
îÁ��ÏÎÁÌØÎÁ ÁËÁÄÅÍ�Ñ ÎÁÕË õËÒÁ§ÎÉ

���������	
� ¶îó�é�õ�æ¶úéëéëïîäåîóï÷áîéèóéó�åí

'
&

$
%
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õäë: 531/533; 530.145; 531.18; 539.12PACS: 03.65.Pm, 03.65.Ge, 12.39.Pnå×ÒÉÓÔÉÞÎ� ÍÏÄÅÌ� Ä×Ï-ÆÅÒÍ�ÊÏÎÎÉÈ ÒÅÌÑÔÉ×�ÓÔÉÞÎÉÈ ÓÉÓ-ÔÅÍ �Ú ×ÚÁ¤ÍÏÄ�¤À �ÏÌØÏ×ÏÇÏ ÔÉ�Õá.äÕ×�ÒÑËáÎÏÔÁ��Ñ. ÷ÉËÏÒÉÓÔÏ×Õ¤ÔØÓÑ ÌÁÎ�ÀÖÏË �ÒÏÓÔÉÈ Å×ÒÉÓÔÉÞÎÉÈ �ÒÉ-ÊÏÍ�× ÄÌÑ ÏÔÒÉÍÁÎÎÑ �ÅÒÔÕÒÂÁÔÉ×ÎÉÈ ÔÁ ÔÏÞÎÏ ÒÏÚ×'ÑÚÕ×ÁÎÉÈ Ó�ÅË-ÔÒ�× ÄÌÑ Ó�Í'§ Ä×Ï-ÆÅÒÍ�ÊÏÎÎÉÈ Ú×'ÑÚÁÎÉÈ ÓÉÓÔÅÍ Ú ËÕÌÏÎÏ-�ÏÄ�Â-ÎÏÀ ×ÚÁ¤ÍÏÄ�¤À. õ ×É�ÁÄËÕ ÅÌÅËÔÒÏÍÁÇÎÅÔÎÏ§ ×ÚÁ¤ÍÏÄ�§ ÏÔÒÉÍÁÎÉÊÓ�ÅËÔÒ ÚÂ�ÇÁ¤ÔØÓÑ Ú ÔÏÞÎ�ÓÔÀ ÄÏ ÄÒÕÇÏÇÏ �ÏÒÑÄËÕ ÚÁ ËÏÎÓÔÁÎÔÏÀ ×ÚÁ¤-ÍÏÄ�§ �Ú Ó�ÅËÔÒÏÍ,ÝÏ ×É�ÌÉ×Á¤ Ú Ë×ÁÎÔÏ×Ï§ ÅÌÅËÔÒÏÄÉÎÁÍ�ËÉ. òÏÚÂ�Ö-Î�ÓÔØ ×ÉÎÉËÁ¤ ÌÉÛÅ ÄÌÑ S-ÓÔÁÎ�×,ÝÏ ¤ ×�ÄÏÍÏÀ ÔÒÕÄÎ�ÓÔÀ Õ �ÒÏÂÌÅÍ�Ú×'ÑÚÁÎÉÈ ÓÔÁÎ�×. òÏÚÇÌÑÄÁ¤ÔØÓÑ ÔÁËÏÖ ÕÔÒÉÍÕÀÞÁ ×ÚÁ¤ÍÏÄ�Ñ.Heuristi Models of Two-Fermion Relativisti Systems withField-Type InterationA.DuviryakAbstrat. We use the hain of simple heuristi expedients to obtainperturbative and exatly solvable relativisti spetra for a family of two-fermioni bound systems with Coulomb-like interation. In the ase ofeletromagneti interation the spetrum oinides up to the seond or-der in a oupling onstant with that following from the quantum eletro-dynamis. Disrepany ours only for S-states whih is the well-knowndiÆulty in the bound-state problem. The on�nement interation isonsidered too.
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1 ðÒÅ�ÒÉÎÔ1. IntrodutionA nonrelativisti two-body problem redues ompletely to the single-body problem with a entral potential. The single-body Shr�odingerequation beomes the two-body one (for the entre-of-mass frame ofreferene) if to replae the partile mass by the redued mass, and tounderstand the radius-vetor r as the relative position vetor.In the relativisti ase the relation between the single- and two-partile problems is not so transparent. There are few reasons for that.First, a spin appears on a physial stage. The existene of spin diversi-�es properties of both interating partiles of matter and �elds mediatingthis interation. Thus even in the single-partile problem various rela-tivisti wave equations suh as the Klein-Gordon, Dira, DuÆn-Kemmerand other equations exist, and they an involve salar, vetor, tensor andother interation potentials. Seond, there exist di�erent approahes tothe relativisti two- and few- body problem. The most profound ap-proahes are based on the quantum �eld theory (QFT), espeially on theperturbative QFT. They lead to ompliated integral equations (suh asthe Bethe-Salpeter equation [1,2℄), oupled sets of di�erential equations(suh as the Breit equation [3,2℄), or their higher order di�erential redu-tions (suh as the Fermi-Pauli equation [4,2℄). Other approahes suh asquasipotential [5℄{[7℄ or ones based on the relativisti diret interationtheory (RDIT) [8℄{[9℄ are semi- or purely phenomenologial. They mani-fest a general struture of relativisti potentials and wave equations whilefeatures of onrete interations must be brought from other soures (forexample, from the lassial or quantum �eld theory).I. Todorov has observed a simple way how the Klein-Gordon equa-tion an be transformed into the quasipotential equation desribing thesalar and vetor interation of two spinless partiles [5,7℄. In the ase ofCoulomb-like interation this equation gives the spetrum whih agreeswith QFT result up to �4{terms of oupling onstant expansion. Thegeneralization for an arbitrary �eld-type interation (inluding higherrank tensor interations) arises naturally from the Shwinger soure the-ory [10℄ and the Fokker formalism [8℄, and results in some RDIT models[11℄{[13℄. In the present paper we onstrut relativisti wave equationsappropriate for the desription of the �eld-type interation of two parti-les with spin 12 .At the beginning we summarize results onerning spinless system.Namely, in Setion 2 we formulate the family of relativisti wave equa-tions whih desribe the salar, vetor and gravitational (i.e., tensor)interation of two salar partiles. These equations have a ommon ef-
ICMP{02{10E 2fetive single-partile struture. In the ase of Coulomb-like interationthey are exatly solvable. The mass spetra oinide with that obtainedalgebraially in Ref. [13℄, and agree up to �4 with known QFT results.The only disagreement exists for S-states.Then we modify the wave equations in order to desribe two-fermionsystems. The spin-orbital, spin-spin and tensor orretions to the salar,vetor and gravitational interations are brought from QFT1 (Setion 3).In Setion 4 by means of an appropriate resaling of r spin interation isinluded into the eigenstate problem as small orretion to the e�etiveCoulomb Hamiltonian. Calulations with the �rst order perturbationtheory (Setion 5) reprodue the QED muonium spetrum up to �4[15℄ and give a generalization for the ases of salar and gravitationalinterations.Spin potential orretions depend on r = jrj as 1=r3. Due to prop-erties of matrix elements with Coulomb bound states we transform spinorretions into 1=r2 terms in suh a way that perturbative spetrum(up to �4) does not hange. In this form the problem appears exatlysolvable, whih is shown expliitly in Setion 6.The Todorov onstrution was proposed in the ase of Coulomb-likeinterations. Here (in Setion 7) we approve this reipe for a system withon�ning interation, and make an appropriate modi�ation to aountspin e�ets.2. Spetra of systems of two spinless partilesLet us onsider the stationary Klein-Gordon equation for partile of therest mass m in the salar potential Vs(r) and the vetor one Vv(r) de-pending on r = jrj:�	(r) + �[E � Vv(r)℄2 � [m+ Vs(r)℄2�	(r) = 0: (1)Following the Todorov's observation in the quasipotential approah [5,7℄one an onstrut the appropriate two-partile wave equation by thefollowing substitution:E ! EM = M2 �m21 �m222M ; m! mM = m1m2M ; (2)where ma is the rest mass of ath partile, and M is the total mass ofthe system, i.e., the energy in the entre-of-mass frame of referene. One1We note that two-partile spin-orbital interation an be reovered ompletelyfrom the single-partile one [14℄ but this is not onerned with spin-spin and tensorterms.



3 ðÒÅ�ÒÉÎÔobtains the Shr�odinger-like equation:�	(r) + [QM � UM (r)℄	(r) = 0; (3)where QM � E2M �m2M = 14M2 [M2 �m2+℄[M2 �m2�℄; (4)is the on-shell value of the relative momentum squared as a funtion ofM [7℄, UM (r) = 2[mMVs(r) +EMVv(r)℄ + V 2s (r) � V 2v (r) (5)is the e�etive potential, and m� = m1 � m2. In the nonrelativistilimit the equation (3) beomes the usual Shr�odinger equation with thenonrelativisti potential V (r) = Vs(r) + Vv(r) where r is the distanebetween partiles.The e�etive potential UM (r) depends of the total massM . Thus theequation (3) is of the quasipotential type, and problems an our withthe onsistent quantum-mehanial treatment [7℄.In the ase of Coulomb-like interationVs(r) = ��s=r; (6)Vv(r) = ��v=r (7)with the oupling onstants �s > 0 and �v > 0 the equation (3) is exatlysolvable. Moreover, for the ase of eletromagneti (vetor) interationthe orresponding spetra oinide (exept for the ground S-states) withthose following from the salar quantum eletrodynamis in the seondorder of a oupling onstant [6,5℄.The simple Todorov reipe embraes the ases of salar and vetorinterations (and their superposition). The generalization to the asesof higher-rank tensor interations an be built on the base of the familyof RDIT models (known as time-asymmetri) [11,12℄. This leads to theShr�odinger-like (quasipotential) equation (3) withUM (r) = �2mMf(�)�r +  �2r2 ; (8)where � = EM=mM , and the funtion f(�) (suh that f(1) = 1) as wellas the onstant  depend on the tensor nature of interation [12,13℄. Forexample, for the salar, vetor and gravitational interation (or anotherseond-rank tensor interation, for example, the strong gravitation) we
ICMP{02{10E 4have: fs(�) = 1; s = 1; (9)fv(�) = �; v = �1; (10)fg(�) = 2�2 � 1; g = �6: (11)The superposition of these interations an be onsidered by means of thesuperposition of the funtions and onstants (9)-(11). Also we note thatfor salar and vetor interations (and their superposition) the e�etivepotentials (8) (from the time-asymmetri models) is idential to (5) with(6) or/and (7) (from the Todorov reipe).The mass spetrum following from the equation (3), (4), (8) an bepresented in the impliit form:M2 = m21 +m22 + 2m1m2�; (12)where � is a positive solution of the equation:1� �2f2(�) = �2�2 ; (13)and � = nr + 12 +q(`+ 12 )2 + �2 (14)is e�etive \prinipal quantum number"; here nr = 0; 1; ::: is the radialquantum number and ` = 0; 1; ::: is the angular quantum number.For the salar, vetor and gravitational interations the equation (13)is solvable: �s = p1� �2=�2; (15)�v = 1.p1 + �2=�2 ; (16)�g = 12p2r4� �2�2 + ��p8 + �2=�2: (17)Approximately, with auray up to �4, we have :M � m+ � mr�22n2 + mr�42n4 �f 0(1)� 14 � mr4m+ �+ mr�4n3 2`+ 1 ; (18)where f 0 = df=d�, mr = m1m2=m+ is the redued mass, and n =nr + `+ 1 is the prinipal quantum number.



5 ðÒÅ�ÒÉÎÔ3. Two-fermion systems: inluding spin e�etsThe weakly relativisti system of two fermions interating via salaror/and vetor �eld an be desribed by the generalized Breit-FermiHamiltonian [16,17℄. Besides the nonrelativisti Coulomb Hamiltonian,it inludes relativisti kinemati terms, spin-independent and spin-dependent orretions to the interation. Some of these terms are singu-lar and an be taken into aount as perturbations only.Here we do not onsider the Breit-Fermi Hamiltonian. Instead, wemodify the Todorov reipe in order to desribe the spin e�ets in two-fermioni systems. For this purpose we need only a spin-dependent partW of the Breit-Fermi Hamiltonian. For the salar and vetor interationit is [16,17℄:Ws = �14 L ���1m21 + �2m22� V 0s (r)r ; (19)Wv = 14 L ��� 1m21 + 2m1m2 ��1 + � 1m22 + 2m1m2 ��2� V 0v(r)r+ 112m1m2 �1r V 0v(r) � V 00v (r)� T+ 16m1m2 �1 � �2�Vv(r); (20)where L = � i r �r is the orbital momentum operator, �a is the spinoperator ating on the ath partile spin variable, and T = 3(�1 �n)(�2 �n)��1 ��2 is the tensor operator. In the ase of gravitational interation(with the nonrelativisti potential Vg(r) = ��g=r, where �g = Gm1m2,and G is the gravitational onstant) we have [18℄:Wg = 14 L ��� 3m21 + 4m1m2 ��1 + � 3m22 + 4m1m2 ��2� �gr3+ �g4m1m2r3 T + 2��g3m1m2 �1 � �2 Æ(r): (21)Now in order to onstrut a two-fermion equation we replae a non-relativisti potential V by ~V = V +W in the e�etive potential UM (Eq.(5) or (8)). The resulting quasipotential equation is not solvable, and weshould apply some approximate method.In the ase of Coulomb-like interation the spin term W is meant tobe small as to ompare to the nonrelativisti potential V (r) = ��=r.Thus we an modify approximately the e�etive potential (8) as follows:UM (r)! ~UM (r) � UM (r) + 2mMf(�)W: (22)
ICMP{02{10E 6Now one an aount the spin orretion by means of the pertur-bation method. In so doing we note the following. First, the original(non-perturbed) equation (3) fails to desribe orretly S-states. Thuswe will neglet Æ-funtional terms in W (i.e., the last term in r.h.s. ofEq. (21), and the last term in r.h.s. of Eq. (20) in the ase (7)) as theyontribute in S-states only. Seond, the modi�ed equation (as well asthe unperturbed one (3)) is quasipotential but not the true Shr�odingerequation. Thus it needs some minor reformulation to be tratable withinthe perturbation method.4. Spin orretions to the Coulomb-like interationIn the ase of Coulomb-like interation the two-fermion wave equationreads: �p2 � 2mMf(�)��r �W�+ �2r2 �QM�	 = 0; (23)where p = � ir. Using the substitutionr = �=RM ; p = RM� with RM = �mMf(�) (24)we present the equation (23) in the dimensionless Hamiltonian form:H	 = "	: (25)Here H = H(0) +H(1) (26)is the total Hamiltonian, H(0) = 12�2 � 1� (27)is the basi Coulomb Hamiltonian,H(1) = �2�; � = 2�2 + 1�3 �(n) (28)is a perturbation sine � is onsidered as a small parameter, and" = QM2R2M = �2 � 12�2f2(�) (29)is a dimensionless energy (i.e., a spetral parameter).



7 ðÒÅ�ÒÉÎÔWith suÆient auray (i.e., up to terms � O(�)) the last term of� is equal toW=(�3RM ) but does not depend onM . This is provided byuse of approximate equality M � m+ in small terms. The general formof the operator � ating on angular and spin variables is:� = �(� � Æ2)L � �+ + 2�ÆL � �� + �(1� Æ2)T � =16; (30)where �� = �1 � �2, Æ = m�=m+, and the onstants �, � and � forsalar, vetor and gravitational interations are de�ned as follows:�s = �1; �s = 1; �s = 0; (31)�v = 3; �v = �1; �v = 1; (32)�g = 7; �v = �3; �v = 1: (33)5. Basi states and �rst-order perturbation theoryThe basi Hamiltonian (27) ommutes with operators of orbital angu-lar momentum L, total spin S = 12�+, total angular momentum J =L+ 12�+ and parity P . In order to write down the basi eigenfuntions	(0)(�) we use the angular \bispinor harmonis" 'i(n) (i = A; 0;�;+).In 2�2 matrix representation they are [19℄:'A(n) = 1p2Y �j (n) � 0 �11 0 � ; (34)'0(n) = 1p2j(j+1)��24 �p(j��+1)(j+�)Y ��1J �Y �j�Y �j p(j+�+1)(j � �)Y �+1j 35 ;(35)'�(n) = 1p2(j+1)(2j+3)��24 p(j��+1)(j��+2)Y ��1j+1 �p(j+�+1)(j��+1)Y �j+1�p(j+�+1)(j��+1)Y �j+1 p(j+�+1)(j+�+2)Y �+1j+1 35 ;(36)
ICMP{02{10E 8'+(n) = 1p2j(2j�1)��24 p(j+��1)(j+�)Y ��1j�1 p(j+�)(j��)Y �j�1p(J+�)(j��)Y �j�1 p(j���1)(j��)Y �+1j�1 35 ;(37)where Y �` (n) (� = �`; :::; `) are the spherial harmonis depending onthe diretion n = r=r. The bispinor harmonis form an orthonormal set,in the sense that hijki = R dnTr('yi 'k) = Æi k, where the integrationsare taken over the entire solid angle.The bispinor harmonis posses the following properties (besides thosedue to properties of the spherial harmonis):L � �'A = pj(j + 1)'0;L � �'0 = pj(j + 1)'A � '0;L � �'� = �(j + 2)'�;L � �'+ = (j � 1)'+;n � �'A;0 = �q j+12j+1'� �q j2j+1'�;n � �'� = �q j+12j+1'A;0 �q j2j+1'0;A; (38)where the omponents of the vetor operator � are the Pauli matries.The ation of spin operators on the bispinor harmonis is as follows:�1' = �', �2' = '�T . We note that 'A is antisymmetri and '0;�are symmetri matries. Then it follows from this and Eqs. (38) that 'A



9 ðÒÅ�ÒÉÎÔand '0;� satisfy the following equalities:J2' = j(j + 1)'; j = 0; 1; :::;J3' = �'; � = �j; :::; j;L2'i = `(`+ 1)'i; ` = � j; i = A; 0;j � 1; i = �;S2'i = s(s+ 1)'i; s = � 0; i = A;1; i = 0;�;P'A;0 = (�)j'A;0;P'� = (�)j+1'�;12L � �+'A = 0;12L � �+'0 = �'0;12L � �+'� = �(j + 2)'�;12L � �+'+ = (j � 1)'+;12L � ��'A;0 = pj(j + 1)'0;A;12L � ��'� = 0;�1 � �2'A = �3'A;�1 � �2'0;� = '0;�;12T'A = 0;12T'0 = '0;12T'� = 3 pj(j+1)2j+1 '+ � j+22j+1'�;12T'+ = 3 pj(j+1)2j+1 '� � j�12j+1'+:
(39)

Now one an hoose four independent basi eigenfuntions 	(0)i (�)(i = A; 0;�;+) of H(0) as follows:	(0)A;0(�) = 1�un;j(�)'A;0(n); 	(0)� (�) = 1�un;j�1(�)'�(n); (40)where un;`(�) is a solution of the radial Coulomb problemH`un;`(�) = "(0)un;`(�) (41)with the e�etive HamiltonianH` = �12 � dd�2 � `(`+ 1)�2 �� 1� (42)and the dimensionless eigenenergy"(0) = �1=(2n2); n = 1; 2; : : : (43)
ICMP{02{10E 10We note that the basi eigenfuntions 	(0)A;0(�) have the parity P = (�)j ,and 	(0)� (�) have the parity P = (�)j+1. The funtion 	(0)A (�) desribesthe singlet (s = 0, ` = j) state while 	(0)0;�(�) orrespond to triplet(s = 1, ` = j; j � 1) states.Let us alulate the �rst-order orretion "(1) to the dimensionless en-ergy " � "(0)+�2"(1). The total Hamiltonian H = H(0)+�2� ommuteswith operators of parity P and total angular momentum J = L + 12�+.One an hoose the wave funtions 	(�) as the eigenfuntions of J2, J3and P . Thus they an be spanned onto states 	(0)A;0 if P = (�)j , or onto	(0)� if P = (�)j�1. In the eah parity ase zero-order eigenvalues "(0)are twie degenerated. Thus in the �rst order of perturbation theory wehave"(1)(i;k) = 12 ��ii + �kk �q(�ii � �kk)2 + 4� 2ik� (i 6= k) (44)with i = A; k = 0 if P = (�)j and i = �; k = + if P = (�)j+1, wherethe matrix � = [�ik℄ is de�ned as follows:� = [�ik℄ = [hij�jki℄ = �Z drTr�	yi (r)�	k(r)�� : (45)Taking (28) and (40) into aount we have:� = 2 hjj��2jji1+ hjj��3jji24 hAj�jAi hAj�j0ih0j�jAi h0j�j0i 35 (46)if P = (�)j , and� = 2 24 hj+1j��2jj+1i 00 hj�1j��2jj�1i 35+ 24 hj+1j��3jj+1ihAj�jAi hj+1j��3jj�1ihAj�j0ihj�1j��3jj+1ih0j�jAi hj�1j��3jj�1ih0j�j0i 35 (47)if P = (�)j+1, wherehij�jki = Z dnTr�'yi (n)�'k(n)� (48)and h`0j�sj`i = Z d� un;`0(�) �s un;`(�): (49)



11 ðÒÅ�ÒÉÎÔIn partiular,h`j��2j`i = 1n3(`+ 12 ) ; h`j��3j`i = h`j��2j`i`(`+ 1) ; (50)h`+1j��2j`�1i = 0; h`+1j��3j`�1i = 0: (51)The relations (50) are well known in literature (see [20℄ or [21℄), and (51)an be alulated by means of formulae given in [20, hap. MathematialSupplements, x f℄.Using (50), (51) and alulating the matrix elements hij�jki by meansof Eqs. (30){(33), (39) one obtains the matrix � and then the orretions"(0) to the dimensionless energy. Then, using (12), (29) and expandingthe total massM in � one obtains the �rst-order mass spetra (i.e., withauray up to �4).Due to the relations (50) and (51) the matrix � is not diagonal ifP = (�)j . Thus the orrespondent �rst-order states are the mixture ofsinglet (s = 0, ` = j) and triplet (s = 1, ` = j) states. In the P = (�)j+1ase � is diagonal, and the triplet (s = 1, ` = j � 1) states does notmix. Thus it is onvenient to lassify the �rst-order mass spetra by jand `. These spetra an be obtained from Eq. (18) by the followingsubstitution:  !  + �(`; j) (52)where the funtion �(`; j) depends on both a spin state of the systemand the tensor rank of mediating �eld. We have:�s = 8>>>>>>><>>>>>>>:
1 + Æ2 �p(1 + Æ2)2 + 16Æ2`(`+ 1)8`(`+ 1) ; ` = j;1 + Æ24` ; ` = j + 1;� 1 + Æ24(`+ 1) ; ` = j � 1; (53)

�v = 8>>>>>>><>>>>>>>: �1�p1 + 4Æ2`(`+ 1)4`(`+ 1) ; ` = j;� 12` � 1� Æ22(2`� 1) ; ` = j + 1;12(`+ 1) + 1� Æ22(2`+ 3) ; ` = j � 1; (54)
ICMP{02{10E 12

�g = 8>>>>>>>><>>>>>>>>: �3�1�p1 + 4Æ2`(`+ 1)�4`(`+ 1) ; ` = j;� 32` � 1� Æ22(2`� 1) ; ` = j + 1;32(`+ 1) + 1� Æ22(2`+ 3) ; ` = j � 1: (55)The Eqs. (18), (52) and (54) reprodue the muonium spetrum [15℄and (if m1 = m2 = m) the positronium spetrum [4℄.6. Solvable simulation of �rst-order mass spetraSolving the Shr�odinger equation (25) perturbatively is due to the fatthat spin interation term in the operator (28) depends on � as ��3.Below we onstrut some exatly solvable model whih reprodues thespetrum of perturbation theory.Let us modify the operator (28) as follows� �! ~� = Z(n)2�2 ; (56)where Z(n) =  + 2f�(n)=L2gordered: (57)The operator Z ats on angle and spin variables. It is not de�ned onstates whih ontain the S-wave, but we refuse these states from thevery beginning. On other states Z is supposed to be Hermitian. Thus itmust be somehow ordered if �(n) and L2 do not ommute.It is easy to examine by means of Eqs. (50){(51) that in the �rst orderof perturbation theory the Hamiltonian ~H = H(0) + �2 ~G has the samespetrum as the original Hamiltonian H . This result does not depend onthe ordering rule used in Z.Below we show that the new Shr�odinger equation is exatly solvable.Of ourse, the exat solution and orresponding spetrum depend on theordering rule. One an onsider, for example, the following rules:f�=L2gordered = 12 (�jLj�2 + jLj�2�); (58)f�=L2gordered = jLj�1�jLj�1 (59)f�=L2gordered = 1Z0 dt e� t2L2�e� t2L2 ; (60)



13 ðÒÅ�ÒÉÎÔwhere jLj = pL2. The last rule is inspired by the Feynman representa-tion of an inverse operator: A�1 = R10 dt exp(�tA).The radial redution of the Shr�odinger equation an be performedby the following hoie of the wave funtions 	(�) as the eigenfuntionsof J2, J3 and P : 	(�) = 1�Xi  i(�)'i(n): (61)Here the summa in r.h.s. of Eq. (61) runs over i = A; 0 if P = (�)j , andover i = �;+ if P = (�)j+1. Substituting this funtion into the newShr�odinger equation and olleting oeÆients at bispinor harmonis'A and '0 (or at '� and '+) one obtains the pair of oupled Rarita-Shwinger equations. In the matrix form they are:H	(�) = "	(�); (62)where 	(�) = [ i(�)℄ (63)is two-omponent olumn wave funtion,H = �12 � dd�2 � 1�2K�� 1� ; (64)and K = [Kik℄ = �hijL2 + �2Zjki� : (65)The form of 2�2 symmetri matrix K depends on both the parityand the tensor struture of interation:K = 264 j(j + 1) + �2 �2�Æ2pj(j+1)�2�Æ2pj(j+1) j(j + 1) + �2 � � ��Æ2��(1�Æ2)4j(j+1) � 375 (66)for the parity P = (�)j , andK =264 (j+1)(j+2) + �2� � 14(j+1) h� � Æ2 + � 1�Æ22j+1i� ; �2� 1�Æ24(2j+1) 3pj(j+1)j(j+1)+1�2� 1�Æ24(2j+1) 3pj(j+1)j(j+1)+1 ; (j�1)j + �2� + 14j h� � Æ2 � � 1�Æ22j+1i� 375(67)for the parity P = (�)j+1. We note that in general ase where � 6= 0(inluding the ases of vetor and gravitational interation; .f. Eqs.(32),
ICMP{02{10E 14(33)) the operators � and L2 does not ommute. Thus in alulating ofK we hosen the ordering rule (60). The use of (58) or (59) leads to o�-diagonal elements of K whih are singular at j = 1 (besides of j = 0).But there is no any physial reason for suh a singularity.Using now an appropriate unitary (even orthogonal, to be sharp)transformation, the matrix K an be diagonalized, so that the ou-pled Rarita-Shwinger equations split into a pair of one-dimensionalShr�odinger equations with e�etive Hamiltonians H~`(i;k) of the form(42) but with non-integer ~`(i;k):~`(i;k) = � 12 +q 14 +K(i;k); (68)withK(i;k) = 12 �Kii +Kkk �q(Kii �Kkk)2 + 4K 2ik� (i 6= k); (69)where i = A; k = 0 if P = (�)j , and i = �; k = + if P = (�)j+1.These equations are exatly solvable and lead to the mass spetrum(12){(17) but with another e�etive \prinipal quantum number":� �! ~� = ~�(nr; j; P ) = nr + ~`(i;k) + 1: (70)The alulation of e�etive \prinipal quantum number" ~� is straight-forward by the use of Eqs. (66){(70). Here we do not write down theserather umbersome formulae.7. The on�nement problemThe Todorov reipe was observed on the systems with Coulomb-likeinteration. Here we demonstrate that this rule appears useful for theonstrution of relativisti potential model of mesons.It is well known that the spetra of heavy quarkoniums are desribedsatisfatory (and modulo spin e�ets) by means of the nonrelativistipotential model with the short-range Coulomb potential (7) and thelong-range linear potential [17℄:Vv(r) = ar; (71)where a > 0 is a onstant.The desription of light mesons needs the appliation of relativistimodels. They frequently are built as single-partile wave equations with



15 ðÒÅ�ÒÉÎÔthe vetor short-range potential and the salar long-range one [22℄. Othermodels treat mesons as an extended objets or a omposite two-quarkrelativisti systems. One of them whih is onise and elegant, and whihreets prinipal features of the light meson spetrosopy, is the ovariantosillator model. Few versions of this model are given in Refs. [23℄.The nonrelativisti, single-partile and osillator models appears re-lated to one another by the Todorov reipe. Given the single-partileKlein-Gordon equation (1) with the salar potential (71) and the ve-tor one (7), this rule �xes unambiguously the form of the two-partilewave equation (3){(5) whih is the relativization of the nonrelativistipotential model.If ma = 0 and � = 0 the wave equation redues to the osillatorproblem and yields the exat solution for the mass spetrum:M2 = 8a [`+ 2nr + 32 ℄ : (72)The spetrum falls on the family of straight lines in the (M2,`){planeknown in the hadron spetrosopy as the leading (for nr = 0) and daugh-ter's (nr > 0) Regge trajetories. This struture and (`+2nr){degenerayof the spetrum (72) are harateristi of atual light meson spetra, ifto neglet the rest mass ontribution and �ne spin e�ets.In the general ase the equation (3){(5), (7), (71) is not exatly solv-able. Here we use the osillator approximation to estimate the spetrumfor ` large.The substitution 	(r) = 1r (r)Y �` (n) redues the equation (3){(5),(71) to the form  00(r) + [QM � UM`(r)℄ (r) = 0; (73)where UM`(r) = UM (r) + `(`+ 1)=r2: (74)The funtion UM`(r) has a loal minimum at some point r0 dependingon M , ` and satisfying the onditionU 0M`(r0) = 0: (75)Thus one an expand the potential (74) at the minimum,UM`(r) � UM`(r0) + 12U 00M`(r0)(r � r0)2; (76)and searh a solution of this osillator problem. A quantization onditionthen reads: QM � UM`(r0) =q 12U 00M`(r0)(2nr + 1): (77)
ICMP{02{10E 16If nr � 1, the approximate solution di�ers exponentially little from theexat solutions of the problem.Eqs. (75) and (77) form the set of algebrai equations with r0 andMto be found. Solving this set by a power series in ` leads to the asymptotiformulae: r20 = `+ 12a � 1p2a �m1m24a + ��+O(`�1) (78)andM2 = 8a h`+ 2nr + 32 �p2�i+ 2�m21 +m22 +p2m1m2�+O(`�1):(79)The latter represents the spetrum of the system at `� nr (but providesa good approximation even if ` ' 2� 3). As to ompare this formula tothe Eq. (72), the inuene of the short-range interation and non-zerorest masses result in the parallel shift of the family of Regge trajetoriesas a whole. Considering the onstants m1, m2 (and, possibly, �) as ad-justable parameters one an obtain trajetories for di�erent families oflight mesons.Up to now we negleted a mass splitting due to a spin interation. Themajority of attempts to desribe spin e�ets in hadron spetrosopy on-erns with the heavy quark systems whih an be treated as weakly rela-tivisti systems. As usual, one takes the generalized Pauli-Fermi Hamil-tonian with long-range salar potential and short-range vetor one (thepotentials (71), (7) in our ase) and orresponding spin orretions (19),(20) treated perturbatively [16,17,24℄. But this sheme an fail whenonsidering light mesons as orresponding to strongly relativisti do-main M � m1(2). First of all we note that, as it follows from Eqs. (78),(79), in this domain r20 � ` and M2 � `. Thus r0 � M , i.e., the radiusof meson is proportional to its mass; here we took into aount thatthe wave funtion at ` large is loalized around r0. Then we have roughestimates: Vs = ar �M; Ws � `=r �M =) Vs �Ws;Vv = ��=r �M�1; Wv � `=r3 �M�1 =) Vv �Wv: (80)The spin orretions appears to be of the same order as the nonrel-ativisti potentials. But atual spin e�ets in light meson spetra aresmall. Moreover, the operators (19) and (20) was dedued within theperturbation theory [16,17℄, so they should satisfy inequality W � Vby onstrution. Seond, the operators (19) and (20) are divergent ifm1 or/and m2 ! 0. Consequently, divergent terms appear in the mass



17 ðÒÅ�ÒÉÎÔspetrum (in ontrast to the ase of Coulomb-like interation where thespetrum is not singular if m1 or/and m2 vanish).The possible way to avoid these two problems is the following modi-�ation of operators (19) and (20): the rest masses of quarks involved inthese operators should be replaed by the \onstituent" masses:ma !Ma =pm2a +QM = M2 +m2a �m2�a2M ; a = 1; 2;�a = 3� a (81)possessing the properties 1) M1 + M2 = M , 2) Ma � M=2 if M �m1(2), and 3) Ma ! ma in the nonrelativisti limit M ! m+ (wesuppose thatM2 > jm21�m22j). The modi�ed operatorsW are regular atm1 or/and m2 ! 0, they beame small as W � V (m+=M)2 in stronglyrelativisti domain M � m1(2), and redue to W in weakly relativistidomain M � m+.Now let us estimate the e�et of spin orretions W s to the salarpotential (71) (the e�et of vetor interation is minor, as it followsfrom the estimates in (80) and the paragraph above). For this purposewe modify the salar potential V s = Vs +W s and substitute it (insteadof Vs) into the e�etive potential UM . Then we diagonalize the modi-�ed e�etive potential UM (r) and apply the osillator approximation tothe resulting pair of split quasipotential equations. Finally, we ome tothe asymptotially linear Regge trajetories (79) with the same slopeparameter 8a, but eah trajetory splits into three ones by parallel shift�M2 = ( 0; ` = j;�2a; ` = j � 1: (82)Note that the mass splitting does not depend on `. Qualitatively this re-sult orrelates with atual light meson spetra as well as with theoretialresults following from the string models [25,26℄.As in the spinless ase, the model is exatly solvable if ma = 0 and� = 0. The mass spetrum is determined by M2 = 4ax, where x is thepositive solution of the transendental equation:x2 � 2(2nr + 1)x� � =p(2`+ 1)2x2 + �2: (83)whih, in turns, redues to a ubi algebrai equation, and� = 8>>>><>>>>: 0; ` = j; s = 0;1; ` = j; s = 1;`+ 1; ` = j + 1; s = 1;�`; ` = j � 1; s = 1: (84)
ICMP{02{10E 18Here we do not write down an expliit form of the mass spetrum.Of ourse, the minimal set of adjustable parameters makes thepresent potential model too poor to provide a sharp �t to an experimen-tal data. In partiular, the mass splitting (82) is unambiguously �xed bythe typial hadron sale 8a. This value (0% and 25% of 8a) ontraditsto some estimates of atual experimental data (about 5�6%; see [26℄).In another version of the model we inlude operators W similarly tothe ase of Coulomb-like interation (see Eq. (22)), i.e., by the followingmodi�ation of the e�etive potential:UM (r)! UM (r) = UM (r) + 2mMW s + 2EMW v: (85)In the strongly relativisti domain the present potential model leadsto the same asymptoti spetrum (79) as the spinless model does. Themass splitting is small. It an be alulated perturbatively and �tted toexperimental data by adjusting the parameters ma and �.8. SummaryIn the present paper we have onstruted the family of simple quantum-mehanial models whih desribe two-fermion relativisti systems withdi�erent Coulomb-like and on�ning interations. We have embodied inthese models some theoretial experiene of studies in the relativistitwo-body problem. We started with the quasipotential equations de-sribing the salar and vetor interation of two spinless partiles. As itwas observed by Todorov [5,7℄, these equations are solvable, and theyhave simple single-partile struture. Similar features are harateristiof the family of RDIT models [12,13℄ whih desribe an arbitrary rela-tivisti Coulomb-like interation inluding the gravitation. We generalizethese equations to the ase of two-fermioni systems. For this purposewe use the operators known from QFT whih desribe spin-dependentorretions to the salar, vetor and gravitational interating [4,16{18℄.We �rst treat these operators perturbatively and obtain the spetrumof muonium and its salar and gravitational ounterparts with aurayup to �4. Then we modify the equations in suh a way that they beomeexatly solvable and yield orret (within the same auray) mass spe-tra. These equations an be useful for aounting higher than �4 (say,radiative) orretions to a partile interation by means of the �rst orderperturbation theory.Also we have demonstrated that the Todorov reipe of onstrutingtwo-body equations permits a straightforward appliation to the ase ofon�ning interation. The generalization to spinning partiles has been
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