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Amnorania. 3a kpurepiem lapica ciabke 3aMOpOXKeHE PO3BEICHHS HE-
MarHiTHOIO KOMITOHEHTOIO HE BIIJIUBAE HA GCUMNMOMUYHI KDUTHIHI MO-
Ka3Huku TpuBuMipnux (3d) marserukis raii3en6epriBcbkoro rtuiy. Y
€KCIIePUMEHTAX, O/IHAK, 3HAXO/(ATh KOHIEHTPAIIIHO 1 TeMIepaTypHo 3a-
stekHi nmoka3uuku. 11106 moscanTy 1l CriocTeperKenHs, MU BUKOPUCTOBY-
€MO TEOPETUKO-ITOJIFOBUI PEHOPMAJII3aIiHui TPy TOBUH miaxim, oOdmc-
JIIOI049N ehekmueHi KPUTHYIHI TIOKA3HUKU CJ1a00 PO3BEIEHOTO 3aMOPOKe-
HOrO raitzenbepriBcbkoro marmeruka tuiy. Byaydn neyniBepcasjbuumMu,
T1i TOKA3HUKH 3MIHIOIOTHCS 3 BiACTAHIO 10 KpUTUIHOI ToUKH T i B acumi-
TOTHYHIN MPAHUL CHIBIALAIOTH i3 HOKAa3HUKAM ducToro 3d raiizendepris-
CHKOT'O MarHeTHKa, K CIIOCTEPIraEThCA €KCIEePUMEHTATHHO.

Effective critical behaviour of diluted Heisenberg-like magnets
Maxym Dudka, Reinhard Folk, Yurij Holovatch, Dmytro Ivaneiko

Abstract. In agreement with the Harris criterion, asymptotic critical
exponents of three-dimensional (3d) Heisenberg-like magnets are not in-
fluenced by weak quenched dilution of non-magnetic component. How-
ever, often in the experimental studies of corresponding systems con-
centration- and temperature-dependent exponents are found with values
differing from those of the 3d Heisenberg model. In our study, we use the
field—theoretical renormalization group approach to explain this obser-
vation and to calculate the effective critical exponents of weakly diluted
quenched Heisenberg-like magnet. Being non-universal, these exponents
change with distance to the critical point T. as observed experimentally.
In the asymptotic limit (at T.) they equal to the critical exponents of
the pure 3d Heisenberg magnet as predicted by the Harris criterion.
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1. Introduction

Relevance of structural disorder for the critical behaviour remains to be
an important problem of modern condensed matter physics. Even a weak
disorder may change drastically the behaviour near the critical point and
in this respect may be related to the global characteristics of a physical
system, such as the space dimension, order parameter symmetry and the
origin of interparticle interaction. In this paper, we are going to discuss
some peculiarities of a paramegnetic-ferromagnetic phase transition in
magnets, where the randomness of structure has the form of substitu-
tional random-site or random-bond quenched disorder. Solid solutions of
magnets with small concentration of non-magnetic component as well as
amorphous magnets with large relaxation times may serve as an example
of such systems.

Intuitively, it is clear that for a weak enough disorder the ferromag-
netic phase persists in such systems. Obviously, intuition fails to predict
whether the critical exponents characterizing phase transition into fer-
romagnetic state will differ in a disordered system and in a “pure" one.
The answer here is given by the Harris criterion [1] which states that
the critical exponents of the disordered system are changed only if the
heat capacity critical exponent of a pure system is positive, otherwise the
critical exponents of a disordered system coincide with those of a pure
one. Returning to d = 3 dimensional magnets with O(m) symmetric
spontaneous magnetization one is lead to the conclusion, that here only
the critical exponents of uniaxial magnets described by the d = 3 Ising
model (m = 1) are the subject of influence by weak quenched disorder.
Indeed, the heat capacity diverges a = 0.109 £ 0.004 > 0 [2] for m = 1,
whereas it does not diverge for the easy-plane and Heisenberg-like mag-
nets: a = —0.011 £ 0.004 and @ = —0.122 £ 0.010 for m = 2 and m = 3,
respectively [2].

Note however that the Harris criterion tells about the scaling be-
haviour at the critical point T.. In other words it predicts (possible)
changes in the asymptotic values of the critical exponents defined at 7.
In real situations one often deals with the effective critical exponents gov-
erning scaling when T, still is not reached [3]. These are non-universal.
As far as in our study of particular interest will be the isothermal mag-
netic susceptibility x7 let us define the corresponding effective exponent

by [3]:

dln x(r)
~ dinT
In the limit 7" — T, the effective exponent coincides with the asymptotic

Yeit (T) = ,  with =T -T.|/T. (1)
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one Yefr = -

Already in the first experimental studies of weakly diluted uniaxial
(Ising-like) d = 3 random magnets [4] the asymptotic values of critical
exponents were found. For the solid solutions, the exponents do not
depend on the concentration of non-magnetic component and belong to
the new universality class [5] as predicted by the Harris criterion. We
do not know analogous experiments where an influence of disorder on
criticality of easy-plane magnets was examined. However its irrelevance
was experimentally proven |7] for the superfluid phase transition in He*
which belongs to the same O(2) universality class as the ferromagnetic
phase transition in easy-plane magnets.

As far as the disorder should be irrelevant for the asymptotic critical
behaviour of the Heisenberg magnets, the diluted d = 3 Heisenberg mag-
nets should belong to the same O(3) universality class as the pure ones.
Theoretically predicted values of the isothermal magnetic susceptibili-
ty, correlation length, heat capacity, pair correlation function, and the
order parameter asymptotic critical exponents in this universality class
read [2]:

~v=1.3895 + 0.0050, ¥=0.7073 + 0.0035, o= — 0.122 £ 0.009, (2)
n = 0.0355 £ 0.0025, 8 = 0.3662 £ 0.0025.

The experimental picture is more contravensional. The bulk of experi-
ments on critical behaviour of disordered Heisenberg-like magnets per-
formed up to middle 80-ies is discussed in the comprehensive reviews
[8,9]. More recent experiments may be found in [10-15] and references
therein. We show typical results of measurements of the isothermal mag-
netic susceptibility effective critical exponent e (1) in Figs. 1. As it is
seen from the pictures, the behaviour of ~eg is non-monotonic. The ex-
ponent differs from its value predicted in the asymtotic limit (2) and is
a subject of a wide crossover behaviour. Before reaching asymtotics eg
possess maximum (except of the fig. 1.d), the value of the maximum is
system dependent: it differs for different magnets.

It is standard now to rely on the renormalization group (RG) method
[16] to get a reliable quantitative description of the behaviour in the
vicinity of critical point. Namely in this way the cited above values (2)
of the critical exponents of d = 3 Heisenberg model were obtained. The
RG approach appeared to be a powerful tool to describe asymptotic
[5] and effective [6] critical behaviour of disordered Ising-like magnets
as well. The purpose of the present paper is to describe the crossover
behaviour of disordered Heisenberg-like magnets in frames of the field-
theoretical RG technique. In particular we want to calculate theoretically
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Figure 1. Experimentally measured isothermal magnetic susceptibili-
ty effective critical exponent ~yeg for disordered Heisenberg-like mag-
nets (1 = (T — T¢)/T.). a.: FeyoNis¢Bos (Fihnle et al., 1983 [11]); b
F€32Ni3ﬁcr14P12B6 (Kaul 1985 [9]) C.: F620N160P14B6, Fe40Ni40P14B6
(Kaul 1985 [9]) d.: F610N170B19811 (Kaul 1988 [12]) e.: F€16N164B19811
(Kaul et al., 1994 [13]); f.: FeggCosZr1o (Babu et al., 1997 [14]); g
FegoZrip (Babu et al., 1997 [14]); h.: Fegg_xMn,Zr1o (Perumal et al.,
2001 [15]).
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the isothermal magnetic susceptibility effective critical exponent and to
explain in this way the appearance of the peak in its typical experimental
dependencies. The rest of the paper is organized as follows. In the Section
2 we formulate the model and review main theoretical results obtained
for it so far by means of the RG technique, effective critical behaviour
is analyzed in the Section 3, we end by conclusions and outlook in the
Section 4.

2. The model and its RG analysis

The model of a random quenched magnet we are going to consider is
described by the following Hamiltonian:

1 - o
H=-3 2 JIR-R)Sadncncn. (3)

Here, the sum spans over all sites R of d-dimensional hypercubic lattice,

J(IR— R’|) is a short-range (ferro)magnetic interaction between classical
“spins” SR and SRr We consider the spins SR to be m-component vec-
tors and the Hamiltonian (3) contains their scalar product. Obviously,
for the particular case of Heisenberg spins we will put later m = 3. The
randomness is introduced into the Hamiltonian (3) by the occupation
numbers cg which are equal 1 if the site R is occupied by a spin and
0 if the site is empty. Considering the case when occupied sites are dis-
tributed without any correlation and fixed in certain configuration one
obtains so-called uncorrelated quenched m-vector model.

In principle, the above information is enough to apply the RG ap-
proach for a study of the critical behaviour of the model (3). One should
obtain an effective Hamiltonian corresponding to the model under con-
sideration and then one analyzes its long-distance properties by analyz-
ing appropriate RG equations [16]. But already on this step there are at
least two different possibilities to proceed and both were exploited for
the model (3). On one hand, to get the free energy of the model one
can average the logarithm of configuration-dependent partition function
over different possible configurations of disorder [17]. Then, making use
of the replica trick [18] one arrives to the familiar effective Hamiltonian
[19]:

Ha = —/ddR{%an[ 218 PHT ] + 4,Z|¢>a|“

a=1
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%(Z |<£a|2) } (4)

describing in the replica limit n — 0 critical properties of the model
(3). Here, o is a bare mass, ugp > 0 and vy < 0 are bare couplings and
5“ = (Ea (R) is an a-replica of m-component vector field. The prevailing
amount of RG studies of the critical behaviour of quenched m-vector
model was performed on the base of the effective Hamiltonian (4) [5].

However, one more effective Hamiltonian corresponding to the mod-
el (3) is discussed in the literature [20-23]. It is obtained exploiting the
idea that a quenched disordered system can be described as an equilib-
rium system with additional forces of constraints [24]. In such approach
both variables Sg and cg are treated equivalently and one ends up with
the effective Hamiltonian which differs from (4) and, consequently, leads
to different results for the critical behaviour of the model (3) [20-23].
Whereas the effective Hamiltonian (4) was used in the wide context of
general m-vector models [5], the approach of Refs. [20-23] was mainly
used in explanations of crossover behaviour in Heisenberg-like systems
[25]. Below, we will discuss our results, based on the effective Hamilto-
nian (4) for m = 3 and compare them with those derived in [20-23].

As it is well known, the renormalization group (RG) approach makes
use of the scaling symmetry of the system in the asymptotic limit to
extract the universal content and at the same time removes divergencies
which occur for the evaluation of the bare functions in this limit [16]. A
change in the renormalized couplings u, v of the effective Hamiltonian
(3) under the RG transformation is described by the flow equations:

d d
bqpull) = Bu (u(0),v(0)),  Eg70(0) = Bo (u(l), v(6)) ()

Here, ¢ is the flow parameter related to the distance 7 to the critical
point. The fixed points (u*,v*) of the system of differential equations
(5) are given by:

Bu (U*,’U*) =0, B (’U,*,?)*) =0. (6)
A fixed point is said to be stable if the stability matrix
B;; = aﬁui/auja i,Jj=12 u; = {u,v}, (7)

possess in this point eigenvalues w;,ws with positive real parts. In the
limit £ — 0, u(f) and v(f) attain the stable fixed point values u*, v*.
If the stable fixed point is reachable from the initial conditions (let us
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recall that for the effective Hamiltonian (3) they read v > 0,v < 0)
it corresponds to the critical point of the system. The asymptotic crit-
ical exponents values are defined by the fixed point values of the RG
~v-functions. In particular the isothermal magnetic susceptibility expo-
nent 7 is expressed in terms of the RG functions 74 and 742 describing
renormalization of the field ¢ and of the two-point vertex function with
a ¢? insertion correspondingly [16]:

-1 ’7¢2
2—’}/¢ ( )

In Eq. (8), the functions v4 = v¢(u,v), Y42 = ¥2(u,v) are calculated
in the stable fixed point u*,v*. In the RG scheme, the effective critical
exponents are calculated in the region, where couplings u(¢),v(£) have
not reached their fixed point values and depend on ¢. In particular for
the exponent g one gets:

oy e, oft)]
Yerr () = 1= 5 Rl ], o {6 ]

In (9) the second part is proportional to the f—functions (5) and comes
from the change of the amplitude part of the susceptibility. In the sub-
sequent calculations we will neglect this part, taking the contribution of
the amplitude function to the crossover to be small [28].

For the effective Hamiltonian (4), the fixed point structure is well
established [5]. It is schematically shown in Figs. 2.a, 2.b. Two qualita-
tively different scenarios are observed: for m > m, the critical behaviour
of the disordered magnet is governed by the fixed point of the pure mag-
net (u* > 0, v* = 0), whereas for m < m,. the new stable fixed point
(u* > 0, v* < 0) governs the asymptotic critical behaviour of the disor-
dered magnet. At the marginal dimensionality m. which separates these
two regimes, the o exponent of the pure magnet equals zero in agreement,
with the Harris criterion.

Best theoretical estimates of m, definitely support m, < 2: m, =
1.942 &+ 0.026 [26], m. = 1.912 + 0.004 [27]. Consequently, the fixed
point structure of the model of diluted Heisenberg-like magnet (m = 3)
is given by Fig. 2.a: the stable reachable fixed points of the diluted
and pure Heisenberg-like magnets do coincide (u* # 0,v* = 0), hence
their asymptotic critical exponents do coincide as well. However the last
statement does not concern the effective exponents. These are defined
by the running values of the couplings u(¢) # 0,v(f) # 0 and will be
calculated in the next section.

I (9)
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Figure 2. Fixed points structure for the effective Hamiltonian (4) at d = 3
and arbitrary m. a: m > m., b: m < m.. Stable fixed points are shown
by filled boxes, unstable ones are shown by filled circles. Only stable
fixed points with coordinates u* > 0, v* < 0 are reachable for the model
of the quenched magnet (3).

3. The RG flows and the effective critical behaviour

The RG functions of the model (4) are known by now in pretty high
orders of the perturbation theory [5,29]. For the purpose of present study
we will restrict ourselves by the first approximation where the described
crossover phenomena manifests itself for the Heisenberg-like disordered
magnets in non-trivial way. Within the two loop approximation in the
minimal subtraction RG scheme [30] the RG-functions read [31]:

8 3 14
Bu(u,v) = —u(e—m+ u—2v+%u2+
omn+82 5, 11lm+ 58
10
36 U T g W) (10)
2 8 5 2
Bu(u,v) = —v(e-— m;— u— mn6+ v+ (n’;;— )u2 +
3mn+14 , 11(m+2)
5V + 13 uv), (11)
2 2 . 2
vo(u,v) = m7—f2— u? + mn7; v? + m;(; uv, (12)
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m+ 2 +mn+2 m+2 , mn+2,
u v— u” — v
6 6 12 12

2
_m; wv. (13)

7¢>2 (U,,’U) =

Here, ¢ = 4 — d and replica limit n = 0 is to be taken.

Starting form the expressions (10)—(13) one can either develop the
e-expansion, or work directly at d = 3 putting in (10), (11) ¢ = 1 and
considering renormalized couplings u, v as the expansion parameters [32].
However, such RG perturbation theory series with several couplings are
known to be asymptotic at best [16]. One should apply appropriate re-
summation technique to improve their convergence to get reliable numer-
ical data on their basis. We used several different resummation schemes
for this purpose. Here we will give the results obtained by the method
which allowed to analyze the largest region in the parametric u—uv space.
The method was proposed in Ref. [33] and was successfully applied to
study random d = 3 Ising model [29]. Moreover, it was shown that the
RG functions of the d = 0 random Ising model are Borel-summable by
this method [33]. The main idea proposed in Ref. [33] is to consider re-
summation in variables v and v separately. Taken that the RG function
f(u,v) is given to the order of p loops, one first rewrites it as a power

series in v:
P

fu,v) = ZAk(u)vk. (14)
k=0

Then each coefficient A (u) is considered as power series in u and resum-
med as a function of a single variable u thus obtaining the resummed
functions A}°°(u). Next one substitutes these functions into (14) and
resumes the RG function f in single variable v. For the resummation in
a single variable one may use any of familiar methods. Our results are
obtained by making use of the Padé-Borel-Leroy method [34].

First, applying the above described resummation procedure to the (-
functions (10), (11) we get the pure Heisenberg fixed point coordinates
u* = 0.8956, v* = 0. The stability matrix (7) eigenvalues are positive at
this fixed point (w; = 0.577, wo = 0.147) providing its stability. Then for
the resummed values of the asymptotic critical exponents we get [35]:

v =1.382, v = 0.701, a = —0.104, n = 0.030, 3 = 0.361. (15)

We do not give the confidence intervals in (15), as far as they can be
estimated only by comparison of changes introduced by different orders
of perturbation theory. Note however that the results (15) are in a good
agreement with the most accurate estimates of the exponents in the O(3)
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universality class (2). This brings about that both the considered here
two-loop approximation as well as the chosen resummation technique
give an adequate description of asymptotic critical phenomena.

Before passing to the effective critical exponents let us first analyze
the corrections to scaling. For the pure Heisenberg magnet, taking into
account the leading correction to scaling results in the following formula
for the isothermal susceptibility:

x(7) =Tor™7(1 + FlTA), (16)

where the correction-to-scaling exponent is given by A = wrv with w =
0y (u) /Ouly—y+ and non-universal critical amplitudes I, I';. For the di-
luted Heisenberg magnet the corresponding formula includes two leading
corrections Aq, Ay (see e.g. [12]):

x(T) =Tor™ (1 + 78 + Thr22), (17)

with critical amplitudes I'y,I'},T',. The exponents A; are expressed in
terms of the stability matrix (7) eigenvalues w; in the pure Heisenberg
fixed point: A; = vw;. At this fixed point, the eigenvalues of the stability
matrix (7) read:

_ OBu(u,v) _ 0By (u,v)

wyp = T|u*¢0,v*:05 w2 T|u*;&0,v*:0- (18)

It is straightforward to see that the value wy coincides with the exponent
w of the pure model whereas it may be shown (see e.g. [12,31]) that the
exponent ws = |a|/v where a and v are the heat capacity and correlation
length critical exponent of the pure Heisenberg model. On the base of
the numerical values of the exponents (15) we get:

A; = 0.405, A, = 0.104. (19)

Again, obtained by us in the two-loop approximation numbers (19) can
be compared with those in the six-loop approximation making use of the
data (2) together with the value of w of pure 3d Heisenberg model w =
0.782+0.0013 [2]. As we have noted above, in order to get the numerical
values of the correction-to-scaling exponents of diluted Heisenberg model
it is no need to consider the RG functions (10)—(13) in the whole region
of couplings u,v: it is enough to know them for the case of the pure
model (i.e. for u # 0,v = 0). However, to get the effective exponents it is
necessary to study complete set of the RG functions (10)-(13) working
also in the region where both couplings v and v differ from zero.

ICMP-02-07E 10

To this end we use the above described resummation technique in
order to restore the convergence of the RG expansions in couplings u,
v. First we solve the system of differential equations (5) and get the
running values of couplings u(¢), v(¢) (10)-(13). They define the flow in
the parametric space u,v and in the limit £ — 0 attain the stable fixed
point value (shown by the filled box in Fig. 3). Character of the flow

0,00

0,05

0,10

0,15 1

0,20

0,25 1

Figure 3. Flows in the parametric space of couplings. The filled box
denotes the stable fixed point u* = 0.8956, v* = 0. Curve 1 corresponds
to the flow from initial values with vy = 0, curve 2 starts with a small
ratio |vg/ug| whereas flow 3 corresponds to larger |vg/uo].

depends on the initial conditions ug, vy for solving the system of differ-
ential equations (5). For the model (3), the coupling v is proportional to
variance of disorder [5] thus one can use the ratio |vg/ug| to define the
degree of dilution. Typical flows which are obtained for different ratios
|vo/uo| are shown in Fig. 3 by curves 1-3. We choose the starting values
in the region with the appropriate signs of couplings v > 0, v < 0 near
the origin (in the vicinity of the Gaussian fixed point u* = v* = 0 shown
by the filled circle in the figure). The flow No 1 is obtained for vy = 0, it
corresponds to the pure Heisenberg model. The flow No 2 results from
the small ratio |vg /uo| and corresponds to the weak disorder whereas the
flow No 3 is obtained for large |vg/ug| and corresponds to the stronger
dilution.
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Obtained running values of coupling constant presented by flows in
Fig. 3 allow one to get the effective critical exponents. Calculating re-
summed expression for the effective exponent veg (9) along the flows 1-3
we get the results shown in the Fig. 4. Again, the curve 1 corresponds

Yeff
1,7 <

1,6
1,54

1,4 4

1,34 1
1,24
1,14

1,0 4

25 20 -15 -10 5 0
In/

Figure 4. Effective critical exponent g versus logarithm of the flow
parameter. The curves correspond to flows from the Fig. 3 denoted by
corresponding numbers.

to the effective critical exponent of the pure Heisenberg model, whereas
curves 2 and 3 provide two possible scenarios for the effective exponents
of the disordered Heisenberg model. Curve 2 corresponds to the weak di-
lution region: here, the exponent increases with approach to the critical
point, although the crossover region is larger in comparison with the pure
magnet (compare curves 1 and 2 in Fig. 4). This may lead to the pecu-
liar situation that the asymptotic value of the exponent is reached earlier
than the asymptotic values of the coupling. The effective exponents for
the flows originating from non-zero ratio |vg /ug| always attain the value
which are larger than the asymptotic one. But the absolute value of this
“overshooting" for small enough |vg/ug| is too small to be observed ex-
perimentally. An experimental observation of such type of 7.¢ behaviour
of the disordered Heisenberg-like magnet is provided e.g. by Fig. 1d. Dif-
ferent behaviour of veg is demonstrated by the curve 3 in Fig. 4. Here,
before reaching the asymptotic region the exponent possess a distinct
peak. Such behaviour is in agreement with observed experimental data
presented by Figs. la—1c, le-1h. The value of maximum depends on
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the initial values for the RG flows. Larger ratio |vp/uo| (i.e. stronger
disorder) leads to the larger maximum. Thus, within unique approach
one may explain both scenarios observed in the diluted Heisenberg-like
magnets effective critical exponent ¢ behaviour.

As we have noticed in the section 2, the crossover behaviour of ran-
dom Heisenberg-like magnets was analyzed by means of an alternative
approach in [20-23]. There, the quenched disordered magnet was de-
scribed as an equilibrium one with additional forces of constraints [24].
This resulted in an effective Hamitonian which differs from (4). The fixed
point structure of this Hamiltonian differs from those given in Fig. 2 and,
for different concentrations, leads to different crossover regimes. In par-
ticular, it predicts that there exists a limiting value of concentration
where the critical behaviour is governed by Fisher-renormalized tricriti-
cal exponents [23] which coincide with those of a d = 3 spherical model:
y=2,v=1,a=-1,7=0,  =1/2. There exist two more fixed points
which may be stable in the weak dilution regime. Their stability differs
in different orders of the perturbation theory (compare [20] and [22]) but
the numerical values of the critical exponents do not differ essentially at
these fixed points. The maximal possible value of the effective critical
exponent Yeg has been estimated as veg ~ 2.6 [22]. However, the dis-
tinct feature of the behaviour of e (7) obtained in [21] is its monotonic
dependence. Hence, the experimentally observed peaks (see Fig. 1) can
not be explained within such approach.

4. Conclusions

In the present paper we used the field-theoretical RG technique to study
the effective critical behaviour of diluted Heisenberg-like magnets. The
question of particular interest was to explain the peak in the exponent
et as function of distance from 7, observed in some experiments. Our
two-loop calculations refined by the resummation of the perturbation
theory series resulted in typical behaviour of diluted Heisenberg-like
magnets Ve exponent represented by curves 2 and 3 in Fig. 4. The
exponent can either reach it asymptotic value without demonstrating
distinct maximum or it can first reach the peak and then cross-over to
the asymptotic value from above. The strength of disorder is a physical
reason which discriminates between these two regimes.

Our calculations are quite general and do not specify any particu-
lar object. In order to fit our curves to certain experiment one should
include into consideration non-universal parameters to specify the mag-
netic system. The same concerns the flow parameter £ which as we have
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already noted is related to the distance to the critical point 7. In princi-
ple such calculations may be done. However we want to emphasize that
our analysis shows the reason of the peak in e (7) dependence for differ-
ent disordered magnets which belong to the O(3) universality class and
this reason may be explained within the traditional RG approach. This
concerns not only the magnetic susceptibility effective critical exponent.
One more example is given by the order parameter effective exponents
Best which has minimum when 7 goes to zero (see e.g. [15]). Interpretation
of this effect will be the goal of a separate study

In conclusion we want to note that similar peculiarities of the effective
critical behaviour may be observed in studies of disordered easy-plane
magnets which belong to the O(2) universality class. Since the heat ca-
pacity does not diverge in such systems, the RG fixed point scenario is
given by the Fig. 2a as for the Heisenberg-like disordered magnets. Up
to our knowledge such experiments have not been performed yet and we
hope that our calculations may stimulate them.

M. D. acknowledges the Ernst Mach research fellowship of the Oster-
reichisher Austauschdienst. This work was supported in part by Oster-
reichische Nationalbank Jubildumsfonds through grant No 7694.
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