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 Models of Two-Fermion Relativisti
 Systems withField-Type Intera
tionA.DuviryakAbstra
t. We use the 
hain of simple heuristi
 expedients to obtainperturbative and exa
tly solvable relativisti
 spe
tra for a family of two-fermioni
 bound systems with Coulomb-like intera
tion. In the 
ase ofele
tromagneti
 intera
tion the spe
trum 
oin
ides up to the se
ond or-der in a 
oupling 
onstant with that following from the quantum ele
tro-dynami
s. Dis
repan
y o

urs only for S-states whi
h is the well-knowndiÆ
ulty in the bound-state problem. The 
on�nement intera
tion is
onsidered too.
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionA nonrelativisti
 two-body problem redu
es 
ompletely to the single-body problem with a 
entral potential. The single-body S
hr�odingerequation be
omes the two-body one (for the 
entre-of-mass frame ofreferen
e) if to repla
e the parti
le mass by the redu
ed mass, and tounderstand the radius-ve
tor r as the relative position ve
tor.In the relativisti
 
ase the relation between the single- and two-parti
le problems is not so transparent. There are few reasons for that.First, a spin appears on a physi
al stage. The existen
e of spin diversi-�es properties of both intera
ting parti
les of matter and �elds mediatingthis intera
tion. Thus even in the single-parti
le problem various rela-tivisti
 wave equations su
h as the Klein-Gordon, Dira
, DuÆn-Kemmerand other equations exist, and they 
an involve s
alar, ve
tor, tensor andother intera
tion potentials. Se
ond, there exist di�erent approa
hes tothe relativisti
 two- and few- body problem. The most profound ap-proa
hes are based on the quantum �eld theory (QFT), espe
ially on theperturbative QFT. They lead to 
ompli
ated integral equations (su
h asthe Bethe-Salpeter equation [1,2℄), 
oupled sets of di�erential equations(su
h as the Breit equation [3,2℄), or their higher order di�erential redu
-tions (su
h as the Fermi-Pauli equation [4,2℄). Other approa
hes su
h asquasipotential [5℄{[7℄ or ones based on the relativisti
 dire
t intera
tiontheory (RDIT) [8℄{[9℄ are semi- or purely phenomenologi
al. They mani-fest a general stru
ture of relativisti
 potentials and wave equations whilefeatures of 
on
rete intera
tions must be brought from other sour
es (forexample, from the 
lassi
al or quantum �eld theory).I. Todorov has observed a simple way how the Klein-Gordon equa-tion 
an be transformed into the quasipotential equation des
ribing thes
alar and ve
tor intera
tion of two spinless parti
les [5,7℄. In the 
ase ofCoulomb-like intera
tion this equation gives the spe
trum whi
h agreeswith QFT result up to �4{terms of 
oupling 
onstant expansion. Thegeneralization for an arbitrary �eld-type intera
tion (in
luding higherrank tensor intera
tions) arises naturally from the S
hwinger sour
e the-ory [10℄ and the Fokker formalism [8℄, and results in some RDIT models[11℄{[13℄. In the present paper we 
onstru
t relativisti
 wave equationsappropriate for the des
ription of the �eld-type intera
tion of two parti-
les with spin 12 .At the beginning we summarize results 
on
erning spinless system.Namely, in Se
tion 2 we formulate the family of relativisti
 wave equa-tions whi
h des
ribe the s
alar, ve
tor and gravitational (i.e., tensor)intera
tion of two s
alar parti
les. These equations have a 
ommon ef-
ICMP{02{10E 2fe
tive single-parti
le stru
ture. In the 
ase of Coulomb-like intera
tionthey are exa
tly solvable. The mass spe
tra 
oin
ide with that obtainedalgebrai
ally in Ref. [13℄, and agree up to �4 with known QFT results.The only disagreement exists for S-states.Then we modify the wave equations in order to des
ribe two-fermionsystems. The spin-orbital, spin-spin and tensor 
orre
tions to the s
alar,ve
tor and gravitational intera
tions are brought from QFT1 (Se
tion 3).In Se
tion 4 by means of an appropriate res
aling of r spin intera
tion isin
luded into the eigenstate problem as small 
orre
tion to the e�e
tiveCoulomb Hamiltonian. Cal
ulations with the �rst order perturbationtheory (Se
tion 5) reprodu
e the QED muonium spe
trum up to �4[15℄ and give a generalization for the 
ases of s
alar and gravitationalintera
tions.Spin potential 
orre
tions depend on r = jrj as 1=r3. Due to prop-erties of matrix elements with Coulomb bound states we transform spin
orre
tions into 1=r2 terms in su
h a way that perturbative spe
trum(up to �4) does not 
hange. In this form the problem appears exa
tlysolvable, whi
h is shown expli
itly in Se
tion 6.The Todorov 
onstru
tion was proposed in the 
ase of Coulomb-likeintera
tions. Here (in Se
tion 7) we approve this re
ipe for a system with
on�ning intera
tion, and make an appropriate modi�
ation to a

ountspin e�e
ts.2. Spe
tra of systems of two spinless parti
lesLet us 
onsider the stationary Klein-Gordon equation for parti
le of therest mass m in the s
alar potential Vs(r) and the ve
tor one Vv(r) de-pending on r = jrj:�	(r) + �[E � Vv(r)℄2 � [m+ Vs(r)℄2�	(r) = 0: (1)Following the Todorov's observation in the quasipotential approa
h [5,7℄one 
an 
onstru
t the appropriate two-parti
le wave equation by thefollowing substitution:E ! EM = M2 �m21 �m222M ; m! mM = m1m2M ; (2)where ma is the rest mass of ath parti
le, and M is the total mass ofthe system, i.e., the energy in the 
entre-of-mass frame of referen
e. One1We note that two-parti
le spin-orbital intera
tion 
an be re
overed 
ompletelyfrom the single-parti
le one [14℄ but this is not 
on
erned with spin-spin and tensorterms.



3 ðÒÅ�ÒÉÎÔobtains the S
hr�odinger-like equation:�	(r) + [QM � UM (r)℄	(r) = 0; (3)where QM � E2M �m2M = 14M2 [M2 �m2+℄[M2 �m2�℄; (4)is the on-shell value of the relative momentum squared as a fun
tion ofM [7℄, UM (r) = 2[mMVs(r) +EMVv(r)℄ + V 2s (r) � V 2v (r) (5)is the e�e
tive potential, and m� = m1 � m2. In the nonrelativisti
limit the equation (3) be
omes the usual S
hr�odinger equation with thenonrelativisti
 potential V (r) = Vs(r) + Vv(r) where r is the distan
ebetween parti
les.The e�e
tive potential UM (r) depends of the total massM . Thus theequation (3) is of the quasipotential type, and problems 
an o

ur withthe 
onsistent quantum-me
hani
al treatment [7℄.In the 
ase of Coulomb-like intera
tionVs(r) = ��s=r; (6)Vv(r) = ��v=r (7)with the 
oupling 
onstants �s > 0 and �v > 0 the equation (3) is exa
tlysolvable. Moreover, for the 
ase of ele
tromagneti
 (ve
tor) intera
tionthe 
orresponding spe
tra 
oin
ide (ex
ept for the ground S-states) withthose following from the s
alar quantum ele
trodynami
s in the se
ondorder of a 
oupling 
onstant [6,5℄.The simple Todorov re
ipe embra
es the 
ases of s
alar and ve
torintera
tions (and their superposition). The generalization to the 
asesof higher-rank tensor intera
tions 
an be built on the base of the familyof RDIT models (known as time-asymmetri
) [11,12℄. This leads to theS
hr�odinger-like (quasipotential) equation (3) withUM (r) = �2mMf(�)�r + 
 �2r2 ; (8)where � = EM=mM , and the fun
tion f(�) (su
h that f(1) = 1) as wellas the 
onstant 
 depend on the tensor nature of intera
tion [12,13℄. Forexample, for the s
alar, ve
tor and gravitational intera
tion (or anotherse
ond-rank tensor intera
tion, for example, the strong gravitation) we
ICMP{02{10E 4have: fs(�) = 1; 
s = 1; (9)fv(�) = �; 
v = �1; (10)fg(�) = 2�2 � 1; 
g = �6: (11)The superposition of these intera
tions 
an be 
onsidered by means of thesuperposition of the fun
tions and 
onstants (9)-(11). Also we note thatfor s
alar and ve
tor intera
tions (and their superposition) the e�e
tivepotentials (8) (from the time-asymmetri
 models) is identi
al to (5) with(6) or/and (7) (from the Todorov re
ipe).The mass spe
trum following from the equation (3), (4), (8) 
an bepresented in the impli
it form:M2 = m21 +m22 + 2m1m2�; (12)where � is a positive solution of the equation:1� �2f2(�) = �2�2 ; (13)and � = nr + 12 +q(`+ 12 )2 + �2
 (14)is e�e
tive \prin
ipal quantum number"; here nr = 0; 1; ::: is the radialquantum number and ` = 0; 1; ::: is the angular quantum number.For the s
alar, ve
tor and gravitational intera
tions the equation (13)is solvable: �s = p1� �2=�2; (15)�v = 1.p1 + �2=�2 ; (16)�g = 12p2r4� �2�2 + ��p8 + �2=�2: (17)Approximately, with a

ura
y up to �4, we have :M � m+ � mr�22n2 + mr�42n4 �f 0(1)� 14 � mr4m+ �+ mr�4n3 
2`+ 1 ; (18)where f 0 = df=d�, mr = m1m2=m+ is the redu
ed mass, and n =nr + `+ 1 is the prin
ipal quantum number.



5 ðÒÅ�ÒÉÎÔ3. Two-fermion systems: in
luding spin e�e
tsThe weakly relativisti
 system of two fermions intera
ting via s
alaror/and ve
tor �eld 
an be des
ribed by the generalized Breit-FermiHamiltonian [16,17℄. Besides the nonrelativisti
 Coulomb Hamiltonian,it in
ludes relativisti
 kinemati
 terms, spin-independent and spin-dependent 
orre
tions to the intera
tion. Some of these terms are singu-lar and 
an be taken into a

ount as perturbations only.Here we do not 
onsider the Breit-Fermi Hamiltonian. Instead, wemodify the Todorov re
ipe in order to des
ribe the spin e�e
ts in two-fermioni
 systems. For this purpose we need only a spin-dependent partW of the Breit-Fermi Hamiltonian. For the s
alar and ve
tor intera
tionit is [16,17℄:Ws = �14 L ���1m21 + �2m22� V 0s (r)r ; (19)Wv = 14 L ��� 1m21 + 2m1m2 ��1 + � 1m22 + 2m1m2 ��2� V 0v(r)r+ 112m1m2 �1r V 0v(r) � V 00v (r)� T+ 16m1m2 �1 � �2�Vv(r); (20)where L = � i r �r is the orbital momentum operator, �a is the spinoperator a
ting on the ath parti
le spin variable, and T = 3(�1 �n)(�2 �n)��1 ��2 is the tensor operator. In the 
ase of gravitational intera
tion(with the nonrelativisti
 potential Vg(r) = ��g=r, where �g = Gm1m2,and G is the gravitational 
onstant) we have [18℄:Wg = 14 L ��� 3m21 + 4m1m2 ��1 + � 3m22 + 4m1m2 ��2� �gr3+ �g4m1m2r3 T + 2��g3m1m2 �1 � �2 Æ(r): (21)Now in order to 
onstru
t a two-fermion equation we repla
e a non-relativisti
 potential V by ~V = V +W in the e�e
tive potential UM (Eq.(5) or (8)). The resulting quasipotential equation is not solvable, and weshould apply some approximate method.In the 
ase of Coulomb-like intera
tion the spin term W is meant tobe small as to 
ompare to the nonrelativisti
 potential V (r) = ��=r.Thus we 
an modify approximately the e�e
tive potential (8) as follows:UM (r)! ~UM (r) � UM (r) + 2mMf(�)W: (22)
ICMP{02{10E 6Now one 
an a

ount the spin 
orre
tion by means of the pertur-bation method. In so doing we note the following. First, the original(non-perturbed) equation (3) fails to des
ribe 
orre
tly S-states. Thuswe will negle
t Æ-fun
tional terms in W (i.e., the last term in r.h.s. ofEq. (21), and the last term in r.h.s. of Eq. (20) in the 
ase (7)) as they
ontribute in S-states only. Se
ond, the modi�ed equation (as well asthe unperturbed one (3)) is quasipotential but not the true S
hr�odingerequation. Thus it needs some minor reformulation to be tra
table withinthe perturbation method.4. Spin 
orre
tions to the Coulomb-like intera
tionIn the 
ase of Coulomb-like intera
tion the two-fermion wave equationreads: �p2 � 2mMf(�)��r �W�+ 
�2r2 �QM�	 = 0; (23)where p = � ir. Using the substitutionr = �=RM ; p = RM� with RM = �mMf(�) (24)we present the equation (23) in the dimensionless Hamiltonian form:H	 = "	: (25)Here H = H(0) +H(1) (26)is the total Hamiltonian, H(0) = 12�2 � 1� (27)is the basi
 Coulomb Hamiltonian,H(1) = �2�; � = 
2�2 + 1�3 �(n) (28)is a perturbation sin
e � is 
onsidered as a small parameter, and" = QM2R2M = �2 � 12�2f2(�) (29)is a dimensionless energy (i.e., a spe
tral parameter).



7 ðÒÅ�ÒÉÎÔWith suÆ
ient a

ura
y (i.e., up to terms � O(�)) the last term of� is equal toW=(�3RM ) but does not depend onM . This is provided byuse of approximate equality M � m+ in small terms. The general formof the operator � a
ting on angular and spin variables is:� = �(� � Æ2)L � �+ + 2�ÆL � �� + �(1� Æ2)T � =16; (30)where �� = �1 � �2, Æ = m�=m+, and the 
onstants �, � and � fors
alar, ve
tor and gravitational intera
tions are de�ned as follows:�s = �1; �s = 1; �s = 0; (31)�v = 3; �v = �1; �v = 1; (32)�g = 7; �v = �3; �v = 1: (33)5. Basi
 states and �rst-order perturbation theoryThe basi
 Hamiltonian (27) 
ommutes with operators of orbital angu-lar momentum L, total spin S = 12�+, total angular momentum J =L+ 12�+ and parity P . In order to write down the basi
 eigenfun
tions	(0)(�) we use the angular \bispinor harmoni
s" 'i(n) (i = A; 0;�;+).In 2�2 matrix representation they are [19℄:'A(n) = 1p2Y �j (n) � 0 �11 0 � ; (34)'0(n) = 1p2j(j+1)��24 �p(j��+1)(j+�)Y ��1J �Y �j�Y �j p(j+�+1)(j � �)Y �+1j 35 ;(35)'�(n) = 1p2(j+1)(2j+3)��24 p(j��+1)(j��+2)Y ��1j+1 �p(j+�+1)(j��+1)Y �j+1�p(j+�+1)(j��+1)Y �j+1 p(j+�+1)(j+�+2)Y �+1j+1 35 ;(36)
ICMP{02{10E 8'+(n) = 1p2j(2j�1)��24 p(j+��1)(j+�)Y ��1j�1 p(j+�)(j��)Y �j�1p(J+�)(j��)Y �j�1 p(j���1)(j��)Y �+1j�1 35 ;(37)where Y �` (n) (� = �`; :::; `) are the spheri
al harmoni
s depending onthe dire
tion n = r=r. The bispinor harmoni
s form an orthonormal set,in the sense that hijki = R dnTr('yi 'k) = Æi k, where the integrationsare taken over the entire solid angle.The bispinor harmoni
s posses the following properties (besides thosedue to properties of the spheri
al harmoni
s):L � �'A = pj(j + 1)'0;L � �'0 = pj(j + 1)'A � '0;L � �'� = �(j + 2)'�;L � �'+ = (j � 1)'+;n � �'A;0 = �q j+12j+1'� �q j2j+1'�;n � �'� = �q j+12j+1'A;0 �q j2j+1'0;A; (38)where the 
omponents of the ve
tor operator � are the Pauli matri
es.The a
tion of spin operators on the bispinor harmoni
s is as follows:�1' = �', �2' = '�T . We note that 'A is antisymmetri
 and '0;�are symmetri
 matri
es. Then it follows from this and Eqs. (38) that 'A



9 ðÒÅ�ÒÉÎÔand '0;� satisfy the following equalities:J2' = j(j + 1)'; j = 0; 1; :::;J3' = �'; � = �j; :::; j;L2'i = `(`+ 1)'i; ` = � j; i = A; 0;j � 1; i = �;S2'i = s(s+ 1)'i; s = � 0; i = A;1; i = 0;�;P'A;0 = (�)j'A;0;P'� = (�)j+1'�;12L � �+'A = 0;12L � �+'0 = �'0;12L � �+'� = �(j + 2)'�;12L � �+'+ = (j � 1)'+;12L � ��'A;0 = pj(j + 1)'0;A;12L � ��'� = 0;�1 � �2'A = �3'A;�1 � �2'0;� = '0;�;12T'A = 0;12T'0 = '0;12T'� = 3 pj(j+1)2j+1 '+ � j+22j+1'�;12T'+ = 3 pj(j+1)2j+1 '� � j�12j+1'+:
(39)

Now one 
an 
hoose four independent basi
 eigenfun
tions 	(0)i (�)(i = A; 0;�;+) of H(0) as follows:	(0)A;0(�) = 1�un;j(�)'A;0(n); 	(0)� (�) = 1�un;j�1(�)'�(n); (40)where un;`(�) is a solution of the radial Coulomb problemH`un;`(�) = "(0)un;`(�) (41)with the e�e
tive HamiltonianH` = �12 � dd�2 � `(`+ 1)�2 �� 1� (42)and the dimensionless eigenenergy"(0) = �1=(2n2); n = 1; 2; : : : (43)
ICMP{02{10E 10We note that the basi
 eigenfun
tions 	(0)A;0(�) have the parity P = (�)j ,and 	(0)� (�) have the parity P = (�)j+1. The fun
tion 	(0)A (�) des
ribesthe singlet (s = 0, ` = j) state while 	(0)0;�(�) 
orrespond to triplet(s = 1, ` = j; j � 1) states.Let us 
al
ulate the �rst-order 
orre
tion "(1) to the dimensionless en-ergy " � "(0)+�2"(1). The total Hamiltonian H = H(0)+�2� 
ommuteswith operators of parity P and total angular momentum J = L + 12�+.One 
an 
hoose the wave fun
tions 	(�) as the eigenfun
tions of J2, J3and P . Thus they 
an be spanned onto states 	(0)A;0 if P = (�)j , or onto	(0)� if P = (�)j�1. In the ea
h parity 
ase zero-order eigenvalues "(0)are twi
e degenerated. Thus in the �rst order of perturbation theory wehave"(1)(i;k) = 12 ��ii + �kk �q(�ii � �kk)2 + 4� 2ik� (i 6= k) (44)with i = A; k = 0 if P = (�)j and i = �; k = + if P = (�)j+1, wherethe matrix � = [�ik℄ is de�ned as follows:� = [�ik℄ = [hij�jki℄ = �Z drTr�	yi (r)�	k(r)�� : (45)Taking (28) and (40) into a

ount we have:� = 
2 hjj��2jji1+ hjj��3jji24 hAj�jAi hAj�j0ih0j�jAi h0j�j0i 35 (46)if P = (�)j , and� = 
2 24 hj+1j��2jj+1i 00 hj�1j��2jj�1i 35+ 24 hj+1j��3jj+1ihAj�jAi hj+1j��3jj�1ihAj�j0ihj�1j��3jj+1ih0j�jAi hj�1j��3jj�1ih0j�j0i 35 (47)if P = (�)j+1, wherehij�jki = Z dnTr�'yi (n)�'k(n)� (48)and h`0j�sj`i = Z d� un;`0(�) �s un;`(�): (49)



11 ðÒÅ�ÒÉÎÔIn parti
ular,h`j��2j`i = 1n3(`+ 12 ) ; h`j��3j`i = h`j��2j`i`(`+ 1) ; (50)h`+1j��2j`�1i = 0; h`+1j��3j`�1i = 0: (51)The relations (50) are well known in literature (see [20℄ or [21℄), and (51)
an be 
al
ulated by means of formulae given in [20, 
hap. Mathemati
alSupplements, x f℄.Using (50), (51) and 
al
ulating the matrix elements hij�jki by meansof Eqs. (30){(33), (39) one obtains the matrix � and then the 
orre
tions"(0) to the dimensionless energy. Then, using (12), (29) and expandingthe total massM in � one obtains the �rst-order mass spe
tra (i.e., witha

ura
y up to �4).Due to the relations (50) and (51) the matrix � is not diagonal ifP = (�)j . Thus the 
orrespondent �rst-order states are the mixture ofsinglet (s = 0, ` = j) and triplet (s = 1, ` = j) states. In the P = (�)j+1
ase � is diagonal, and the triplet (s = 1, ` = j � 1) states does notmix. Thus it is 
onvenient to 
lassify the �rst-order mass spe
tra by jand `. These spe
tra 
an be obtained from Eq. (18) by the followingsubstitution: 
 ! 
 + �(`; j) (52)where the fun
tion �(`; j) depends on both a spin state of the systemand the tensor rank of mediating �eld. We have:�s = 8>>>>>>><>>>>>>>:
1 + Æ2 �p(1 + Æ2)2 + 16Æ2`(`+ 1)8`(`+ 1) ; ` = j;1 + Æ24` ; ` = j + 1;� 1 + Æ24(`+ 1) ; ` = j � 1; (53)

�v = 8>>>>>>><>>>>>>>: �1�p1 + 4Æ2`(`+ 1)4`(`+ 1) ; ` = j;� 12` � 1� Æ22(2`� 1) ; ` = j + 1;12(`+ 1) + 1� Æ22(2`+ 3) ; ` = j � 1; (54)
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�g = 8>>>>>>>><>>>>>>>>: �3�1�p1 + 4Æ2`(`+ 1)�4`(`+ 1) ; ` = j;� 32` � 1� Æ22(2`� 1) ; ` = j + 1;32(`+ 1) + 1� Æ22(2`+ 3) ; ` = j � 1: (55)The Eqs. (18), (52) and (54) reprodu
e the muonium spe
trum [15℄and (if m1 = m2 = m) the positronium spe
trum [4℄.6. Solvable simulation of �rst-order mass spe
traSolving the S
hr�odinger equation (25) perturbatively is due to the fa
tthat spin intera
tion term in the operator (28) depends on � as ��3.Below we 
onstru
t some exa
tly solvable model whi
h reprodu
es thespe
trum of perturbation theory.Let us modify the operator (28) as follows� �! ~� = Z(n)2�2 ; (56)where Z(n) = 
 + 2f�(n)=L2gordered: (57)The operator Z a
ts on angle and spin variables. It is not de�ned onstates whi
h 
ontain the S-wave, but we refuse these states from thevery beginning. On other states Z is supposed to be Hermitian. Thus itmust be somehow ordered if �(n) and L2 do not 
ommute.It is easy to examine by means of Eqs. (50){(51) that in the �rst orderof perturbation theory the Hamiltonian ~H = H(0) + �2 ~G has the samespe
trum as the original Hamiltonian H . This result does not depend onthe ordering rule used in Z.Below we show that the new S
hr�odinger equation is exa
tly solvable.Of 
ourse, the exa
t solution and 
orresponding spe
trum depend on theordering rule. One 
an 
onsider, for example, the following rules:f�=L2gordered = 12 (�jLj�2 + jLj�2�); (58)f�=L2gordered = jLj�1�jLj�1 (59)f�=L2gordered = 1Z0 dt e� t2L2�e� t2L2 ; (60)



13 ðÒÅ�ÒÉÎÔwhere jLj = pL2. The last rule is inspired by the Feynman representa-tion of an inverse operator: A�1 = R10 dt exp(�tA).The radial redu
tion of the S
hr�odinger equation 
an be performedby the following 
hoi
e of the wave fun
tions 	(�) as the eigenfun
tionsof J2, J3 and P : 	(�) = 1�Xi  i(�)'i(n): (61)Here the summa in r.h.s. of Eq. (61) runs over i = A; 0 if P = (�)j , andover i = �;+ if P = (�)j+1. Substituting this fun
tion into the newS
hr�odinger equation and 
olle
ting 
oeÆ
ients at bispinor harmoni
s'A and '0 (or at '� and '+) one obtains the pair of 
oupled Rarita-S
hwinger equations. In the matrix form they are:H	(�) = "	(�); (62)where 	(�) = [ i(�)℄ (63)is two-
omponent 
olumn wave fun
tion,H = �12 � dd�2 � 1�2K�� 1� ; (64)and K = [Kik℄ = �hijL2 + �2Zjki� : (65)The form of 2�2 symmetri
 matrix K depends on both the parityand the tensor stru
ture of intera
tion:K = 264 j(j + 1) + �2
 �2�Æ2pj(j+1)�2�Æ2pj(j+1) j(j + 1) + �2 �
 � ��Æ2��(1�Æ2)4j(j+1) � 375 (66)for the parity P = (�)j , andK =264 (j+1)(j+2) + �2�
 � 14(j+1) h� � Æ2 + � 1�Æ22j+1i� ; �2� 1�Æ24(2j+1) 3pj(j+1)j(j+1)+1�2� 1�Æ24(2j+1) 3pj(j+1)j(j+1)+1 ; (j�1)j + �2�
 + 14j h� � Æ2 � � 1�Æ22j+1i� 375(67)for the parity P = (�)j+1. We note that in general 
ase where � 6= 0(in
luding the 
ases of ve
tor and gravitational intera
tion; 
.f. Eqs.(32),
ICMP{02{10E 14(33)) the operators � and L2 does not 
ommute. Thus in 
al
ulating ofK we 
hosen the ordering rule (60). The use of (58) or (59) leads to o�-diagonal elements of K whi
h are singular at j = 1 (besides of j = 0).But there is no any physi
al reason for su
h a singularity.Using now an appropriate unitary (even orthogonal, to be sharp)transformation, the matrix K 
an be diagonalized, so that the 
ou-pled Rarita-S
hwinger equations split into a pair of one-dimensionalS
hr�odinger equations with e�e
tive Hamiltonians H~`(i;k) of the form(42) but with non-integer ~`(i;k):~`(i;k) = � 12 +q 14 +K(i;k); (68)withK(i;k) = 12 �Kii +Kkk �q(Kii �Kkk)2 + 4K 2ik� (i 6= k); (69)where i = A; k = 0 if P = (�)j , and i = �; k = + if P = (�)j+1.These equations are exa
tly solvable and lead to the mass spe
trum(12){(17) but with another e�e
tive \prin
ipal quantum number":� �! ~� = ~�(nr; j; P ) = nr + ~`(i;k) + 1: (70)The 
al
ulation of e�e
tive \prin
ipal quantum number" ~� is straight-forward by the use of Eqs. (66){(70). Here we do not write down theserather 
umbersome formulae.7. The 
on�nement problemThe Todorov re
ipe was observed on the systems with Coulomb-likeintera
tion. Here we demonstrate that this rule appears useful for the
onstru
tion of relativisti
 potential model of mesons.It is well known that the spe
tra of heavy quarkoniums are des
ribedsatisfa
tory (and modulo spin e�e
ts) by means of the nonrelativisti
potential model with the short-range Coulomb potential (7) and thelong-range linear potential [17℄:Vv(r) = ar; (71)where a > 0 is a 
onstant.The des
ription of light mesons needs the appli
ation of relativisti
models. They frequently are built as single-parti
le wave equations with



15 ðÒÅ�ÒÉÎÔthe ve
tor short-range potential and the s
alar long-range one [22℄. Othermodels treat mesons as an extended obje
ts or a 
omposite two-quarkrelativisti
 systems. One of them whi
h is 
on
ise and elegant, and whi
hre
e
ts prin
ipal features of the light meson spe
tros
opy, is the 
ovariantos
illator model. Few versions of this model are given in Refs. [23℄.The nonrelativisti
, single-parti
le and os
illator models appears re-lated to one another by the Todorov re
ipe. Given the single-parti
leKlein-Gordon equation (1) with the s
alar potential (71) and the ve
-tor one (7), this rule �xes unambiguously the form of the two-parti
lewave equation (3){(5) whi
h is the relativization of the nonrelativisti
potential model.If ma = 0 and � = 0 the wave equation redu
es to the os
illatorproblem and yields the exa
t solution for the mass spe
trum:M2 = 8a [`+ 2nr + 32 ℄ : (72)The spe
trum falls on the family of straight lines in the (M2,`){planeknown in the hadron spe
tros
opy as the leading (for nr = 0) and daugh-ter's (nr > 0) Regge traje
tories. This stru
ture and (`+2nr){degenera
yof the spe
trum (72) are 
hara
teristi
 of a
tual light meson spe
tra, ifto negle
t the rest mass 
ontribution and �ne spin e�e
ts.In the general 
ase the equation (3){(5), (7), (71) is not exa
tly solv-able. Here we use the os
illator approximation to estimate the spe
trumfor ` large.The substitution 	(r) = 1r (r)Y �` (n) redu
es the equation (3){(5),(71) to the form  00(r) + [QM � UM`(r)℄ (r) = 0; (73)where UM`(r) = UM (r) + `(`+ 1)=r2: (74)The fun
tion UM`(r) has a lo
al minimum at some point r0 dependingon M , ` and satisfying the 
onditionU 0M`(r0) = 0: (75)Thus one 
an expand the potential (74) at the minimum,UM`(r) � UM`(r0) + 12U 00M`(r0)(r � r0)2; (76)and sear
h a solution of this os
illator problem. A quantization 
onditionthen reads: QM � UM`(r0) =q 12U 00M`(r0)(2nr + 1): (77)
ICMP{02{10E 16If nr � 1, the approximate solution di�ers exponentially little from theexa
t solutions of the problem.Eqs. (75) and (77) form the set of algebrai
 equations with r0 andMto be found. Solving this set by a power series in ` leads to the asymptoti
formulae: r20 = `+ 12a � 1p2a �m1m24a + ��+O(`�1) (78)andM2 = 8a h`+ 2nr + 32 �p2�i+ 2�m21 +m22 +p2m1m2�+O(`�1):(79)The latter represents the spe
trum of the system at `� nr (but providesa good approximation even if ` ' 2� 3). As to 
ompare this formula tothe Eq. (72), the in
uen
e of the short-range intera
tion and non-zerorest masses result in the parallel shift of the family of Regge traje
toriesas a whole. Considering the 
onstants m1, m2 (and, possibly, �) as ad-justable parameters one 
an obtain traje
tories for di�erent families oflight mesons.Up to now we negle
ted a mass splitting due to a spin intera
tion. Themajority of attempts to des
ribe spin e�e
ts in hadron spe
tros
opy 
on-
erns with the heavy quark systems whi
h 
an be treated as weakly rela-tivisti
 systems. As usual, one takes the generalized Pauli-Fermi Hamil-tonian with long-range s
alar potential and short-range ve
tor one (thepotentials (71), (7) in our 
ase) and 
orresponding spin 
orre
tions (19),(20) treated perturbatively [16,17,24℄. But this s
heme 
an fail when
onsidering light mesons as 
orresponding to strongly relativisti
 do-main M � m1(2). First of all we note that, as it follows from Eqs. (78),(79), in this domain r20 � ` and M2 � `. Thus r0 � M , i.e., the radiusof meson is proportional to its mass; here we took into a

ount thatthe wave fun
tion at ` large is lo
alized around r0. Then we have roughestimates: Vs = ar �M; Ws � `=r �M =) Vs �Ws;Vv = ��=r �M�1; Wv � `=r3 �M�1 =) Vv �Wv: (80)The spin 
orre
tions appears to be of the same order as the nonrel-ativisti
 potentials. But a
tual spin e�e
ts in light meson spe
tra aresmall. Moreover, the operators (19) and (20) was dedu
ed within theperturbation theory [16,17℄, so they should satisfy inequality W � Vby 
onstru
tion. Se
ond, the operators (19) and (20) are divergent ifm1 or/and m2 ! 0. Consequently, divergent terms appear in the mass



17 ðÒÅ�ÒÉÎÔspe
trum (in 
ontrast to the 
ase of Coulomb-like intera
tion where thespe
trum is not singular if m1 or/and m2 vanish).The possible way to avoid these two problems is the following modi-�
ation of operators (19) and (20): the rest masses of quarks involved inthese operators should be repla
ed by the \
onstituent" masses:ma !Ma =pm2a +QM = M2 +m2a �m2�a2M ; a = 1; 2;�a = 3� a (81)possessing the properties 1) M1 + M2 = M , 2) Ma � M=2 if M �m1(2), and 3) Ma ! ma in the nonrelativisti
 limit M ! m+ (wesuppose thatM2 > jm21�m22j). The modi�ed operatorsW are regular atm1 or/and m2 ! 0, they be
ame small as W � V (m+=M)2 in stronglyrelativisti
 domain M � m1(2), and redu
e to W in weakly relativisti
domain M � m+.Now let us estimate the e�e
t of spin 
orre
tions W s to the s
alarpotential (71) (the e�e
t of ve
tor intera
tion is minor, as it followsfrom the estimates in (80) and the paragraph above). For this purposewe modify the s
alar potential V s = Vs +W s and substitute it (insteadof Vs) into the e�e
tive potential UM . Then we diagonalize the modi-�ed e�e
tive potential UM (r) and apply the os
illator approximation tothe resulting pair of split quasipotential equations. Finally, we 
ome tothe asymptoti
ally linear Regge traje
tories (79) with the same slopeparameter 8a, but ea
h traje
tory splits into three ones by parallel shift�M2 = ( 0; ` = j;�2a; ` = j � 1: (82)Note that the mass splitting does not depend on `. Qualitatively this re-sult 
orrelates with a
tual light meson spe
tra as well as with theoreti
alresults following from the string models [25,26℄.As in the spinless 
ase, the model is exa
tly solvable if ma = 0 and� = 0. The mass spe
trum is determined by M2 = 4ax, where x is thepositive solution of the trans
endental equation:x2 � 2(2nr + 1)x� � =p(2`+ 1)2x2 + �2: (83)whi
h, in turns, redu
es to a 
ubi
 algebrai
 equation, and� = 8>>>><>>>>: 0; ` = j; s = 0;1; ` = j; s = 1;`+ 1; ` = j + 1; s = 1;�`; ` = j � 1; s = 1: (84)
ICMP{02{10E 18Here we do not write down an expli
it form of the mass spe
trum.Of 
ourse, the minimal set of adjustable parameters makes thepresent potential model too poor to provide a sharp �t to an experimen-tal data. In parti
ular, the mass splitting (82) is unambiguously �xed bythe typi
al hadron s
ale 8a. This value (0% and 25% of 8a) 
ontradi
tsto some estimates of a
tual experimental data (about 5�6%; see [26℄).In another version of the model we in
lude operators W similarly tothe 
ase of Coulomb-like intera
tion (see Eq. (22)), i.e., by the followingmodi�
ation of the e�e
tive potential:UM (r)! UM (r) = UM (r) + 2mMW s + 2EMW v: (85)In the strongly relativisti
 domain the present potential model leadsto the same asymptoti
 spe
trum (79) as the spinless model does. Themass splitting is small. It 
an be 
al
ulated perturbatively and �tted toexperimental data by adjusting the parameters ma and �.8. SummaryIn the present paper we have 
onstru
ted the family of simple quantum-me
hani
al models whi
h des
ribe two-fermion relativisti
 systems withdi�erent Coulomb-like and 
on�ning intera
tions. We have embodied inthese models some theoreti
al experien
e of studies in the relativisti
two-body problem. We started with the quasipotential equations de-s
ribing the s
alar and ve
tor intera
tion of two spinless parti
les. As itwas observed by Todorov [5,7℄, these equations are solvable, and theyhave simple single-parti
le stru
ture. Similar features are 
hara
teristi
of the family of RDIT models [12,13℄ whi
h des
ribe an arbitrary rela-tivisti
 Coulomb-like intera
tion in
luding the gravitation. We generalizethese equations to the 
ase of two-fermioni
 systems. For this purposewe use the operators known from QFT whi
h des
ribe spin-dependent
orre
tions to the s
alar, ve
tor and gravitational intera
ting [4,16{18℄.We �rst treat these operators perturbatively and obtain the spe
trumof muonium and its s
alar and gravitational 
ounterparts with a

ura
yup to �4. Then we modify the equations in su
h a way that they be
omeexa
tly solvable and yield 
orre
t (within the same a

ura
y) mass spe
-tra. These equations 
an be useful for a

ounting higher than �4 (say,radiative) 
orre
tions to a parti
le intera
tion by means of the �rst orderperturbation theory.Also we have demonstrated that the Todorov re
ipe of 
onstru
tingtwo-body equations permits a straightforward appli
ation to the 
ase of
on�ning intera
tion. The generalization to spinning parti
les has been



19 ðÒÅ�ÒÉÎÔproposed too. In the weakly relativisti
 domain this equation redu
es towell-known potential model [17℄ whi
h is appropriate to the des
ription ofheavy mesons. In the strongly relativisti
 limit it yields a mass spe
trumwhi
h reprodu
es qualitatively light-meson experimental data.Referen
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