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Amnoramisi. Mu posimupoemMo po3riisi, CHiH—% nonepegnoro X X an-
LIOXKKA 3 CKOpesiboBaHuM Jiopenuosum 6Gessnanom (Phys. Rev. B 55,
14298 (1997)) Ha BWOAJOK MPHUCYTHOCTI JOMATKOBOI MiKCHIHOBOI B3a-
emomii zamommunachkoro-Mopis. Ilokazano, AK ycepemHeHa MIiJIHHICTD
craHiB MOXke OyTu obumcieHa To9HO. Pesyibraru npuBeneHo Ojis Miijib-

HOCTI CTaHiB i onepevyHol HaMarHiyeHoCTi.

Thermodynamic properties of spin-% transverse X X chain with
Dzyaloshinskii-Moriya interaction: Exact solution for corre-
lated Lorentzian disorder

Oleg Derzhko, Johannes Richter

Abstract. We extend the consideration of the spin—% transverse X X
chain with correlated Lorentzian disorder (Phys. Rev. B 55, 14298
(1997)) for the case of additional Dzyaloshinskii-Moriya interspin inter-
action. It is shown how the averaged density of states can be calculated
exactly. Results are presented for the density of states and the transverse
magnetization.
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Recently the spin—% XX chain with random Lorentzian exchange
coupling J,, and a transverse field 2,, that depends linearly on the sur-
rounding exchange couplings J,,—; and J,, has been examined [1]. Obvi-
ously, due to the relation between the transverse field and the random
exchange couplings we have a model of correlated disorder. The Jordan-
Wigner method [2] and the method elaborated by John and Schreiber
[3] permitted to derive exactly the averaged density of states for such
a model and as a result to study its thermodynamic properties. Appar-
ently the most interesting result of introducing the correlated disorder
is the appearance of the nonzero averaged transverse magnetization at
zero averaged transverse field. Later this effect was checked numerically
[4,5]. In the present communication we shall extend the model introduc-
ing additional Dzyaloshinskii-Moriya interspin interaction. Spin—% XY
chains with Dzyaloshinskii-Moriya interaction were studied in several
papers [6-10] in which it was shown that they exhibit some interesting
thermodynamic and dynamic properties, which may be of interest for
the understanding of the properties of some quasi-one-dimensional com-
pounds (e.g. CsCuCls). It will be shown below that the Dzyaloshinskii-
Moriya interaction may influence in specific manner the thermodynamic
properties of a magnetic chain conditioned by correlated disorder.

Hereafter we consider X X chain in a magnetic field along z axis
consisting of N spins % The Hamiltonian is defined by

N N
_ z T T Yy
H — Z Qnsn + Z Jn(snsn+l + S%Sn+1)
n=1 n=1

N
+ Z Dr(sp8541 = $hSni1)s
n=1
S0 = 8. (1)

Besides the exchange coupling .J,, between the neighbouring sites n and

n+ 1 an additional Dzyaloshinskii-Moriya interaction D,, between these

sites is introduced, i.e. a more general case than in Ref. [1] is considered.
In what follows we consider two models.

Model (i) — We assume the Dzyaloshinskii-Moriya interaction to be

ordered,i.e. D,, = D, whereas the exchange couplings J,, are independent

random Lorentzian variables with the probability distribution

1 r

P = G

(2)
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The on-site transverse fields are determined by the formula

Q= o = 5 (Juo1 + Ju — 20) 3)
where a is real and | a |[> 1. Note that after putting D = 0 one obtains
the model considered in Ref. [1].

Model (ii) — We assume the exchange coupling to be ordered, i.e.
Jn = J, whereas the D,, are independent random Lorentzian variables
with the probability distribution

1 r
7 (D — Do)2 +12°

p(Dn) = (4)

The on-site transverse fields are determined by the formula

0, — Q= g(D,H + D, — 2Dy) (5)

where a is real and | a |> 1.
With the help of the Jordan-Wigner transformation the Hamiltonian
(1) can be rewritten as a Hamiltonian of non-interacting spinless fermions

N 1
H = ZQ” <c;cn — 5)
n=1

N

Jn +1D Jn —1iD

+3 <%ctcn+1 _ %Cﬂc:-t-l) (6)
n=1

with cyclic boundary conditions. We omitted in (6) the boundary term
that is not essential for the calculation of the thermodynamic prop-
erties [11]. Let us introduce the retarded and advanced temperature
double-time Green functions G (t) = Fif(£t)({cn(t), ¢l }), GF (1) =
= /70 dwe IGTE (w +ie) that satisfy the set of equations

o0

(wEie —Q,)GT, (w £ ie)
Jn—l - iDn—l

[P s
Jn +1D
FTNGE | @ Ei6)| = G (7)

Our task is to evaluate the random-averaged Green functions since they
yield the random-averaged density of states through the relation

p(E) = :F%ImGrzfn(E + ie). (8)
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Having the independent Lorentzian random variables one may try to
perform the random averaging of Eq. (7) with the help of contour inte-
grals. However one must know the positions of the singularities of the
Green functions in the planes of complex random variables. The latter
information can be derived for the defined models on the basis of the
Gershgorin criterion [12].

Counsider at first spin model (i) described by Egs. (1) - (3). Suppose
that exchange couplings J,, (and hence the transverse fields ,) are
complex variables. As it follows from (7) the singularities of the matrix

GT =|| G}, (w £ ie€) || are determined by the zeros of the determinant
of the matrix A +iB¥
wtie—Q,  —L4tiD 0 _In—iD
. > e >
—4dD gy tje—Q, —LHP2 0
det =0 (9)
— a4iD 0 0 - whie—Qy

where A and BT are the Hermitian matrices given by

w—ReQ  —iReJi —iD —1ReJy +1D
—iReJ; + 1D w — Ref 0
A=| T T . (10)
—1ReJy — iD 0 - w—ReQy
and
€ F ImQ, ¢%ImJ1 0 ... :F%ImJN
BT = , . . . . , (A1)
FilmJy 0 0 ~o eFImOQy

respectively. John and Schreiber noticed that if all eigenvalues of BT are
positive then det(A £iB¥) # 0 [3]. On the other hand for any eigenvalue
A of the matrix BT (11) the Gershgorin criterion guarantees that at least
one of the inequalities
le F ImQy, — A <

1
Flm oy ., n=1,...,N (12

2

1
+ ‘:F—Im,]n

is satisfied. Using Eq. (3) we can transform Eq. (12) into

1 1
eF g (ImJ,_1 +ImJ,,) — /\‘ < 5 MmJyy|+ 5 [Im]
|a|>1, n=1,...,N. (13)
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From (13) it immediately follows that the retarded (advanced) Green
function does not have poles for ImJ,, < 0 (ImJ, > 0) if a > 1 and
for ImJ, > 0 (ImJ, < 0) if a < —1. Noting that F(...,Q,, Jp,...) =
F(...,Q —1ial, Jy —il,...) if F(...,Q,, Jy,-..) does not have poles in
lower half-planes J,, and F'(...,Qn, Jp,...) = F(...,Qo+ial', Jo+il,...)
if F(...,Qp,Jy,...) does not have poles in upper half-planes J,, one finds
the following result of averaging the set of equations (7)

(w—Q £i|a|D)Gim(w)

Jo —iD Fisgn(a) ————
- |: - 2 ( ) Gi—l,m(w)

Jo +1D Fisgn(a) T
* 2

Giﬂ,m(w)] = . (14)

The obtained equations possess translational symmetry and proceeding
further in standard manner one obtains

— 1 VAT B - A

P()—; 2(42 + B?)

A=(E-Q)*+(1-|a|)I?-J5 - D?,
B =2 a|(E - Q) +sgn(a) Jo]. (15)

Consider now spin model (ii) described by Eqs. (1), (4), (5). Assuming
that D,, (and hence (,,) are complex variables we are again examining
the conditions under which det(A +iB¥) # 0 where

w-Re@  —1J-IReD, ~17+1ReDy
A —-3J +'%ReD1 w— 3e92 5 9 (16)
—%J—%ReDN 0 » w—ﬁeﬂN
and
eFImQ, FimD, 0 .. +lmDy
BF — i%ITnDl €F I'mQQ :F%II:IIDQ . . 0 (a7
:F%II'IIDN 6 6 - GZFI;HQN

In accordance with [3] we are seeking for the conditions under which all
eigenvalues A of the matrix BT (17) are positive using for this purpose
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the Gershgorin criterion. On the basis of this criterion and relation (5)
one finds that for any A at least one of the following inequalities

:Fg(ImDn,1+ImDn) |ImDn 1|+ IImD,,|,
|a|21, n—l,...,N (18)

must be satisfied. Eq. (18) immediately yields that the retarded (ad-
vanced) Green function does not have poles for ImD,, < 0 (ImD,, > 0)
if @ > 1 and for ImD,, > 0 (ImD,, < 0) if a < —1. This observation
permits to average Eq. (7) with the result

(W= +i]a|T)Ginw)

J—iDg Fsgn(a) [ ———

RRAL S A )

J+1Dg £sgn(a) T
+ 2

Gl i (@)| = b (19)

Similarly to the previous case (see Appendix) we find that the random-
averaged density of states again is given by Eq. (15), however with

A=(E—Q)?+(1-|a[))[?—J? - D2,
B=2I( a|(E— Q) +sgn(a) D). (20)

Let us discuss the obtained densities of magnon states for the spin
models considered. First of all note that after replacement Jy — Dy,
D — J the density of states (15) transforms into the density of states
(20). Therefore it is sufficient in what follows to consider only one spin
model, for instance, model (i) defined by (1) - (3). It can be straight-
forwardly checked that (15) covers in the particular case D = 0 the
result derived in Ref. [1]. In the limit of diagonal disorder I' — O,
| a| I =+~ = const Eq. (15) reproduces the density of states for
spin—% X X chain with Dzyaloshinskii-Moriya interaction in a random
Lorentzian transverse field with the mean value ()¢ and the width of
distribution  [10]. The density of states (15) remains the same after the
simultaneous change of signs of Jy and a; hereafter we choose Jy > 0.

Let us remind how the density of states is influenced by correlated dis-
order in case of D = 0 (for details see [1]). For | a |~ 1 the disorder causes
a smearing out of mainly one edge of the magnon band (which one de-
pends on the sign of a). As a result we have fi) dEp(E) # Jo S dEp o(E)
at Qy = 0 that leads to the appearance of a nonzero averaged trans-
verse magnetization m,; = —3 f dEp(E tanh% at zero averaged
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transverse field . With an increase of | a | the symmetry of the non-
random case is recovered, i.e., both edges of the magnon band become
smeared out in a symmetric way, the numbers of states f_ooo dEp(E)

and fo dEp( ) at Qg = 0 become equal to each other, and M, = 0 at
Qo =0.

Figs. 1a, 1b demonstrate the changes in the behaviour of the averaged
density of states p(E) versus E — Qg for I' = 1, a = £1.01, Jy = 1 for
three different strengths of the Dzyaloshinskii-Moriya interaction D = 0,
D =1, D = 2. It can be seen that an additional Dzyaloshinskii-Moriya
interspin interaction 1) increases the width of the smoothed magnon
band; 2) leads to the recovering of the symmetry with respect to the
change E — Q9 — —(E — Qo). Thus the increase of the Dzyaloshinskii-
Moriya interaction leads to the decrease of the nonzero value of 7, at
Qo = 0 (Figs. 1c, 1d).

In Fig. 2 we depicted the influence of an increase of the averaged
exchange coupling Jy at fixed D = 0. Similarly to the previous case one
observes an increasing of the band width, however, in contrast to the
previous case the density of states remains not symmetric with respect
to the change B — Qy — —(E — Q) (Figs. 2a, 2b) and as a result the
model exhibits a noticeable nonzero value of m; at Qg = 0 (Figs. 2c, 2d).
The difference in the behaviour of the density of states with increasing
D or Jy is not surprising since Jy and D enter in a different way into
(15).

To summarize, we have studied the spin—% transverse X X chain in
the presence of correlated Lorentzian disorder. Going beyond the results
given in Ref. [1] we include in the model the Dzyaloshinskii-Moriya inter-
action. The assumption of correlated disorder allows the exact calcula-
tion of the averaged density of states p(E). The exact formulae (15) and
(20) for p(E) are the main results of the paper. Based on these formulae
one can calculate in a simple way exactly the thermodynamic properties
like entropy, specific heat, transverse magnetization and static transverse
linear susceptibility (see for details [1]). In that sense the presented ran-
dom quantum spin model may serve as a reference model to study the
interplay of disorder and quantum effects. In particular, it may be used to
test approximations and/or calculations for finite systems. As an exam-
ple we present results for the density of states and the transverse magne-
tization. In particular, we find that the Dzyaloshinskii-Moriya interaction
may lead to a decrease of the nonzero averaged transverse magnetization
at zero averaged transverse field that appears due to correlated disorder.
It is known [6-9] that in the non-random case the Dzyaloshinskii-Moriya
interaction leads to spectacular changes in the spin correlations and their
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Figure 1. The density of states (described by Eq. (15)) (Figs. 1a, 1b) and
the transverse magnetization —m; versus 0 at 8 = 1000 (Figs. 1c, 1d)
at fixed Jo = 1,T' =1 and a = —1.01 (Figs. 1a, 1c) or a = 1.01 (Figs. 1b,
1d). The short-dashed curves correspond to D = 0, long-dashed curves
to D =1 and the solid curves to D = 2.
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Figure 2. The density of states (described by Eq. (15)) (Figs. 2a, 2b) and
the transverse magnetization —m; versus g at 8 = 1000 (Figs. 2c, 2d)
at fixed D =0, =1 and a = —1.01 (Figs. 2a, 2c) or a = 1.01 (Figs. 2b,
2d). The short-dashed curves correspond to Jy = 1, long-dashed curves
to Jp = 1.5 and the solid curves to Jy = 2.
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dynamics. However, the rigorous consideration of correlated disorder in
this paper is restricted to thermodynamic quantities based on the den-
sity of states. The effect of the Dzyaloshinskii-Moriya interaction on the
spin correlations and their dynamics in the presence of correlated disor-
der may be studied numerically [13].

The authors thank the University of Magdeburg and the Deutsche
Forschungsgemeinschaft (project Ri615/1-2) for support of the present
study. The paper was presented at the XXth ITUPAP International Con-
ference on Statistical Physics (Paris, 1998). O.D. is grateful to the Grant
Committee for a financial support for attending the Conference.

Appendix

Usually, to solve the set of translationally invariant equations (19) one
performs the Fourier transformation with respect to the site indices.

However, the desired Green functions G}, (w) (and hence p(F)) can be
obtained apparently in a more straightforward manner with the help of
continued fractions. It is a simple matter to show on the basis of Eq.
(19) that

1
G, =
(W) w—Qo+ila|T—2A"
B 1)
w—ﬂoii|a|r—m,
1
=1 (J? + D§ — I'* F 2i sgn(a) I'Dy) . (21)

Since the periodic continued fraction A satisfies the equation A =

Fy . .
T auTilaT it can be easily calculated and as a result

Ghn(w) = L (22)

Vw— Q0 ila|D)? - 452

Substituting this result into (8) one obtains (20).
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