) exp

(

−βH∆′ + β
∑

l∈∆′

σl

∑

l′∈∆c

Jll′

)

×

×
∑

σ∆′′

exp

(

−βH∆′′ + β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′+

+ β
∑

l1∈∆′,l2∈∆′′

Jll′σl1σl2 + t
∑

l∈∆′′

σl



 , (2.99)
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and

Zβ,∆(t) =
∑

σ∆′

exp

(

−βH∆′ + β
∑

l∈∆′

σl

∑

l′∈∆c

Jll′

)

×

×
∑

σ∆′′

exp

(

−βH∆′′ + β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′+

+ β
∑

l1∈∆′,l2∈∆′′

Jll′σl1σl2 + t
∑

l∈∆′′

σl



 . (2.100)

The external field in exp (·) in (2.96) is h′∆ = (hl + t)l∈∆, where hl, l ∈ ∆
is the external field in H∆. Since t ≥ 0, h′∆ ≥ h∆, which by Corollary 19
yields

φ(t) ≥ φ(0) = 〈f〉ν∆(·|ξ+). (2.101)

We recall that f is monotone. Set

F (σ∆′′) =
1

Zβ,∆′(σ∆′′)

∑

σ∆′

f(σ∆′) exp



β
∑

l1∈∆′,l2∈∆′′

Jl1l2σl1σl2 −

− βH∆′ + β
∑

l∈∆′

σl

∑

l′∈∆c

Jll′

)

, (2.102)

where

Zβ,∆′(σ∆′′) =
∑

σ∆′

exp



β
∑

l1∈∆′,l2∈∆′′

Jl1l2σl1σl2 −

− βH∆′ + β
∑

l∈∆′

σl

∑

l′∈∆c

Jll′

)

. (2.103)

Let ν∆′′(t) be the local Gibbs measure of the Ising model in the set ∆′′

corresponding to the Hamiltonian H∆′′ − β−1t
∑

l∈∆′′ σl (we have fixed
β which, by the end of this proof, is just a parameter) and to the zero
boundary condition. Its partition function is

Zβ,∆′′(t) =
∑

σ∆′′

exp

(

−βH∆′′ + t
∑

l∈∆′′

σl

)

.
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By means of this measure, the above expectations may be rewritten as
follows

Zβ,∆′(t) =
∑

σ∆′′

{

Zβ,∆′(σ∆′′) exp

(

β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′

)}

×

× exp

(

−βH∆′′ + t
∑

l∈∆′′

σl

)

=

= Zβ,∆′′ (t) 〈Zβ,∆′(σ∆′′) exp

(

β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′

)

〉ν∆′′ (t) (2.104)

And similarly

φ(t) =

[

Zβ,∆′′(t)〈Zβ,∆′(σ∆′′) exp

(

β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′

)

〉ν∆′′ (t)

]−1

×

×
∑

σ∆′′







∑

σ∆′

f(σ∆′) exp



−βH∆′ + β
∑

l1∈∆′,l2∈∆′′

Jl1l2σl1σl2+

+ β
∑

l∈∆′

σl

∑

l′∈∆c

Jll′

)}

exp

(

−βH∆′′ + t
∑

l∈∆′′

σl

)

=

=

[

〈Zβ,∆′(σ∆′′) exp

(

β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′

)

〉ν∆′′ (t)

]−1

×

× 〈Zβ,∆′(σ∆′′)F (σ∆′′ ) exp

(

β
∑

l∈∆′′

σl

∑

l′∈∆c

Jll′

)

〉ν∆′′ (t). (2.105)

Passing here to the limit t → +∞ and employing Lemma 40 we arrive
at

lim
t→+∞

φ(t)=
Zβ,∆′(σ+

∆′′)F (σ+
∆′′) exp

(

β
∑

l∈∆′′

∑

l′∈∆cJll′

)

Zβ,∆′(σ+
∆′′) exp

(

β
∑

l∈∆′′

∑

l′∈∆c Jll′

) =F (σ+
∆′′).
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By (2.102), this yields

lim
t→+∞

φ(t) =
∑

σ∆′

f(σ∆′) exp

(

−βH∆′ + β
∑

l1∈∆′

σl1

∑

l2∈∆′′

Jl1l2+

+β
∑

l1∈∆′

σl1

∑

l2∈∆c

Jl1l2

)

×

×





∑

σ∆′

exp

(

−βH∆′ +β
∑

l1∈∆′

σl1

∑

l2∈∆′′

Jl1l2 +β
∑

l1∈∆′

σl1

∑

l2∈∆c

Jl1l2

)





−1

=

=
∑

σ∆′

f(σ∆′) exp



−βH∆′ + β
∑

l1∈∆′

σl1

∑

l2∈(∆′)c

Jl1l2



×

×





∑

σ∆′

exp



−βH∆′ + β
∑

l1∈∆′

σl1

∑

l2∈(∆′)c

Jl1l2









−1

= 〈f〉ν∆′(·|ξ+).

Taking into account (2.101) we obtain (2.94).

Recall that we are studying the Ising model with a non-zero homogeneous
external field h. Since the interaction term in the Hamiltonian (2.2) and
the single-spin measure %I are symmetric with respect to the change
σ → −σ, it is enough to consider the case h > 0 only.

A function f : R → R is called right-continuous at x0 ∈ R if
limx→x0+0 f(x) = f(x0). Such a function is left-continuous at x0 if

g(x)
def
= f(−x) is right-continuous at −x0. If a sequence of mono-

tone increasing continuous functions {fn}n∈N, fn : R → R converges
pointwise on R to a function f , then this f is right-continuous.

The next statement follows from the one just proven.

Corollary 42: For every β > 0 and h ∈ R, the infinite-volume limits of
the expectations

M±(h) = lim
Λ→Zd

〈σl〉νΛ(·|ξ±), (2.106)

exist. They do not depend on l. Moreover, M+(h) (respectively M−(h))
is right-continuous (respectively left-continuous).

Proof: Let us prove the above statement for M+(h). Since the function
f(σ) = σl is monotone, the above lemma yields

〈σl〉νΛ(·|ξ+) ≤ 〈σl〉νΛ′ (·|ξ+), (2.107)
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for any two boxes Λ′ ⊂ Λ. On the other hand, since σl = ±1,

−1 ≤ 〈σl〉νΛ(·|ξ±) ≤ 1,

hence {〈σl〉νΛ(·|ξ+)}Λ converges as a bounded monotone decreasing se-
quence. By the FKG inequality,

∂

∂h
〈σl〉νΛ(·|ξ+) = β

∑

l′∈Λ

KΛ
ll′(h) ≥ 0,

hence 〈σl〉νΛ(·|ξ+) ≥ 0 for h ≥ 0. Since for every Λ, 〈σl〉νΛ(·|ξ+) is a con-
tinuous and monotone function of h, the limit of the above sequence is
right-continuous. Finally, since the locally weak limits of πΛ(·|ξ±) are
the extreme translation invariant states µ±, the above M+(h) is inde-
pendent of l. We remark here, that all our conclusions regarding M+(h)
are valid for all h ∈ R since no assumptions restricting h were made
in the above lemma. Now let us prove the statement for M−(h). By
symmetry, 〈σl〉νΛ(·|ξ−) = −〈σl〉ν̃Λ(·|ξ+), where ν̃Λ(·|ξ+) is the local Gibbs
measure with the external field equal to −h. Then the convergence of
the sequence of 〈σl〉νΛ(·|ξ−) and the translation invariance of its limit
follow from the above consideration. Moreover, for these limits one has
M−(h) = −M+(−h). Finally

lim
h′→h−0

M−(h′) = − lim
−h′→−h+0

M+(−h′) = −M+(−h) = M−(h).

Proof of Theorem 33: By (2.65)

− ∂

∂h
Fβ,Λ(ξ±) =

1

|Λ|
∑

l∈Λ

〈σl〉νΛ(·|ξ±). (2.108)

By Proposition 37, both −Fβ,Λ(ξ±) have the same limit, which coincide
with βp(h) studied in Lemma 39. This limit, as a convex function of
h ∈ R, has one-sided derivatives at any h, which are the limits of the
derivatives (2.108). This means

lim
h′→h±0

β(p(h′)−p(h))

h′ −h =− lim
h′→h±0

lim
Λ→Zd

βFβ,Λ(ξ±, h
′)−Fβ,Λ(ξ±, h)

h′ −h =

= lim
Λ→Zd

1

|Λ|
∑

l∈Λ

〈σl〉νΛ(·|ξ±) =M±(h). (2.109)

Here we have used the results of Corollary 42. By Lemma 39, p(h) is
differentiable for h 6= 0, which means that both its one-sided derivatives
coincide at such h. Therefore, M+(h) = M−(h) if h 6= 0, which means
(2.76). Then we may apply Lemma 35 which completes the proof. �.
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2.7. Self-similarity, one-dimensional and hierarchical models

As it was mentioned in Introduction, the one-dimensional Ising model
with the interaction potential of finite range has no phase transition.
Moreover, one may show that the set of its Gibbs states is a singleton
for all β > 0 (see Ref. [4], p.164). Is it true for the case of long-range
interactions? The answer was given by F.J. Dyson in his articles Refs.
[75], [76]. Namely, the one-dimensional ferromagnetic Ising model with
the zero external field and the translation invariant interaction potential
Jll′ = φ(|l − l

′|) such, that φ(x) ∼ φ0x
−1−λ as x → +∞ with λ ∈

(0, 1), has a phase transition. The same model with λ > 1 has no phase
transitions. The borderline case λ = 1 was studied in the paper Ref. [77],
where it was shown that the model has a phase transition, but in contrast
to the case λ < 1, the order parameter has a jump at β = βc.

To obtain his results Dyson introduced in Ref. [75] a spin model with
a specific hierarchical structure. Later it was understood that this struc-
ture has a very deep connection with a certain property of lattice spin
models, which appears at their critical points. This property is called
self-similarity. The first publication where it was discussed, though yet
without this name, is L.P. Kadanoff’s paper [78] (see also Refs. [79], [80]
and the references therein) in which he presented his known block-spin
construction. A similar arguments were developed also in R.B. Griffiths’
paper Ref. [44]. Later there was an explosion of activity in this direction,
a consequence of which is an approach in the theory of critical phenom-
ena known as the renormalization group method. In fact, it is not a
method but a vast variety of methods and tools with different levels of
mathematical background. The notion of self-similarity, first appeared in
Ya. G. Sinai’s paper Ref. [81], was formulated as a property of a random
field. Later the conception of self-similar random fields became a part of
the mathematical theory of critical phenomena in models of statistical
physics, lattice spin models in particular. A full and comprehensive de-
scription of this conception is given in Refs. [14], [66]. In this connection
we mention also papers of K. Gawȩdski Refs. [82], [83], [84].

Renormalization group methods developed in theoretical physics have
produced and still are producing a very strong impact on the theory of
critical phenomena. One may say that they created a new philosophy
with its own set of concepts. In this context we mention brilliant works
of K.G. Wilson Ref. [85] and I.R. Yuknovskii Refs. [86], [87].

At the same time, the mathematical tools used in modern renormal-
ization theories, especially those applied to more realistic models, are
not sufficiently elaborated. Moreover, quite often ill defined mathemati-
cal objects are employed here. As examples, one can mention nonexisting
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integrals, series expansions with zero convergence radii, etc. An attempt
to bridge the gap between the treatments of renormalization in physics
and the mathematically rigorous approach was made in a recent book
Ref. [88].

Let us described, briefly and schematically, the mathematical aspects
of the renormalization group approach to the models we consider here.
Recall that we study spin models defined on the lattice Zd and described
by the Hamiltonian (2.2) and single-spin measures %, which belong to one
of the types described in the preceding subsections. Recall also that Ω
, P(Ω) and Gβ stand for the set of all spin configurations, the set of
all probability measures on this set and the set of all Gibbs states of
our model existing at a given β respectively. Suppose there is defined a
surjection κ : Zd → Zd (a map such that for every l ∈ Zd, there exist
l
′ ∈ Zd, for which κ(l′) = l). Suppose also that, for every l ∈ Zd, the
set

Vl

def
= {l′ ∈ Z

d | κ(l′) = l}, (2.110)

contains a fixed number of elements, the same for all such sets, i.e.,
|Vl| = v ∈ N. We will call such Vl blocks. Given a configuration σ ∈ Ω,
we set

ωl = v−ζ
∑

l′∈Vl

σl′ , (2.111)

where ζ > 0 is a parameter of our theory. Clearly, the vector ω = (ωl)l∈Zd

is again an element of Ω , i.e., it is a configuration. This defines a
transformation Oκ,ζ : Ω → Ω, which maps configurations into config-
urations and depends on the initial map κ and on the parameter ζ.
As a linear bounded (in the metric d defined by (2.53)) transforma-
tion, Oκ,ζ is continuous, hence for every open A ⊂ Ω, its preimage
O−1

κ,ζ(A) = {σ ∈ Ω | Oκ,ζ(σ) ∈ A} is also an open subset. This imme-
diately yields that Oκ,ζ is a measurable map, i.e., for every Borel set
A ⊂ Ω, its preimage O−1

κ,ζ(A) is also a Borel set (see subsection 2.5). For
a probability measure µ ∈ P(Ω), we define a new measure µ̃ by its values
on Borel subsets of Ω as follows:

µ̃(A) = µ
(

O−1
κ,ζ(A)

)

, (2.112)

which is correct in view of the properties of Oκ,ζ discussed above. This
new measure is again an element of P(Ω), thus we have defined the map

Rκ,ζ(µ) = µ̃. (2.113)

This map is called the renormalization transformation. The above defini-
tion of this transformation, although correct mathematically, may seem
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to be too formal from the “physical point of view". Let us try to explain
it. First one takes an “initial" spin configuration σ and transforms it
into the configuration of renormalized block-spins, i.e., into ω given by
(2.111). Then one fixes ω and “integrates out" the measure µ under the
condition that the sums (2.111) are fixed. The new measure µ̃ obtained
in such a way is called a renormalized measure Rκ,ζ(µ). This program
of passing from the distribution of spins to the distribution of renor-
malized block-spins was a key element of all constructions mentioned
above, starting form the pioneering paper of L.P. Kadanoff. A measure
µ ∈ P(Ω) is called self-similar if it is a fixed point of Rκ,ζ , that is it is a
solution of the following equation

Rκ,ζ(µ) = µ. (2.114)

The basic idea of the renormalization group theory of critical phenomena
is the so called universality hypothesis, which states that at the critical
point β = βc, the set of all Gibbs states of the model Gβ consists of one
element and this element is self-similar. In other words, at the critical
point the individual spins have the same probability distribution as the
renormalized sums of such spins, as well as the renormalized sums of
these sums, and so on. If this is the case, the critical point properties of
the model may be obtained by studying Rκ,ζ. Here we are at the point
of this theory where it is natural to show why it may fail to give the de-
scription of the mentioned properties. Since Rκ,ζ is defined on the whole
set P(Ω), it is also defined on its subset Gβ , but it may not be a self-map
of the latter set. This means, that for a given Gibbs measure µ ∈ Gβ , the
renormalized measure Rκ,ζ(µ) may not be Gibbsian, i.e., it may be out
of Gβ . Since, except for simple situations, one renormalizes local Gibbs
measures, not the elements of Gβ directly, it is not clear whether or not
the renormalized local Gibbs measures may give the elements of Gβ . The
problem of this kind did appear in practice, for example it appears in
the case of the Ising model with the interaction potential of finite range.
In order to be able to proceed with the renormalization, physicists ap-
ply certain approximate “decouplings" that effectively corresponds to
considering not the model itself but its caricature, for which such de-
couplings may be justified. This gives a hint that there might exist the
models for which the mentioned problems do not appear and the renor-
malization scheme may be realized rigorously. Proceeding along this line
of arguments, the authors of the paper Ref. [89] discovered that the ap-
proximate scheme developed in Refs. [86], [87] for the three-dimensional
Ising model becomes rigorous being applied to Dyson’s hierarchical mod-
el, which was invented and used by F.J. Dyson as a tool in the study of
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the one-dimensional translation invariant spin model. First critical point
properties of Dyson’s hierarchical model were studied in the papers of
P.M. Bleher and Ya. G. Sinai Refs. [90], [91] (a complete description of
these results is presented in the article Ref. [64]). Among other papers
on this subject we mention here Refs. [82], [83], [84], [92].

It is not surprising that the hierarchical model (we describe it below)
has that nice property. Instead of translation invariance possessed by the
models we have considered so far this model has a symmetry which ide-
ally fits the renormalization scheme – it is self-similar in some sense. The
idea to substitute translation invariance by such a symmetry was (more
or less consciously) used in the method developed by I.R. Yukhnovskii.
In the paper Ref. [89] (slightly different version of the construction de-
scribed in that paper was used in Ref. [42]) it was explicitly shown how
does it lead from translation invariance to self-similarity possessed by hi-
erarchical models. In this subsection we show that the translation invari-
ant one-dimensional spin model with the power-like decaying interaction
potential also fits the renormalization scheme. A preliminary version of
the theory given below has appeared in Ref. [93].

We consider the model defined on the lattice Z and described by the
Hamiltonian (2.2) with the interaction potential

Jll′ = [|l − l
′| + 1]−1−λ. (2.115)

Set

V
(n)
l

= {l′ ∈ Z | 2n
l ≤ l

′ ≤ 2n
l + 2n − 1}, n ∈ N0, l ∈ Z. (2.116)

The subsets V
(1)
l

are the blocks mentioned above, for which v = 2. Then

κ maps the two elements of such a block V
(1)
l

into l. Considering the

blocks V
(1)
l

, l ∈ Z as elements of a new lattice, which however is the same

Z, we may apply the map κ to these elements, which will map V
(1)
l′

into

Z exactly as it was above. This produces a hierarchy of subsets V
(n)
l

of
the lattice Z, defined by (2.116), organized according to the following
rule

V
(n)
l

=
⋃

l′∈V
(n−k)
l

V
(k)
l′

; n ∈ N, k = 0, 1, . . . , n− 1. (2.117)

Given n ∈ N0, we set V(n) = {V (n)
l

}l∈Z.

Definition 43: The family {V(n)}n∈N0 is called a hierarchical structure
on the lattice Z.
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For α, α′ = 0, 1 and l, l′ ∈ Z, we set

I(2l + α, 2l′ + α′) = (2.118)

=
1

[|(2l + α) − (2l′ + α′)| + 1]1+λ
− 2−(1+λ)

[|l − l′| + 1]1+λ
,

which defines I(l, l′) for all l, l′ ∈ Z. In order to introduce a lattice
spin model one often uses its formal Hamiltonian written on the whole
lattice, which has no rigorous mathematical meaning but shows how one
can define local Hamiltonians (2.2). Such a formal Hamiltonian in the
case of the model we consider now is

H = −1

2

∑

l,l′∈Z

1

[|l − l′| + 1]1+λ
· σlσl′ , (2.119)

which by means of (2.118) may be rewritten (more details on how to
pass to the expression below may be found in Ref. [93])

H = −1

2

∞
∑

n=0

∑

l,l′∈Z

2−n(1+λ)I(l, l′)σ(V
(n)
l

)σ(V
(n)
l′

), (2.120)

where for a set ∆ ⊂ Z,

σ(∆) =
∑

l∈∆

σl. (2.121)

The essence of the above representation of H is that it has a block-spin
structure, which enables us to apply here the renormalization scheme
described above. The local Hamiltonians may be defined on the base of
(2.120) by restricting the sums to finite subsets of the lattice Z, which
now are to be taken in a special way if one wants to preserve the block-
spin structure of these Hamiltonians. In particular, the local Hamiltonian
in

Λm
def
= {l ∈ Z | − 2m ≤ l ≤ 2m − 1}, m ∈ N0,

with the zero boundary conditions is

HΛm
=

1

2

m
∑

n=0

∑

l,l′∈Λm−n

2−n(1+λ)I(l, l′)σ(V
(n)
l

)σ(V
(n)
l′

), m ∈ N.

(2.122)
It should be stressed here that this Hamiltonian does not coincide with
the one which can be obtained from the formal Hamiltonian in the form
(2.119) by restricting the sums to Λm. But, in order to construct Gibbs
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states according to the scheme based on the DLR equation (see sub-
section 2.4) we would need such local Hamiltonians defined on different
subsets ∆ ⊂ Z and with boundary conditions outside such ∆. This means
that following this scheme we could not preserve the block-spin structure
of local Hamiltonians, which would make the above construction useless.
This problem may be overcome as follows. Given m ∈ N, we set

Hm = −1

2

m
∑

n=0

∑

l,l′∈Z

2−n(1+λ)I(l, l′)σ(V
(n)
l

)σ(V
(n)
l′

). (2.123)

In contrast to (2.122) this is still a formal Hamiltonian since the sums
over l, l′ run through the whole lattice. In view of the way how we pro-
duced it one can call such an expression a truncated Hamiltonian. By
means of (2.121) we may rewrite it in the form (2.119) but with a certain
interaction potential Jm(l, l′) instead of [|l − l

′| + 1]−1−λ . The effect of
the above truncation is that this potential has the following asymptotics

Jm(l, l′) ∼ J (0)
m |l − l

′|−2−λ, |l − l
′| → +∞. (2.124)

Due to Dyson’s results mentioned above the model with such a formal
Hamiltonian has no phase transitions. Moreover, for a similar model
with the above asymptotics of the interaction potentials, it was proven
that their sets Gβ are singletons for all β (see the paper Ref. [94] and
subsection 8.3 in the book Ref. [4]). This opens a possibility to construct
Gibbs states of the model described by (2.120) in the following way.
First one constructs the states µm for (2.123), which are unique for
every m ∈ N, and then passes to the limit m → +∞. By construction,
these states satisfy the recursion

Rκ,1+λ(µm+1) = µm, (2.125)

and the limit of the sequence {µm} should be a fixed point of Rκ,1+λ.
We are going to realize this program in a separate work.

Now let us turn to hierarchical models. The simplest way to get
such a model from the translation invariant model we consider in this
subsection is to put in (2.120) I(l, l′) = 0 for all l 6= l

′. As a consequence,
the formal Hamiltonian of this new model is

H = −1

2

∞
∑

n=0

∑

l∈Z

2−n(1+λ)I(l, l)
[

σ(V
(n)
l

)
]2

. (2.126)

Since I(l, l′) ≥ 0, such an action decreases the interaction potential of
the model (2.120). Thus, by Corollary 20, the order parameter of the
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hierarchical model P h(β) (see (2.72) will not exceed the corresponding
parameter P (β) of the model (2.120). Hence if the former one is positive
for big enough β, P (β) should be positive as well. This argumentation
was used by F.J. Dyson in Ref. [75], although no direct comparison
of these models was made in that paper. Comparing the Hamiltonians
(2.120) and (2.126) one can conclude that in the hierarchical version
the interaction between different blocks of the same hierarchy level is
neglected. The effect of this is that the Hamiltonian (2.126) is additive
in l, which in turn implies that instead of considering measures on infinite
dimensional spaces of configurations, such as the measures µm, µm+1 in
(2.125), one considers measures just on the space R, which define the
probability distributions of block-spins. The corresponding recurrence
will have the form of (2.125) but with the renormalization transformation
acting on such one-dimensional measures. For further details the reader is
referred to the articles describing hierarchical models mentioned above.
Finally, we remark that the hierarchical models are studied very well,
one can say that almost all critical point properties of such models are
known. In particular, a self-similar Gibbs state of such a model was
constructed in the paper Ref. [95].

3. Quantum Models

3.1. Local Gibbs states

For quantum lattice systems, Gibbs states are defined by means of
their Hamiltonians, which now are operators on certain complex Hilbert
spaces. These spaces consist of wave functions, as usual they have count-
able bases – complete orthonormal systems of functions, such that every
wave function may be written as countable linear combination of the
elements of such a system. For a given finite subset ∆ ⊂ Zd, let H∆ be
such a Hilbert space and {ψn}n∈N be its base. Let also L(H∆) be the
set of all linear operators acting from H to H.

An example of a quantum lattice system is the spin model described
by the following Hamiltonian

H∆ = −1

2

∑

l,l′∈∆

∑

α=x,y,z

Jα
ll′σ

α
l
σα
l′ −

∑

l∈∆

∑

α=x,y,z

hα
l
σα
l
, (3.1)

where, as above, Jα
ll′

, hα
l

are real parameters of the model, defined for
all l, l′ ∈ Zd and α = x, y, z, and σx

l
, σy

l
, σz

l
are the Pauli matrices. With

every l we associate the space Hl of two-dimensional complex vector-
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columns with the scalar product

φ =

(

φ(1)

φ(2)

)

, ψ =

(

ψ(1)

ψ(2)

)

, < ψ, φ >= ψ̄(1)φ(1) + ψ̄(2)φ(2),

where ψ̄(j), j = 1, 2 stands for complex conjugate. The action of the Pauli
matrices on such vectors is defined as usual multiplication of matrices.
The Hilbert space H∆ is defined as a tensor product

H∆ =
⊗

l∈∆

Hl. (3.2)

Its canonical base consists of the following vectors

ε(s∆) =
⊗

l∈∆

ε(sl), sl = ±1, ε(1) =

(

1
0

)

, ε(−1) =

(

0
1

)

.

(3.3)
Here, similarly as it was above, s∆ is a vector with the components sl,
l ∈ ∆ taking values ±1. Thus, the space H∆ is finite-dimensional and
dimH∆ = 2|∆|. Every σα

l
acts on the above vectors as follows

σα
l ε(s∆) =

(

σα
l ε(sl)

⊗

)

⊗

l′∈∆\{l}

ε(sl′).

In particular
σz
l
ε(s∆) = slε(s∆).

Each element of the space H∆ may be associated with a 2|∆|-dimensional
complex vector-column. Then every element of L(H∆) may be represent-
ed by a 2|∆| × 2|∆|-complex matrix with the standard definition of its
action on the above vectors.

Various versions of the model (3.1) are employed as the so called
quasi-spin models [96]. If in the Hamiltonian (3.1) all Jx

ll′
= Jy

ll′
= 0 and

hx
l

= hy
l

= 0, it turns into the Ising model in the external field hz
l
. The

Heisenberg model, the Ising model in a transverse field may be obtained
from (3.1) in an evident way.

Another example of quantum lattice models which is widely employed
in the theory of structural phase transitions (see e.g., Ref. [32]) is the
model of interacting quantum anharmonic oscillators, described by the
following Hamiltonian (c.f., (2.10))

H∆ =
1

2m

∑

l∈∆

p2
l +

∑

l∈∆

P (ql) −
∑

l∈∆

hlql −
1

2

∑

l,l′∈∆

Jll′qlql′ . (3.4)
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Here m is the particle mass, P is the same polynomial as in (2.7)-(2.10),
the external field hl and the interaction potential Jll′ are also the same
as in the classical case. But now pl and ql are canonical momentum
and position operators, defined in the complex Hilbert space L2(R) of
functions, which are square integrable on R with respect to Lebesgue’s
measure. These operators obey the canonical commutation relation

plql − qlpl = −i~,

and are unbounded (see below), which strongly complicates the theory of
this model. The Hamiltonian (3.4) is also unbounded, all these operators
are essentially self-adjoint.

For every ψ ∈ H∆, we define its norm as usual ‖ψ‖ =
√
< ψ,ψ >.

An operator T ∈ L(H∆) is said to be bounded if there exists a constant
C > 0 such that, for every ψ,

‖Tψ‖ ≤ C‖ψ‖.

The least such C will be denoted ‖T ‖. We will also denote by Lb(H∆)
the set of all bounded linear operators acting from H∆ into H∆. As usu-
al, every such an operator is defined on the whole space H∆. For the
quantum spin models described above, Lb(H∆) = L(H∆) since the cor-
responding Hilbert space is finite-dimensional. For every T ∈ Lb(H∆),
we define its Hermitian conjugate T ∗ as an operator satisfying the fol-
lowing relation < T ∗φ, ψ >=< φ, Tψ > for all φ, ψ ∈ H∆. An operator
T ∈ Lb(H∆) is said to be positive if

< ψ, Tψ >≥ 0,

for all ψ ∈ H∆. For such an operator, one may define
√
T . For every T ∈

Lb(H∆), the operator T ∗T is positive, hence one may set |T | =
√
T ∗T .

An operator T ∈ Lb(H∆) is said to be trace-class if, for an orthonormal
base {ψn}n∈N,

∞
∑

n=1

< ψn, |T |ψn ><∞. (3.5)

Then one may set

trace(T ) =
∞
∑

n=1

< ψn, Tψn > . (3.6)

The latter series converges absolutely, its sum is independent of the par-
ticular choice of the base. The set of all trace-class operators will be
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denoted by Lt(H∆). For every T ∈ Lt(H∆) and Q ∈ Lb(H∆), the prod-
ucts TQ and QT are trace-class. Clearly Lt(H∆) ⊂ Lb(H∆) ⊂ L(H∆).
In finite-dimensional spaces all these sets coincide, but in the infinite-
dimensional case the inclusions are proper.

For T ∈ Lb(H∆), the above introduced ‖T ‖ is a norm, we shall call
it operator norm. The set Lb(H∆) equipped with the operator norm
turns into a complete normed space – a Banach space. In addition to the
linear space structure we have also multiplication on the latter space. By
definition, for any T,Q ∈ Lb(H∆),

‖TQ‖ ≤ ‖T ‖‖Q‖, ‖T ∗‖ = ‖T ‖. (3.7)

Banach spaces with multiplication and an operation T 7→ T ∗, which
possess the above properties, are called C∗-algebras. A detailed presen-
tation of the theory of these algebras and their application in quantum
statistical physics may be found in the book Ref. [2].

For an entire function F : C → C and T ∈ Lb(H∆), we set

F (T ) =

∞
∑

n=0

1

n!
F (n)(0)T n, F (n) =

dnF

dzn
(0).

If this series converges in the operator norm, it defines a bounded op-
erator F (T ). In both above examples the Hamiltonians (not necessarily
belonging to Lb(H∆)) are such that exp(−βH∆) ∈ Lt(H∆) for any finite
subset ∆ and every β > 0. For such models, one may set

Zβ,∆ = trace[exp(−βH∆)]; ρβ,∆ = Z−1
β,∆ exp(−βH∆). (3.8)

The latter trace-class operator is called a density matrix. Then, for every
T ∈ Lb(H∆), one may define

T 7→ 〈T 〉β,∆ = trace (Tρβ,∆) , (3.9)

which is a normalized positive linear functional on the C∗-algebra
Lb(H∆). It is called a local Gibbs state of the model and the elements
of Lb(H∆) are called observables. Comparing with the case of classical
models one can conclude that here taking trace corresponds to integra-
tion, the density matrix corresponds to the local Gibbs measure (2.3),
the algebra of observables Lb(H∆) corresponds to the set of functions
F∆.

To simplify notations we set

A∆ = Lb(H∆).
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As above, for ∆ ⊂ ∆′, we may include A∆ into A∆′ and define

A =
⋃

∆∈D

A∆, (3.10)

where D is an increasing sequence of subsets, which exhausts the lattice
Zd.

3.2. Green and Matsubara functions

The time evolution of a quantum system is described by the correspond-
ing Schrödinger equation, the solutions of which define the evolution of
the states (3.9). In the Heisenberg approach wave functions, and hence
the states, do not evolute. Instead the evolution of the system is de-
scribed by the evolution of observables, which constitute the algebras
A∆. It is described by the following map. Given t ∈ R, considered as
time, we set

at
∆(T ) = exp(i(t/~)H∆)T exp(−i(t/~)H∆), T ∈ A∆. (3.11)

In what follows, an observable T at time t = 0 evolutes into the observ-
ables at

∆(T ). The evolution maps at
∆ have the following properties. Since

Ut = exp(i(t/~)H∆), t ∈ R is a unitary operator, one has

‖at
∆(T )‖ = ‖T ‖, (3.12)

i.e., at
∆ are norm-preserving hence continuous as maps acting between

normed spaces. Furthermore, they are linear, that is

at
∆(κT + λQ) = κat

∆(T ) + λat
∆(Q),

for all κ, λ ∈ C and T,Q ∈ A∆ . For any t, s ∈ R and T ∈ A∆, one has

as
∆

(

at
∆(T )

)

= at+s
∆ (T ), (3.13)

which means that they constitute a group of algebraic isomorphisms.
Finally, they are called time automorphisms since they map the algebra
of observables A∆ into itself. For T1, . . . , Tn ∈ A∆ and t1, . . . , tn ∈ R, we
set

Gβ,∆
T1,...,Tn

(t1, . . . , tn) = trace
(

a
t1
∆(T1) . . . atn

∆ (Tn)ρβ,∆

)

, (3.14)

where the density matrix ρβ,∆ was defined in (3.8). For fixed T1, . . . , Tn ∈
A∆, this is a function of t1, . . . , tn defined on the whole Rn. It is called
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a Green function for those observables. Clearly, the whole information
about the evolution is contained in these functions defined for all observ-
ables T ∈ A∆. Here it would be quite natural to try to find a smaller set
of observables such that the Green functions defined for the elements of
this set completely describe the evolution of the whole algebra. For the
models considered in this section, such a smaller set was found by R.
Høegh-Krohn in his paper Ref. [97]. In order to formulate its results we
have to introduce new notions. A subset M ⊂ A∆ is called subalgebra if
it is an algebra with respect to the linear operations and multiplication,
which means that it is closed with respect to these operations. A subalge-
bra is called abelian if all its elements commute with each other. For the
model of interacting quantum anharmonic oscillators described by the
Hamiltonian (3.4), such a subalgebra consists of multiplication operators
on bounded continuous functions. An operator T : L2(R|∆|) → L2(R)
is called a multiplication operator on the bounded continuous function
F : R|∆| → C if for every ψ ∈ L2(R|∆|),

(Tψ)(x∆) = F (x∆)ψ(x∆). (3.15)

In the sequel, we will denote such operators also by F . Of course, linear
combinations and products of multiplication operators are again multi-
plication operators, they commute with each other. The algebra of such
operators will be denoted by F∆. Now we are at a position to present
the result of R. Høegh-Krohn.

Proposition 44: Let A
(0)
∆ ⊂ A∆ be the set of all observables which are

linear combinations of the operators

a
t1
∆(F1) . . . at1

∆(Fn)

for all possible choices n ∈ N, t1, . . . , tn ∈ R and F1, . . . Fn ∈ F∆. Then
the strong closure of this set coincides with the whole algebra A∆.

The meaning of this statement is that the Green functions defined on
the multiplication operators only fully determine the local Gibbs state
〈·〉β,∆ defined in (3.8). A similar statement may be proven also for cer-
tain quantum spin models described by the Hamiltonian (3.1). In this
case the role of F∆ will be played by the algebra generated by the Pauli
matrices σz

l
with l ∈ ∆. The next step in developing the tools for study-

ing local Gibbs states of quantum models is to extend analytically the
Green functions to imaginary values of t1, . . . , tn and to obtain Mat-
subara functions. In a general situation the corresponding theorem was
proven in the paper Ref. [98]. The proof is quite complicated. For the
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model of interacting quantum anharmonic oscillators, the proof was done
in the paper Ref. [33], its extended and simplified version may be found
in the review article Ref. [34]. Given n ∈ N and a domain O ⊂ Cn, let
Hol(O) be the set of all functions holomorphic on O. Given β > 0 and
n ∈ N, we set

Dβ
n = {(t1, . . . , tn) ∈ C

n | 0 < =(t1) < =(t2) < · · · < =(tn) < β},
(3.16)

where =(tj) stands for the imaginary part of tj , j = 1, . . . , n. By Dβ
n we

denote the closure of Dβ
n. Given ξ1, . . . , ξn ∈ R, we also set

Dβ
n(ξ1, . . . , ξn) = {(t1, . . . , tn) ∈ Dβ

n | <(tj) = ξj , for j = 1, . . . , n}.
(3.17)

Proposition 45: For every T1, . . . , Tn ∈ A∆,

(a) the function Gβ,∆
T1,...,Tn

may be extended to a holomorphic

function on Dβ
n;

(b) this extension (which will also be written as Gβ,∆
T1,...,Tn

) is

continuous on Dβ
n and for all (t1, . . . , tn) ∈ Dβ

n,

|Gβ,∆
T1,...,Tn

(t1, . . . , tn)| ≤ ‖T1‖ . . . ‖Tn‖, (3.18)

where ‖ · ‖ stands for the operator norm;
(c) for every ξ1, . . . , ξn ∈ R, the set Dβ

n(ξ1, . . . , ξn) is such that
for any f, g ∈ Hol(Dβ

n), the equality f = g on Dβ
n(ξ1, . . . , ξn)

implies that these functions are equal on the whole Dβ
n.

The meaning of this result may be explained as follows. If one has the
Green functions for all possible choices of Fj ∈ F∆, defined on one of such
Dβ

n(ξ1, . . . , ξn) only, then one has the complete information about the
state. Indeed, by claims (a) and (c) of the above proposition, the values
of the Green functions for real t1, . . . , tn may be uniquely determined by
their values on such Dβ

n(ξ1, . . . , ξn). Then, by Proposition 44, the values
of the Green functions constructed for Fj ∈ F∆ only uniquely determine
the values of such functions constructed for all operators, which in turn
determines the state 〈·〉β,∆. By claim (a) of Proposition 45, the Green
functions are differentiable for all real t1, . . . , tn, which can be used to
study them by means of differential equations.

The restrictions of the Green functions Gβ,∆
T1,...,Tn

to Dβ
n(0, . . . , 0), i.e.,

Γ
β,∆
T1,...,Tn

(τ1, . . . , τn) = Gβ,∆
T1,...,Tn

(it1, . . . , itn), (3.19)
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are called Matsubara functions for the observables T1, . . . , Tn. In the
light of the above discussion, these functions constructed for all possible
choices of F1, . . . , Fn ∈ F∆ completely determine the state 〈·〉β,∆.

3.3. Euclidean approach

Integration in spaces of functions is one of the most popular and pow-
erful methods of modern quantum theory. It appeared as a result of
mathematical development of R. Feynman’s ideas [1] to formulate quan-
tum theory in terms of path integrals. In the course of this development
deep connections between quantum theory and stochastic analysis has
been revealed. A profound description of these connections, as well as
of the method and its various applications, is given in B. Simon’s book
Ref. [12].

In 1975 in the papers Refs. [33], [97] an approach to the construction
of Gibbs states of quantum lattice models of the type of (3.4) based on
integration in function spaces has been initiated. In the case of the Ising
model with transverse field a similar methods were used in the paper
Ref. [65]. The essence of the approach of Ref. [33] may be expressed in
the following formula derived in that paper

Γ
β,∆
F1,...,Fn

(τ1, . . . , τn) =

∫

Ωβ,∆

F1(σ∆(τ1)) . . . Fn(σ∆(τn))dνβ,∆(σ∆),

(3.20)
which strongly reminds expressions from the preceding section like
(2.17). The main dissimilarity of (3.20) and (2.17) is that the above inte-
gral is taken in an infinite dimensional space. Let us describe all compo-
nents of the right-hand side of (3.20). First we introduce Ωβ,∆. By C[0, β]
we denote the real linear space of continuous functions φ : [0, β] → R.
This space endowed with the norm ‖φ‖ = sup{|φ(τ)| | τ ∈ [0, β]} be-
comes a Banach space. Set

Cβ = {φ ∈ C[0, β] | φ(0) = φ(β)}. (3.21)

This space consists of continuous periodic functions on the interval [0, β].
This is a closed subspace of C[0, β], which means that it is a Banach space
with the same norm. Furthermore, we set

Ωβ,∆ = {σ∆ = (σl)l∈∆ | σl ∈ Cβ}. (3.22)

Each element of Ωβ,∆ is a vector σ∆ = (σl)l∈∆ with the components
σl, which may also be called spins, but this time the spins are periodic
continuous functions defined on [0, β], i.e., they are infinite dimensional.
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Now we describe the measure dνβ,∆, which plays here a similar role
as the local Gibbs measure dν∆ (2.3) does in the classical case. First we
define a reference measure γβ. It is a symmetric Gaussian measure on the
Banach space Cβ (the theory of such measures may be found in the books
Refs. [12], [19], [20]), which is completely determined by its covariation
operator. The latter is an integral operator with the following integral
kernel

S(τ, τ ′) =
1

2
√
m

· exp (−|τ − τ ′|/√m) + exp (−(β − |τ − τ ′|)/√m)

1 − exp (−β/√m)
,

(3.23)
where m is the same as in the Hamiltonian (3.4), i.e., it is the particle
mass. It appears that this is nothing else but the Matsubara function of
the quantum harmonic oscillator of massm described by the Hamiltonian

Hhar =
1

2m
p2 +

1

2
q2.

On the other hand, S(τ, τ ′) is the correlation function of the so called
periodic Ornstein-Uhlenbeck process with period β . First this process
has appeared in the pioneering paper Ref. [97], the study of such pro-
cesses and their applications in quantum statistical physics is given in
the papers Refs. [98], [99].

In what follows, the Gaussian measure γβ describes the states of a
single quantum harmonic oscillator. The states of interacting quantum
anharmonic oscillators located at sites of the subset ∆ are described by
the measure which is constructed from γβ and the energy functions Eβ,∆

on the base of the famous Feynman-Kac formula (see e.g., Ref. [12])

dνβ,∆(σ∆) =
1

Zβ,∆
exp {−Eβ,∆(σ∆)}

∏

l∈∆

dγβ(σl), (3.24)

where

Zβ,∆ =

∫

Ωβ,∆

exp {−Eβ,∆(σ∆)}
∏

l∈∆

dγβ(σl), (3.25)

and

Eβ,∆(σ∆) = −1

2

∑

l,l′∈∆

Jll′

∫ β

0

σl(τ)σl′ (τ)dτ −
∑

l∈∆

hl

∫ β

0

σl(τ)dτ +

+
∑

l∈∆

∫ β

0

P̃ (σl(τ))dτ, (3.26)
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where P̃ (t) = P (t) − (t2/2) – we have extracted t2/2 into the Gaussian
measure γβ . The measure (3.24) is called the local Euclidean Gibbs mea-
sure. Since this measure completely determines the Matsubara functions
(3.19) for all F1, . . . , Fn ∈ F∆, it determines the local Gibbs state 〈·〉β,∆,
it is also called the local Euclidean Gibbs state. In what follows, the Eu-
clidean approach allows one to study local Gibbs states of the model (3.4)
by means of probability measures as if it is a system of classical spins
with the only difference that these spins are infinite dimensional. This ap-
proach was developed in the papers Refs. [34], [54], [61], [73], [74], [100]–
[111]. Its full description and an extended related bibliography is given
in the review article Ref. [34]. Here we mention certain results obtained
in this approach. First of all it would make sense to study these states
in the quasi-classical limit m→ +∞. In Ref. [101] (see also section 3 in
Ref. [34]) a statement describing such a limit was proved. Its corollary
may be formulated as follows. We recall that in section 2 we have in-
troduced the set F∆ of all continuous polynomially bounded functions

f : Ω∆ = R|∆| → R. Let F (0)
∆ ⊂ F∆ be the set of such functions which

are bounded. We shall use the set Fβ,∆ consisting of all bounded contin-
uous functions F : Ωβ,∆ → R, where Ωβ,∆ is defined by (3.22). By Ωc

β,∆

we denote the subset of Ωβ,∆ consisting of all constant vectors, i.e.,

Ωc
β,∆ = {σ∆ = (σl)l∈∆ ∈ Ωβ,∆ | ∃ξ∆ = (ξl)l∈∆ ∈ Ω∆

∀τ ∈ [0, β] ∀l ∈ ∆ : σl(τ) ≡ ξl}.

For the elements of this set we write σ∆(τ) ≡ ξ∆ meaning that all the
components of σ∆, which are constant functions of τ , coincide with the
corresponding components of the vector ξ∆ ∈ Ω∆. Given a function

f ∈ F (0)
∆ , we set

Ψf = {F ∈ Fβ,Λ | ∀σ∆ ∈ Ωc
β,∆ : F (σ∆) = f(ξ∆)}. (3.27)

In other words, the above set consists of the functions which have on con-
stant σ∆ values coinciding with the corresponding values of this chosen
function f .

Proposition 46: For any finite ∆, for every β > 0, for any f ∈ F (0)
∆

and all F ∈ Ψf ,

lim
m→+∞

∫

Ωβ,∆

F (σ∆)dνβ,∆(σ∆) =

∫

Ω∆

f(ξ∆)dν∆(ξ∆), (3.28)

where the measure ν∆ is defined by (2.11) with the same P , hl and Jll′

as in (3.24) - (3.26).
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We recall that the Gibbs states of classical systems were introduced
as solutions of the DLR equation (see Definition 21). In the quantum
case the equilibrium states are defined by means of the Kubo-Martin-
Schwinger (KMS) conditions (see the second volume of Ref. [2]). We are
not going to pay here more attention to this condition and just remark
that for the models with unbounded operators, like the one described by
(3.4), this construction is impossible (see the discussion in Ref. [34]). The
only possibility for such models, at least so far, is to construct Euclidean
Gibbs states following the scheme:

local Gibbs measures ⇒ DLR equation ⇒ Gibbs measure, its solution

described in the preceding section. We refer to the article Ref. [34] where
this scheme has been realized.

3.4. Phase transitions and critical points

Since the main place in our consideration of quantum models belongs to
the model (3.4), we restrict ourselves to presenting here results on phase
transitions and critical phenomena on the base of this model only. The
corresponding results for a number of quantum spin models described by
the Hamiltonian (3.1) may be found in the papers Refs. [65] and [112].

Thus, we consider the model described by the Hamiltonian (3.4) with
the zero external field and an even polynomial P . All the methods em-
ployed to prove the existence of the long range order for the model (3.4)
are based on the so called infrared bounds [113] (see also Ref. [112] for
more details and appropriate modifications to the quantum case). As in
the classical case the order parameter is defined by the following expres-
sion

P (β) = lim
n→+∞

1

|Λn|2
∑

l,l′∈Λn

〈qlql′〉(p)
β,Λ, (3.29)

where, as in (2.71), {Λn}n∈N is a sequence of boxes and the state 〈·〉(p)
β,Λ is

defined by (3.8), (3.9) with the Hamiltonian (3.4) in which the interaction
potential has been modified to take into account the periodic boundary
conditions, exactly as it was done in the classical case. Here one has to

mention that the states 〈·〉β,Λ, and hence the periodic state 〈·〉(p)
β,Λ, were

defined for bounded operators only, whereas the displacement operators
ql are unbounded. In general, this is a problem, which takes some efforts
to be overcome, see Refs. [114], [115]. But in the case considered we may
use the representation (3.20) (fortunately ql is a multiplication operator),
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which yields

〈qlql′〉(p)
β,Λ =

∫

Ωβ,Λ

σl(0)σl′(0)dν
(p)
β,Λ(σΛ), (3.30)

where the Euclidean Gibbs measure ν
(p)
β,Λ is defined by (3.24) - (3.26)

with hl = 0 and JΛ
ll′

instead of Jll′ (see (2.66)). We also suppose that
JΛ
ll′

≥ 0 and the condition (2.15) is satisfied. The following statement
was proven in Ref. [105], see also Refs. [61] and [107].

Proposition 47: Let the polynomial P (2.8) in ( 3.26) be even, with
r ≥ 2 and possess two nondegenerate minima at some points ±t0 with
t0 > 0. Then for d ≥ 3, there exists m∗ > 0 such that for the particle
mass m > m∗, there exists βC > 0 such that: (a) for β < βC , the order
parameter (3.29) is zero; (b) for β > βC , P (β) > 0.

A particular case of this statement, where the polynomial P was as above
but with r = 2 was proven in Refs. [65] and [116].

The only theorem describing a critical point of a model of this type
was proven in Ref. [103], where a hierarchical version of the model (3.4)
was considered. Its formal Hamiltonian may be written in the following
form

H =
1

2m

∑

l∈Z

p2
l

+
∑

l∈Z

[

aq2
l

+ bq4
l

]

−

− 1

2

∞
∑

n=0

∑

l∈Z

2−n(1+λ)I(l, l)
[

q(V
(n)
l

)
]2

, (3.31)

where I(l, l) and V
(n)
l

are the same as in (2.126), a ∈ R, b > 0 and

q(V
(n)
l

) =
∑

l∈V
(n)
l

ql.

The statement below is a corollary of the main theorem of Ref. [103].

Proposition 48: For the model described by (3.31) with λ ∈ (0, 1/2),
there exist such values of the parameters m, a and b that the following
holds. There exists β∗ > 0 such that: (a) for β = β∗ (c.f., (2.74)),

0 < lim
n→+∞

2−n(1+λ)
∑

l,l′∈V
(n)
0

〈qlql′〉β,V
(n)
0

<∞; (3.32)
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(b) for β < β∗

2−n
∑

l,l′∈V
(n)
0

〈qlql′〉β,V
(n)
0

≤ C <∞; (3.33)

for all n ∈ N.

We remark here that (3.33) means that the static susceptibility χ
V

(n)
0

(c.f., (2.73) and the final part of subsection 2.5) remains bounded as
n→ +∞. Here for a finite subset ∆, we set

χ∆ =
1

|∆|
∑

l,l′∈∆

〈qlql′〉β,∆. (3.34)

As follows from Proposition 47, the long-range order appears when
the particle mass is big enough, which corresponds to the quasi-classical
limit (see Proposition 46). What can be said about the opposite limit
m → 0? In other words, which quantum effects one may expect in such
models. This question was first studied in the paper Ref. [117], where
it was shown that the long-range order does not appear in the small
mass limit. A mathematically rigorous proof of this effect was done in
Ref. [118]. Here we present a result, proven in Ref. [100], which shows
that not only the long-range order, but any critical point anomaly, are
suppressed if a certain condition involving the particle mass is satisfied.

The Hamiltonian (3.4) may be written in the form

H∆ =
∑

l∈∆

Hl −
1

2

∑

l,l′∈∆

Jll′qlql′ , (3.35)

where the one-particle Hamiltonian is

Hl =
1

2m
p2
l + P (ql). (3.36)

It is well-known that its spectrum consists of non-degenerate eigenvalues
λn, n ∈ N0. Set

δ = min
n∈N

(λn − λn−1), (3.37)

which is the minimal distance between the one-particle energy levels.
For the quantum harmonic oscillator described by (3.36) with P (ql) =
(b/2)q2

l
, where b > 0 is its rigidity, one has

δh = ~
√

b/m. (3.38)

The following statement is a corollary of the main theorem proven in
Ref. [100].
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Proposition 49: For the model described by the Hamiltonian (3.4),
(3.35) let the following condition be satisfied

(mδ2/~2) > ‖J‖ def
= sup

l∈Zd

∑

l′∈Zd

Jll′ . (3.39)

Then for every β > 0 and for any increasing sequence D of subsets which
exhausts the lattice Zd, the sequence of static susceptibilities {χ∆}∆∈D

defined by (3.34) remains bounded, i.e., no critical point anomalies are
possible at all temperatures.

As it was shown in Ref. [100], if in (3.35) P is an even polynomial
of degree 2r ≥ 4, then mδ2 is a continuous function of m such that
mδ2 ∼ Cm−(r−1)/(r+1) as m→ 0, which means that there should exist a
constant m∗, depending on ‖J‖ and on the coefficients of the polynomial
P , such that the condition (3.39) is satisfied for m < m∗. This yields the
following corollary of the above statement.

Corollary 50: For the model described by the Hamiltonian (3.4), (3.35),
there exists a constant m∗ > 0, which depends solely on the coefficients
of the polynomial P and on the interaction parameter ‖J‖ and is inde-
pendent of β, such that for m < m∗, no critical point anomalies, and all
the more no long-range order, are possible at all temperatures.

The extension of the above results to the case of vector quantum oscil-
lators was given in the papers Refs. [108], [109].

Let us analyze these statements. By (3.38), for the harmonic oscilla-
tors, one has mδ2h = ~2b. Then the condition (3.39) gets the form

b > ‖J‖,

which is nothing else but the stability condition (2.16). Then for the an-
harmonic oscillators, the parameter mδ2 may be considered as a measure
of its quantum rigidity and the effect described by the above statements
may be called a quantum stabilization of the system of quantum anhar-
monic oscillators described by (3.4), (3.35). Stronger statements of this
kind establishing uniqueness of Euclidean Gibbs states for this system,
were proven in Refs. [73], [74], [102].

Acknowledgments

The author is grateful to his teachers Igor Stasyuk and Igor Yukhnovskii
who introduced him into the subject of this article. He thanks Sergio Al-
beverio, Yuri Kondratiev, Agnieszka Kozak, Mykhailo Kozlovskii, Taras

ICMP–03–08E 62

Krokhmalskii, Mykola Melnyk, Michael Röckner and Lech Wo lowski for
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(1972).
73. S. Albeverio, Yu. Kondratiev, Yu. Kozitsky and M. Röckner, C.R.
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