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Heuristic Models of Two-Fermion Relativistic Systems with
Field-Type Interaction

A .Duviryak

Abstract. We use the chain of simple heuristic expedients to obtain
perturbative and exactly solvable relativistic spectra for a family of two-
fermionic bound systems with Coulomb-like interaction. In the case of
electromagnetic interaction the spectrum coincides up to the second or-
der in a coupling constant with that following from the quantum electro-
dynamics. Discrepancy occurs only for S-states which is the well-known
difficulty in the bound-state problem. The confinement interaction is
considered too.
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1. Introduction

A nonrelativistic two-body problem reduces completely to the single-
body problem with a central potential. The single-body Schrédinger
equation becomes the two-body one (for the centre-of-mass frame of
reference) if to replace the particle mass by the reduced mass, and to
understand the radius-vector r as the relative position vector.

In the relativistic case the relation between the single- and two-
particle problems is not so transparent. There are few reasons for that.
First, a spin appears on a physical stage. The existence of spin diversi-
fies properties of both interacting particles of matter and fields mediating
this interaction. Thus even in the single-particle problem various rela-
tivistic wave equations such as the Klein-Gordon, Dirac, Duffin-Kemmer
and other equations exist, and they can involve scalar, vector, tensor and
other interaction potentials. Second, there exist different approaches to
the relativistic two- and few- body problem. The most profound ap-
proaches are based on the quantum field theory (QFT), especially on the
perturbative QFT. They lead to complicated integral equations (such as
the Bethe-Salpeter equation [1,2]), coupled sets of differential equations
(such as the Breit equation [3,2]), or their higher order differential reduc-
tions (such as the Fermi-Pauli equation [4,2]). Other approaches such as
quasipotential [5]-[7] or ones based on the relativistic direct interaction
theory (RDIT) [8]-[9] are semi- or purely phenomenological. They mani-
fest a general structure of relativistic potentials and wave equations while
features of concrete interactions must be brought from other sources (for
example, from the classical or quantum field theory).

I. Todorov has observed a simple way how the Klein-Gordon equa-
tion can be transformed into the quasipotential equation describing the
scalar and vector interaction of two spinless particles [5,7]. In the case of
Coulomb-like interaction this equation gives the spectrum which agrees
with QFT result up to a*~terms of coupling constant expansion. The
generalization for an arbitrary field-type interaction (including higher
rank tensor interactions) arises naturally from the Schwinger source the-
ory [10] and the Fokker formalism [8], and results in some RDIT models
[11]-[13]. In the present paper we construct relativistic wave equations
appropriate for the description of the field-type interaction of two parti-
cles with spin ;.

At the beginning we summarize results concerning spinless system.
Namely, in Section 2 we formulate the family of relativistic wave equa-
tions which describe the scalar, vector and gravitational (i.e., tensor)
interaction of two scalar particles. These equations have a common ef-
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fective single-particle structure. In the case of Coulomb-like interaction
they are exactly solvable. The mass spectra coincide with that obtained
algebraically in Ref. [13], and agree up to a’ with known QFT results.
The only disagreement exists for S-states.

Then we modify the wave equations in order to describe two-fermion
systems. The spin-orbital, spin-spin and tensor corrections to the scalar,
vector and gravitational interactions are brought from QFT! (Section 3).
In Section 4 by means of an appropriate rescaling of r spin interaction is
included into the eigenstate problem as small correction to the effective
Coulomb Hamiltonian. Calculations with the first order perturbation
theory (Section 5) reproduce the QED muonium spectrum up to o*
[15] and give a generalization for the cases of scalar and gravitational
interactions.

Spin potential corrections depend on r = |r| as 1/r3. Due to prop-
erties of matrix elements with Coulomb bound states we transform spin
corrections into 1/r? terms in such a way that perturbative spectrum
(up to a*) does not change. In this form the problem appears exactly
solvable, which is shown explicitly in Section 6.

The Todorov construction was proposed in the case of Coulomb-like
interactions. Here (in Section 7) we approve this recipe for a system with
confining interaction, and make an appropriate modification to account
spin effects.

2. Spectra of systems of two spinless particles

Let us consider the stationary Klein-Gordon equation for particle of the
rest mass m in the scalar potential Vi(r) and the vector one Vi (r) de-
pending on r = |r|:

AU(r) + ([E = Vo(r)]* = [m + Vy(r)]?) ¥(r) = 0. (1)

Following the Todorov’s observation in the quasipotential approach [5,7]
one can construct the appropriate two-particle wave equation by the
following substitution:

MZ_ 2 _ 2 .

where m, is the rest mass of ath particle, and M is the total mass of
the system, i.e., the energy in the centre-of-mass frame of reference. One

E — Ey =

1We note that two-particle spin-orbital interaction can be recovered completely
from the single-particle one [14] but this is not concerned with spin-spin and tensor
terms.
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obtains the Schrodinger-like equation:
A¥(r) +[Qm — Un(r)]¥(r) = 0, 3)

where
1

=B, —md = ——
@um =By —my =

is the on-shell value of the relative momentum squared as a function of
M [7],

[M? —mA][M? —m?], (4)

Un (r) = 2[my Vs (r) + En Ve (r)] + V3 (r) — VI (r) ()

is the effective potential, and m4+ = m; £ ms. In the nonrelativistic
limit the equation (3) becomes the usual Schrédinger equation with the
nonrelativistic potential V(r) = Vi(r) + Vi (r) where r is the distance
between particles.

The effective potential Uy (r) depends of the total mass M. Thus the
equation (3) is of the quasipotential type, and problems can occur with
the consistent quantum-mechanical treatment [7].

In the case of Coulomb-like interaction

Vs(r) = —as/r, (6)
Vi(r) = —ay/r (7)

with the coupling constants ag > 0 and a,, > 0 the equation (3) is exactly
solvable. Moreover, for the case of electromagnetic (vector) interaction
the corresponding spectra coincide (except for the ground S-states) with
those following from the scalar quantum electrodynamics in the second
order of a coupling constant [6,5].

The simple Todorov recipe embraces the cases of scalar and vector
interactions (and their superposition). The generalization to the cases
of higher-rank tensor interactions can be built on the base of the family
of RDIT models (known as time-asymmetric) [11,12]. This leads to the
Schrodinger-like (quasipotential) equation (3) with

042

Uni(r) = =2ma fN) -+, ®)

where A = Ejr/mjs, and the function f(A) (such that f(1) =1) as well
as the constant - depend on the tensor nature of interaction [12,13]. For
example, for the scalar, vector and gravitational interaction (or another
second-rank tensor interaction, for example, the strong gravitation) we
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have:
A = 1, 7% =1, 9)
fV(A) = A w=-1, (10)
L) = 21, =6 (11)

The superposition of these interactions can be considered by means of the
superposition of the functions and constants (9)-(11). Also we note that
for scalar and vector interactions (and their superposition) the effective
potentials (8) (from the time-asymmetric models) is identical to (5) with
(6) or/and (7) (from the Todorov recipe).

The mass spectrum following from the equation (3), (4), (8) can be
presented in the implicit form:

M? =m3 +m3 + 2mimal, (12)

where )\ is a positive solution of the equation:

1— 2 2
__)‘ - ‘L) (13)
) v
and
v=n,+1+4/(+1)%+a%y (14)

is effective “principal quantum number”; here n, = 0,1, ... is the radial
quantum number and £ = 0,1, ... is the angular quantum number.

For the scalar, vector and gravitational interactions the equation (13)
is solvable:

As = V1-—a2/v2 (15)
A = 1/\/1+a2/y2, (16)

Ag = 2\/_\/ V8 + 2/, (17)

Approximately, with accuracy up to o, we have :

2 4 4
(e e , 1 my e 0%

Mrm, — 2% T gy o 18

Mt oz T o {f (1) 4 4dmy T s 20+ 1’ (18)

where f' = df/d\, m, = mims/m, is the reduced mass, and n =

n, + £ + 1 is the principal quantum number.
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3. Two-fermion systems: including spin effects

The weakly relativistic system of two fermions interacting via scalar
or/and vector field can be described by the generalized Breit-Fermi
Hamiltonian [16,17]. Besides the nonrelativistic Coulomb Hamiltonian,
it includes relativistic kinematic terms, spin-independent and spin-
dependent corrections to the interaction. Some of these terms are singu-
lar and can be taken into account as perturbations only.

Here we do not consider the Breit-Fermi Hamiltonian. Instead, we
modify the Todorov recipe in order to describe the spin effects in two-
fermionic systems. For this purpose we need only a spin-dependent part
W of the Breit-Fermi Hamiltonian. For the scalar and vector interaction
it is [16,17]:

1 or o2\ V/(r)
Wy = —-L-|—=+—]-=2 19
= () R 1
1 1 2 1 2 V.
R e
4 mi  mime ms  Mima r
1 1
- _VI _VII T
+ o (370 - V)
1
coy AV, (r), 20
Gmms 7102 (r) (20)
where L = —ir x V is the orbital momentum operator, o, is the spin

operator acting on the ath particle spin variable, and 7' = 3(o1 - n)(o2 -
n)—o -0 is the tensor operator. In the case of gravitational interaction

(with the nonrelativistic potential V;(r) = —a,/r, where az = Gmima,
and G is the gravitational constant) we have [18]:

1 3 4 3 4 «a

W, = =L-(|— il hat 4

& 4 ([m% * mlmg] o1t [m% * mlmg] 02> r3

oy 21y 5

. . 21
dmymar3 3mimay 71 020(r) 1)

Now in order to construct a two-fermion equation we replace a non-
relativistic potential V by V = V + W in the effective potential Uy, (Eq.
(5) or (8)). The resulting quasipotential equation is not solvable, and we
should apply some approximate method.

In the case of Coulomb-like interaction the spin term W is meant to
be small as to compare to the nonrelativistic potential V (r) = —a/r.
Thus we can modify approximately the effective potential (8) as follows:

Uyp(r) — UM(T) ~ Up(r) + 2mpy f(N)W. (22)
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Now one can account the spin correction by means of the pertur-
bation method. In so doing we note the following. First, the original
(non-perturbed) equation (3) fails to describe correctly S-states. Thus
we will neglect d-functional terms in W (i.e., the last term in r.h.s. of
Eq. (21), and the last term in r.h.s. of Eq. (20) in the case (7)) as they
contribute in S-states only. Second, the modified equation (as well as
the unperturbed one (3)) is quasipotential but not the true Schrédinger
equation. Thus it needs some minor reformulation to be tractable within
the perturbation method.

4. Spin corrections to the Coulomb-like interaction

In the case of Coulomb-like interaction the two-fermion wave equation
reads:

‘ a a?
[pz —2mp f(N) (— — W) +v— - QM} ¥ =0, (23)
r T
where p = —i V. Using the substitution

r = p/Ru, P=Rym with Ry = amay f(A) (24)

we present the equation (23) in the dimensionless Hamiltonian form:

HY =¢cV. (25)
Here
H=H" + gW (26)
is the total Hamiltonian,
O =11 (27)
2 p

is the basic Coulomb Hamiltonian,
W) — o2 2L
H'Y =T, = 37 +p3 ¥ (n) (28)
is a perturbation since « is considered as a small parameter, and

CQu N1
“T 2R3, T 2021200 (29)

is a dimensionless energy (i.e., a spectral parameter).
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With sufficient accuracy (i.e., up to terms ~ O(a)) the last term of
[ is equal to W/(a? Rys) but does not depend on M. This is provided by
use of approximate equality M = m, in small terms. The general form
of the operator ¥ acting on angular and spin variables is:

Y= [¢-0)L-oy+295L - o_ +((1-4*)T] /16, (30)

where o1 = 01 £ 02, 6 = m_/m, and the constants £, n and ( for
scalar, vector and gravitational interactions are defined as follows:

fS = _17 Tls = 17 CS = 07 (31)
5\/ = 37 v = _17 CV = 17 (32)
fg = 77 v = _37 CV =1L (33)

5. Basic states and first-order perturbation theory

The basic Hamiltonian (27) commutes with operators of orbital angu-
lar momentum L, total spin S = 1o, total angular momentum J =
L + io, and parity P. In order to write down the basic eigenfunctions
T (p) we use the angular “bispinor harmonics” ¢(n) (i = 4,0, —,+).
In 2x2 matrix representation they are [19]:

== | § ] (34)

1
0 n————
©(n) 2]'(J'+1)><
~/G—p D) (GH+p) Y pYy

ne GHutD) (G —p Y+
(35)
)= —— L
4 2G11)(2)13)

[ V- ) (—p+2) YT —x/(j+u+1)(j—u+1)in1]

X

[ —VO+rAD)G=—p+ )Y, V+u+r D) GHa+2) YA J
(36)
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1
X
V/25(2j-1)

V=1 G+ Y VUG- Y,
X )

VWG YL, G=p=D)(—p) Y/
(37)

where Y/'(n) (u = —¢,...,£) are the spherical harmonics depending on
the direction n = r/r. The bispinor harmonics form an orthonormal set,

+( —

14

in the sense that (ilk) = [dn Tr((,o:r Yr) = 0;k, where the integrations
are taken over the entire solid angle.

The bispinor harmonics posses the following properties (besides those
due to properties of the spherical harmonics):

L-op® = /j(j+1¢,
L-op® = j(+Det - ¢,
L-op™ = —'(J +2)p7,
L-opt = (j—1)¢t, (38)
n-op? = - 2]]111 et + Qj{i-l p*,
_ j+1 A, j 0,A
Il'O'(,Oi - QJJTQO O:F 2]']_‘_1()0 ’

where the components of the vector operator o are the Pauli matrices.

The action of spin operators on the bispinor harmonics is as follows:
o1 = o, o030 = pa’. We note that ¢ is antisymmetric and "+
are symmetric matrices. Then it follows from this and Eqgs. (38) that ¢4
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and %% satisfy the following equalities:

J2o = j(j+ 1, J=0,1 ...
J3p = pp, B==J5sJs
2,41 _ 7 _ ja Z = A,O
Lot = ((l+1)y, Z—{jﬂ, P
o ) 0 =A
SZ‘PZ = 5(5 + 1)‘1027 §= { 1, 7= 7:‘:
Pt = (=)t
PpT = (=)o,
Loorpt = 0,
%L ' U"FQDO = _()007
IL-orp = —(j+2)¢, (39)
sLooot = (-1t
Lo = i+ 1)%4,
iL a'_<pj§ = 0, ,
o102 = —3p°,
o1 o2 F = OF
Tt = 0,
;T = ¢,
- Vi(i+1) i+2
Lo = 3% —agavs

j—=1

ey
1Tt = 3¥17 AL

- _ +
211 ¢ T 3gif

Now one can choose four independent basic eigenfunctions \Ilgo) (p)
(i =A,0,—,+) of HO as follows:

1 1
v{0(p) = ;un,m)w(n), v (p) = Sun1(p)¢ (), (40)

where wu, ¢(p) is a solution of the radial Coulomb problem

Hfun,l(p) = E(O)Un,l(p) (41)

with the effective Hamiltonian

_1fd e+ 1
He= {dp2 p? } p “2)

and the dimensionless eigenenergy

£© = _1/(2n%), n=1,2,... (43)
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We note that the basic eigenfunctions \IJEE’)O(p) have the parity P = (—)7,
and \IJ;O) (p) have the parity P = (—)7*1. The function \Ilg?) (p) describes
the singlet (s = 0, £ = j) state while \Ilé?;(p) correspond to triplet
(s=1,0=j,j+1) states.

Let us calculate the first-order correction e(!) to the dimensionless en-
ergy € ~ £(© 4 a?(M). The total Hamiltonian H = H(® + T commutes
with operators of parity P and total angular momentum J =L + 0.
One can choose the wave functions ¥(p) as the eigenfunctions of J2, J3
and P. Thus they can be spanned onto states \11527)0 if P = (—)7, or onto
W;O Vif P = (=)7L In the each parity case zero-order eigenvalues &(®)
are twice degenerated. Thus in the first order of perturbation theory we
have

1 . . .
68,2)=§{wakkiJ(Fu—rmzwr,ﬂ £k (49

withi=A, k=0if P= (=) andi = —, k = + if P = (=)/*!, where
the matrix [ = [I';;] is defined as follows:

Pl =L = | [ an (eorvm)|. @)
Taking (28) and (40) into account we have:
{ (AIZ]4)  (4]%]0) ]
)

M= 24l 21)L + (il (46)
Osl4)  (OfI0) |
if P =(-)7, and
-3 [ (G+1p2[+1) 0 ]
2 o G-11p1-1) |
[ G SIS G+l =D A0 ]
+ (47)
L G-+ D01 -1l -1 (0[S0 |
if P =(—)/*!, where
@15l = [ an i (o] @)z m) (48)

and
(110 = / dp e (p) 0 wne(p). (19)
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In particular,

o 1 _an _ 210
(Lp=16) = m; (Clp 3|€> = m; (50)
(t+1]p2t-1) = 0, (t+1|p3)-1) = 0. (51)

The relations (50) are well known in literature (see [20] or [21]), and (51)
can be calculated by means of formulae given in [20, chap. Mathematical
Supplements, § f].

Using (50), (51) and calculating the matrix elements (i|X|k) by means
of Egs. (30)-(33), (39) one obtains the matrix I' and then the corrections
£ to the dimensionless energy. Then, using (12), (29) and expanding
the total mass M in « one obtains the first-order mass spectra (i.e., with
accuracy up to a?).

Due to the relations (50) and (51) the matrix I' is not diagonal if
P = (—)’. Thus the correspondent first-order states are the mixture of
singlet (s = 0, £ = j) and triplet (s = 1, £ = j) states. In the P = (—)/*!
case ' is diagonal, and the triplet (s = 1, £ = j + 1) states does not
mix. Thus it is convenient to classify the first-order mass spectra by j
and £. These spectra can be obtained from Eq. (18) by the following
substitution:

v =+ (L, ) (52)

where the function ¢(¢,j) depends on both a spin state of the system
and the tensor rank of mediating field. We have:

(14024 /(1+02)2 + 1662(0 + 1) P
8((C+1) ’ =)
1462
¢s = -7 — 541 (53
TR =7+ ,( )
1462
_ _ =j-1
A(l+1) t=i-1L
(1 /THa%ErD
W+ 1) ’ —
1 1-42
v = B ——— :' 54
¢ ) "2 2@i—) f=itt (54
1 1- 62
=7—-1
l 20+ 1) T 2iT ey t=i-1
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( 3(1i 1+452£(€+1)) .
4+ 1) o =0
2
¢ =  _3 __1-07 _ (55)
) 2 2020-1) f=itt
3 14

(=j—1.

l 20+ 1) T 20iT3) J

The Eqgs. (18), (52) and (54) reproduce the muonium spectrum [15]
and (if m; = my = m) the positronium spectrum [4].

6. Solvable simulation of first-order mass spectra

Solving the Schrodinger equation (25) perturbatively is due to the fact
that spin interaction term in the operator (28) depends on p as p~2.
Below we construct some exactly solvable model which reproduces the
spectrum of perturbation theory.

Let us modify the operator (28) as follows

r—rI= 22(;), (56)
where
Z(Il) =7 + 2{E(n)/L2}ordered- (57)

The operator Z acts on angle and spin variables. It is not defined on
states which contain the S-wave, but we refuse these states from the
very beginning. On other states Z is supposed to be Hermitian. Thus it
must be somehow ordered if ¥(n) and L? do not commute.

It is easy to examine by means of Eqgs. (50)—(51) that in the first order
of perturbation theory the Hamiltonian H = H® + 2@ has the same
spectrum as the original Hamiltonian H. This result does not depend on
the ordering rule used in Z.

Below we show that the new Schrédinger equation is exactly solvable.
Of course, the exact solution and corresponding spectrum depend on the
ordering rule. One can consider, for example, the following rules:

{E/Lz}ordered = %(E|L|7z + |L|722)7 (58)
{E/L2}0rdered = |L|_1E|L|_1 (59)
{E/Lz}ordered = /dt 67%1‘2267%1‘27 (60)

0
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where |L| = VL2. The last rule is inspired by the Feynman representa-
tion of an inverse operator: A~! = [ dt exp(—tA).

The radial reduction of the Schrédinger equation can be performed
by the following choice of the wave functions ¥(p) as the eigenfunctions
of J?, J; and P:

¥(p) = = 3 vilo)e (). (61)

Here the summa in r.h.s. of Eq. (61) runs over i = 4,0 if P = (—)?, and
over i = —,+ if P = (—)/*1. Substituting this function into the new
Schrodinger equation and collecting coefficients at bispinor harmonics
o4 and ¢° (or at ¢~ and @) one obtains the pair of coupled Rarita-
Schwinger equations. In the matrix form they are:

HW(p) = eV (p), (62)
where
V(p) = [¥i(p)] (63)
is two-component column wave function,
1( d 1 1
H=-—-<¢—-—-—K}—-— 4
2 {dp2 p? } p’ (64
and
K= [Ky] = [(i|L?> + o*Z|k)] . (65)

The form of 2x2 symmetric matrix K depends on both the parity
and the tensor structure of interaction:

2
T 2 a“nd
U ety G+
“= 296 §-62-¢(1-8%) (%)
a . 2 e
2ViG+D G+ +a (” G+ )

for the parity P = (=), and
K =

. . 2 2 1-42 2, 1-62 3/5G+D)
G+DE+2) + o (7‘ G0 [5_5 sz“D’ I FOFDH

a2¢ 1-62 3Vji(G+1)
4(2j+1) jG+1)+1°

(=1 +a” (7+ & [5 -8 - cé;—fi])

' (67)
for the parity P = (—)7*1. We note that in general case where ¢ # 0
(including the cases of vector and gravitational interaction; c.f. Egs.(32),
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(33)) the operators ¥ and L? does not commute. Thus in calculating of
K we chosen the ordering rule (60). The use of (58) or (59) leads to off-
diagonal elements of K which are singular at j = 1 (besides of j = 0).
But there is no any physical reason for such a singularity.

Using now an appropriate unitary (even orthogonal, to be sharp)
transformation, the matrix K can be diagonalized, so that the cou-
pled Rarita-Schwinger equations split into a pair of one-dimensional
Schrédinger equations with effective Hamiltonians H T of the form

(42) but with non-integer g(,-7k):

by = =2 + \ 1+ Kk (68)

with

Kir = |:Kzz + Ky, = \/(Kzz — Ki)? + 4Kﬁg] (i #Fk), (69)

1
2
where i = A, k=0if P= (=), and i = — k = + if P = (-)/*L.

These equations are exactly solvable and lead to the mass spectrum
(12)—(17) but with another effective “principal quantum number”:

v— 7 =0(n,,j,P) =n, + lpy + 1. (70)

The calculation of effective “principal quantum number” 7 is straight-
forward by the use of Eqgs. (66)—(70). Here we do not write down these
rather cumbersome formulae.

7. The confinement problem

The Todorov recipe was observed on the systems with Coulomb-like
interaction. Here we demonstrate that this rule appears useful for the
construction of relativistic potential model of mesons.

It is well known that the spectra of heavy quarkoniums are described
satisfactory (and modulo spin effects) by means of the nonrelativistic
potential model with the short-range Coulomb potential (7) and the
long-range linear potential [17]:

Vi (r) = ar, (71)

where a > 0 is a constant.
The description of light mesons needs the application of relativistic
models. They frequently are built as single-particle wave equations with
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the vector short-range potential and the scalar long-range one [22]. Other
models treat mesons as an extended objects or a composite two-quark
relativistic systems. One of them which is concise and elegant, and which
reflects principal features of the light meson spectroscopy, is the covariant
oscillator model. Few versions of this model are given in Refs. [23].

The nonrelativistic, single-particle and oscillator models appears re-
lated to one another by the Todorov recipe. Given the single-particle
Klein-Gordon equation (1) with the scalar potential (71) and the vec-
tor one (7), this rule fixes unambiguously the form of the two-particle
wave equation (3)—(5) which is the relativization of the nonrelativistic
potential model.

If my = 0 and @ = 0 the wave equation reduces to the oscillator
problem and yields the exact solution for the mass spectrum:

M? =8a[l+2n, + 3]. (72)

The spectrum falls on the family of straight lines in the (M?2,¢)-plane
known in the hadron spectroscopy as the leading (for n, = 0) and daugh-
ter’s (n, > 0) Regge trajectories. This structure and (¢+2n,.)-degeneracy
of the spectrum (72) are characteristic of actual light meson spectra, if
to neglect the rest mass contribution and fine spin effects.

In the general case the equation (3)—(5), (7), (71) is not exactly solv-
able. Here we use the oscillator approximation to estimate the spectrum
for £ large.

The substitution ¥(r) = 2¢(r)Y}'(n) reduces the equation (3)—(5),
(71) to the form

P (r) + [@um — Unee(r)]o(r) =0, (73)

where
Une(r) =Up(r) + L€+ 1)/1“2. (74)

The function Upze(r) has a local minimum at some point 79 depending
on M, ¢ and satisfying the condition

Uhre(ro) = 0. (75)
Thus one can expand the potential (74) at the minimum,
1 .
Unie(r) m Une(ro) + 5Uk1e(ro)(r —10)?, (76)

and search a solution of this oscillator problem. A quantization condition

then reads:
Qut — Unte(ro) = \/ SU%p(ro) 20, + 1), (77)
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If n,. ~ 1, the approximate solution differs exponentially little from the
exact solutions of the problem.

Egs. (75) and (77) form the set of algebraic equations with ro and M
to be found. Solving this set by a power series in £ leads to the asymptotic
formulae:

2 {4+ % 1 (m1m2

=t - (Th +a) +0(e™) (78)

and

M? =8a [( +2n, + 2 — \/5@} +2 (m% +mi + \/imlmg) + 0.

(79)
The latter represents the spectrum of the system at £ >> n,. (but provides
a good approximation even if ¢ ~ 2 + 3). As to compare this formula to
the Eq. (72), the influence of the short-range interaction and non-zero
rest masses result in the parallel shift of the family of Regge trajectories
as a whole. Considering the constants my, ms (and, possibly, a) as ad-
justable parameters one can obtain trajectories for different families of
light mesons.

Up to now we neglected a mass splitting due to a spin interaction. The
majority of attempts to describe spin effects in hadron spectroscopy con-
cerns with the heavy quark systems which can be treated as weakly rela-
tivistic systems. As usual, one takes the generalized Pauli-Fermi Hamil-
tonian with long-range scalar potential and short-range vector one (the
potentials (71), (7) in our case) and corresponding spin corrections (19),
(20) treated perturbatively [16,17,24]. But this scheme can fail when
considering light mesons as corresponding to strongly relativistic do-
main M > my ). First of all we note that, as it follows from Egs. (78),
(79), in this domain 72 ~ ¢ and M? ~ (. Thus ro ~ M, i.e., the radius
of meson is proportional to its mass; here we took into account that
the wave function at £ large is localized around rg. Then we have rough
estimates:

Vi =ar ~ M, Wy ~Lfr ~M = Vi~ W,
Vi=—afr~M"'  W,~Ll/rP~M' = V,~W,. (80)

The spin corrections appears to be of the same order as the nonrel-
ativistic potentials. But actual spin effects in light meson spectra are
small. Moreover, the operators (19) and (20) was deduced within the
perturbation theory [16,17], so they should satisfy inequality W <« V
by construction. Second, the operators (19) and (20) are divergent if
my or/and ms — 0. Consequently, divergent terms appear in the mass
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spectrum (in contrast to the case of Coulomb-like interaction where the
spectrum is not singular if m; or/and my vanish).

The possible way to avoid these two problems is the following modi-
fication of operators (19) and (20): the rest masses of quarks involved in
these operators should be replaced by the “constituent” masses:

2 2 2 _

ma o> My = T+ Qu = 2= CTRE ()

2M a=3—-a

possessing the properties 1) My + My = M, 2) M, ~ M/2 if M >
my2), and 3) M, — m, in the nonrelativistic limit M — my (we
suppose that M2 > |m? —m3|). The modified operators W are regular at
my or/and my — 0, they became small as W ~ V (my. /M)? in strongly
relativistic domain M >> my(2), and reduce to W in weakly relativistic
domain M ~ m.

Now let us estimate the effect of spin corrections Wy to the scalar
potential (71) (the effect of vector interaction is minor, as it follows
from the estimates in (80) and the paragraph above). For this purpose
we modify the scalar potential Vs = Vi, + W, and substitute it (instead
of V) into the effective potential Uy;. Then we diagonalize the modi-
fied effective potential Uz (r) and apply the oscillator approximation to
the resulting pair of split quasipotential equations. Finally, we come to
the asymptotically linear Regge trajectories (79) with the same slope
parameter 8a, but each trajectory splits into three ones by parallel shift

AM2 = 0, L=y, (82)
+2a, {=j+1.

Note that the mass splitting does not depend on £. Qualitatively this re-
sult correlates with actual light meson spectra as well as with theoretical
results following from the string models [25,26].

As in the spinless case, the model is exactly solvable if m, = 0 and
a = 0. The mass spectrum is determined by M? = 4ax, where z is the
positive solution of the transcendental equation:

22 —2(2n, + 1)z — k = /(20 + 1)222 + K2. (83)
which, in turns, reduces to a cubic algebraic equation, and
0, (=3, s=0,
1, {=j, s=1,
{+1, {=7+1, s=1,
-4, (=j—-1,s=1.
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Here we do not write down an explicit form of the mass spectrum.

Of course, the minimal set of adjustable parameters makes the
present potential model too poor to provide a sharp fit to an experimen-
tal data. In particular, the mass splitting (82) is unambiguously fixed by
the typical hadron scale 8a. This value (0% and 25% of 8a) contradicts
to some estimates of actual experimental data (about 5+6%; see [26]).

In another version of the model we include operators W similarly to
the case of Coulomb-like interaction (see Eq. (22)), i.e., by the following
modification of the effective potential:

Un(r) = Upnr(r) = Ups(r) + 2mpy W + 2Ey Wy (85)

In the strongly relativistic domain the present potential model leads
to the same asymptotic spectrum (79) as the spinless model does. The
mass splitting is small. It can be calculated perturbatively and fitted to
experimental data by adjusting the parameters m, and a.

8. Summary

In the present paper we have constructed the family of simple quantum-
mechanical models which describe two-fermion relativistic systems with
different Coulomb-like and confining interactions. We have embodied in
these models some theoretical experience of studies in the relativistic
two-body problem. We started with the quasipotential equations de-
scribing the scalar and vector interaction of two spinless particles. As it
was observed by Todorov [5,7], these equations are solvable, and they
have simple single-particle structure. Similar features are characteristic
of the family of RDIT models [12,13] which describe an arbitrary rela-
tivistic Coulomb-like interaction including the gravitation. We generalize
these equations to the case of two-fermionic systems. For this purpose
we use the operators known from QFT which describe spin-dependent
corrections to the scalar, vector and gravitational interacting [4,16-18].
We first treat these operators perturbatively and obtain the spectrum
of muonium and its scalar and gravitational counterparts with accuracy
up to a*. Then we modify the equations in such a way that they become
exactly solvable and yield correct (within the same accuracy) mass spec-
tra. These equations can be useful for accounting higher than a* (say,
radiative) corrections to a particle interaction by means of the first order
perturbation theory.

Also we have demonstrated that the Todorov recipe of constructing
two-body equations permits a straightforward application to the case of
confining interaction. The generalization to spinning particles has been
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proposed too. In the weakly relativistic domain this equation reduces to
well-known potential model [17] which is appropriate to the description of
heavy mesons. In the strongly relativistic limit it yields a mass spectrum
which reproduces qualitatively light-meson experimental data.
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