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ÓÄÊ: 530.145PACS: 61.43.-j,64.60.Ak, 11.10.GhÅ�åêòèâíà êðèòè÷íà ïîâåäiíêà ðîçâåäåíèõ ìàãíåòèêiâ ãàé-çåíáåð iâñüêîãî òèïóÌ. Äóäêà, �. Ôîëüê, Þ. �îëîâà÷, Ä. IâàíåéêîÀíîòàöiÿ. Çà êðèòåði¹ì �àðiñà ñëàáêå çàìîðîæåíå ðîçâåäåííÿ íå-ìàãíiòíîþ êîìïîíåíòîþ íå âïëèâà¹ íà àñèìïòîòè÷íi êðèòè÷íi ïî-êàçíèêè òðèâèìiðíèõ (3d) ìàãíåòèêiâ ãàéçåíáåð iâñüêîãî òèïó. Óåêñïåðèìåíòàõ, îäíàê, çíàõîäÿòü êîíöåíòðàöiéíî i òåìïåðàòóðíî çà-ëåæíi ïîêàçíèêè. Ùîá ïîÿñíèòè öi ñïîñòåðåæåííÿ, ìè âèêîðèñòîâó-¹ìî òåîðåòèêî-ïîëüîâèé ðåíîðìàëiçàöiéíèé ãðóïîâèé ïiäõiä, îá÷èñ-ëþþ÷è å�åêòèâíi êðèòè÷íi ïîêàçíèêè ñëàáî ðîçâåäåíîãî çàìîðîæå-íîãî ãàéçåíáåð iâñüêîãî ìàãíåòèêà òèïó. Áóäó÷è íåóíiâåðñàëüíèìè,öi ïîêàçíèêè çìiíþþòüñÿ ç âiäñòàíþ äî êðèòè÷íî¨ òî÷êè T
 i â àñèìï-òîòè÷íié ãðàíèöi ñïiâïàäàþòü iç ïîêàçíèêàì ÷èñòîãî 3d ãàéçåíáåð iâ-ñüêîãî ìàãíåòèêà, ÿê ñïîñòåðiãà¹òüñÿ åêñïåðèìåíòàëüíî.E�e
tive 
riti
al behaviour of diluted Heisenberg-like magnetsMaxym Dudka, Reinhard Folk, Yurij Holovat
h, Dmytro IvaneikoAbstra
t. In agreement with the Harris 
riterion, asymptoti
 
riti
alexponents of three-dimensional (3d) Heisenberg-like magnets are not in-�uen
ed by weak quen
hed dilution of non-magneti
 
omponent. How-ever, often in the experimental studies of 
orresponding systems 
on-
entration- and temperature-dependent exponents are found with valuesdi�ering from those of the 3d Heisenberg model. In our study, we use the�eld�theoreti
al renormalization group approa
h to explain this obser-vation and to 
al
ulate the e�e
tive 
riti
al exponents of weakly dilutedquen
hed Heisenberg-like magnet. Being non-universal, these exponents
hange with distan
e to the 
riti
al point T
 as observed experimentally.In the asymptoti
 limit (at T
) they equal to the 
riti
al exponents ofthe pure 3d Heisenberg magnet as predi
ted by the Harris 
riterion.Ïîäà¹òüñÿ â Journal of Magnetism and Magneti
 MaterialsSubmitted to Journal of Magnetism and Magneti
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1 Ïðåïðèíò1. Introdu
tionRelevan
e of stru
tural disorder for the 
riti
al behaviour remains to bean important problem of modern 
ondensed matter physi
s. Even a weakdisorder may 
hange drasti
ally the behaviour near the 
riti
al point andin this respe
t may be related to the global 
hara
teristi
s of a physi
alsystem, su
h as the spa
e dimension, order parameter symmetry and theorigin of interparti
le intera
tion. In this paper, we are going to dis
usssome pe
uliarities of a paramegneti
-ferromagneti
 phase transition inmagnets, where the randomness of stru
ture has the form of substitu-tional random-site or random-bond quen
hed disorder. Solid solutions ofmagnets with small 
on
entration of non-magneti
 
omponent as well asamorphous magnets with large relaxation times may serve as an exampleof su
h systems.Intuitively, it is 
lear that for a weak enough disorder the ferromag-neti
 phase persists in su
h systems. Obviously, intuition fails to predi
twhether the 
riti
al exponents 
hara
terizing phase transition into fer-romagneti
 state will di�er in a disordered system and in a �pure" one.The answer here is given by the Harris 
riterion [1℄ whi
h states thatthe 
riti
al exponents of the disordered system are 
hanged only if theheat 
apa
ity 
riti
al exponent of a pure system is positive, otherwise the
riti
al exponents of a disordered system 
oin
ide with those of a pureone. Returning to d = 3 dimensional magnets with O(m) symmetri
spontaneous magnetization one is lead to the 
on
lusion, that here onlythe 
riti
al exponents of uniaxial magnets des
ribed by the d = 3 Isingmodel (m = 1) are the subje
t of in�uen
e by weak quen
hed disorder.Indeed, the heat 
apa
ity diverges � = 0:109� 0:004 > 0 [2℄ for m = 1,whereas it does not diverge for the easy-plane and Heisenberg-like mag-nets: � = �0:011� 0:004 and � = �0:122� 0:010 for m = 2 and m = 3,respe
tively [2℄.Note however that the Harris 
riterion tells about the s
aling be-haviour at the 
riti
al point T
. In other words it predi
ts (possible)
hanges in the asymptoti
 values of the 
riti
al exponents de�ned at T
.In real situations one often deals with the e�e
tive 
riti
al exponents gov-erning s
aling when T
 still is not rea
hed [3℄. These are non-universal.As far as in our study of parti
ular interest will be the isothermal mag-neti
 sus
eptibility �T let us de�ne the 
orresponding e�e
tive exponentby [3℄: 
e�(�) = �d ln�(�)d ln � ; with � = jT � T
j=T
: (1)In the limit T ! T
 the e�e
tive exponent 
oin
ides with the asymptoti

ICMP�02�07E 2one 
e� = 
.Already in the �rst experimental studies of weakly diluted uniaxial(Ising-like) d = 3 random magnets [4℄ the asymptoti
 values of 
riti
alexponents were found. For the solid solutions, the exponents do notdepend on the 
on
entration of non-magneti
 
omponent and belong tothe new universality 
lass [5℄ as predi
ted by the Harris 
riterion. Wedo not know analogous experiments where an in�uen
e of disorder on
riti
ality of easy-plane magnets was examined. However its irrelevan
ewas experimentally proven [7℄ for the super�uid phase transition in He4whi
h belongs to the same O(2) universality 
lass as the ferromagneti
phase transition in easy-plane magnets.As far as the disorder should be irrelevant for the asymptoti
 
riti
albehaviour of the Heisenberg magnets, the diluted d = 3 Heisenberg mag-nets should belong to the same O(3) universality 
lass as the pure ones.Theoreti
ally predi
ted values of the isothermal magneti
 sus
eptibili-ty, 
orrelation length, heat 
apa
ity, pair 
orrelation fun
tion, and theorder parameter asymptoti
 
riti
al exponents in this universality 
lassread [2℄:
=1:3895� 0:0050; �=0:7073� 0:0035; �=� 0:122� 0:009; (2)� = 0:0355� 0:0025; � = 0:3662� 0:0025:The experimental pi
ture is more 
ontravensional. The bulk of experi-ments on 
riti
al behaviour of disordered Heisenberg-like magnets per-formed up to middle 80-ies is dis
ussed in the 
omprehensive reviews[8,9℄. More re
ent experiments may be found in [10�15℄ and referen
estherein. We show typi
al results of measurements of the isothermal mag-neti
 sus
eptibility e�e
tive 
riti
al exponent 
e� (1) in Figs. 1. As it isseen from the pi
tures, the behaviour of 
e� is non-monotoni
. The ex-ponent di�ers from its value predi
ted in the asymtoti
 limit (2) and isa subje
t of a wide 
rossover behaviour. Before rea
hing asymtoti
s 
e�possess maximum (ex
ept of the �g. 1.d), the value of the maximum issystem dependent: it di�ers for di�erent magnets.It is standard now to rely on the renormalization group (RG) method[16℄ to get a reliable quantitative des
ription of the behaviour in thevi
inity of 
riti
al point. Namely in this way the 
ited above values (2)of the 
riti
al exponents of d = 3 Heisenberg model were obtained. TheRG approa
h appeared to be a powerful tool to des
ribe asymptoti
[5℄ and e�e
tive [6℄ 
riti
al behaviour of disordered Ising-like magnetsas well. The purpose of the present paper is to des
ribe the 
rossoverbehaviour of disordered Heisenberg-like magnets in frames of the �eld-theoreti
al RG te
hnique. In parti
ular we want to 
al
ulate theoreti
ally
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a. b.


. d.

e. f.

g. h.Figure 1. Experimentally measured isothermal magneti
 sus
eptibili-ty e�e
tive 
riti
al exponent 
e� for disordered Heisenberg-like mag-nets (� = (T � T
)=T
). a.: Fe20Ni56B24 (F�ahnle et al., 1983 [11℄); b.:Fe32Ni36Cr14P12B6 (Kaul, 1985 [9℄); 
.: Fe20Ni60P14B6, Fe40Ni40P14B6(Kaul, 1985 [9℄); d.: Fe10Ni70B19Si1 (Kaul, 1988 [12℄); e.: Fe16Ni64B19Si1(Kaul et al., 1994 [13℄); f.: Fe86Co4Zr10 (Babu et al., 1997 [14℄); g.:Fe90Zr10 (Babu et al., 1997 [14℄); h.: Fe90�xMnxZr10 (Perumal et al.,2001 [15℄).

ICMP�02�07E 4the isothermal magneti
 sus
eptibility e�e
tive 
riti
al exponent and toexplain in this way the appearan
e of the peak in its typi
al experimentaldependen
ies. The rest of the paper is organized as follows. In the Se
tion2 we formulate the model and review main theoreti
al results obtainedfor it so far by means of the RG te
hnique, e�e
tive 
riti
al behaviouris analyzed in the Se
tion 3, we end by 
on
lusions and outlook in theSe
tion 4.2. The model and its RG analysisThe model of a random quen
hed magnet we are going to 
onsider isdes
ribed by the following Hamiltonian:H = �12 XR;R0 J(jR�R0j)~SR~SR0
R
R0 : (3)Here, the sum spans over all sites R of d-dimensional hyper
ubi
 latti
e,J(jR�R0j) is a short-range (ferro)magneti
 intera
tion between 
lassi
al�spins" ~SR and ~SR0 . We 
onsider the spins ~SR to be m-
omponent ve
-tors and the Hamiltonian (3) 
ontains their s
alar produ
t. Obviously,for the parti
ular 
ase of Heisenberg spins we will put later m = 3. Therandomness is introdu
ed into the Hamiltonian (3) by the o

upationnumbers 
R whi
h are equal 1 if the site R is o

upied by a spin and0 if the site is empty. Considering the 
ase when o

upied sites are dis-tributed without any 
orrelation and �xed in 
ertain 
on�guration oneobtains so-
alled un
orrelated quen
hed m-ve
tor model.In prin
iple, the above information is enough to apply the RG ap-proa
h for a study of the 
riti
al behaviour of the model (3). One shouldobtain an e�e
tive Hamiltonian 
orresponding to the model under 
on-sideration and then one analyzes its long-distan
e properties by analyz-ing appropriate RG equations [16℄. But already on this step there are atleast two di�erent possibilities to pro
eed and both were exploited forthe model (3). On one hand, to get the free energy of the model one
an average the logarithm of 
on�guration-dependent partition fun
tionover di�erent possible 
on�gurations of disorder [17℄. Then, making useof the repli
a tri
k [18℄ one arrives to the familiar e�e
tive Hamiltonian[19℄: He� = �Z ddR(12 nX�=1 h�02j~��j2+j~r~��j2i+u04! nX�=1 j~��j4+



5 Ïðåïðèíòv04! nX�=1 j~��j2!2) (4)des
ribing in the repli
a limit n ! 0 
riti
al properties of the model(3). Here, �0 is a bare mass, u0 > 0 and v0 � 0 are bare 
ouplings and~�� � ~��(R) is an �-repli
a of m-
omponent ve
tor �eld. The prevailingamount of RG studies of the 
riti
al behaviour of quen
hed m-ve
tormodel was performed on the base of the e�e
tive Hamiltonian (4) [5℄.However, one more e�e
tive Hamiltonian 
orresponding to the mod-el (3) is dis
ussed in the literature [20�23℄. It is obtained exploiting theidea that a quen
hed disordered system 
an be des
ribed as an equilib-rium system with additional for
es of 
onstraints [24℄. In su
h approa
hboth variables ~SR and 
R are treated equivalently and one ends up withthe e�e
tive Hamiltonian whi
h di�ers from (4) and, 
onsequently, leadsto di�erent results for the 
riti
al behaviour of the model (3) [20�23℄.Whereas the e�e
tive Hamiltonian (4) was used in the wide 
ontext ofgeneral m-ve
tor models [5℄, the approa
h of Refs. [20�23℄ was mainlyused in explanations of 
rossover behaviour in Heisenberg-like systems[25℄. Below, we will dis
uss our results, based on the e�e
tive Hamilto-nian (4) for m = 3 and 
ompare them with those derived in [20�23℄.As it is well known, the renormalization group (RG) approa
h makesuse of the s
aling symmetry of the system in the asymptoti
 limit toextra
t the universal 
ontent and at the same time removes divergen
ieswhi
h o

ur for the evaluation of the bare fun
tions in this limit [16℄. A
hange in the renormalized 
ouplings u, v of the e�e
tive Hamiltonian(3) under the RG transformation is des
ribed by the �ow equations:` dd`u(`) = �u (u(`); v(`)) ; ` dd`v(`) = �v (u(`); v(`)) : (5)Here, ` is the �ow parameter related to the distan
e � to the 
riti
alpoint. The �xed points (u�; v�) of the system of di�erential equations(5) are given by: �u (u�; v�) = 0; �v (u�; v�) = 0: (6)A �xed point is said to be stable if the stability matrixBij � ��ui=�uj ; i; j = 1; 2; ui = fu; vg; (7)possess in this point eigenvalues !1; !2 with positive real parts. In thelimit ` ! 0, u(`) and v(`) attain the stable �xed point values u�; v�.If the stable �xed point is rea
hable from the initial 
onditions (let us
ICMP�02�07E 6re
all that for the e�e
tive Hamiltonian (3) they read u > 0; v � 0)it 
orresponds to the 
riti
al point of the system. The asymptoti
 
rit-i
al exponents values are de�ned by the �xed point values of the RG
-fun
tions. In parti
ular the isothermal magneti
 sus
eptibility expo-nent 
 is expressed in terms of the RG fun
tions 
� and �
�2 des
ribingrenormalization of the �eld � and of the two-point vertex fun
tion witha �2 insertion 
orrespondingly [16℄:
�1 = 1� �
�22� 
� : (8)In Eq. (8), the fun
tions 
� � 
�(u; v), �
�2 � �
�2(u; v) are 
al
ulatedin the stable �xed point u�; v�. In the RG s
heme, the e�e
tive 
riti
alexponents are 
al
ulated in the region, where 
ouplings u(`); v(`) havenot rea
hed their �xed point values and depend on `. In parti
ular forthe exponent 
e� one gets:
�1e� (�) = 1� �
�2 [uf`(�)g; vf`(�)g℄2� 
�[uf`(�)g; vf`(�)g℄ + : : : : (9)In (9) the se
ond part is proportional to the ��fun
tions (5) and 
omesfrom the 
hange of the amplitude part of the sus
eptibility. In the sub-sequent 
al
ulations we will negle
t this part, taking the 
ontribution ofthe amplitude fun
tion to the 
rossover to be small [28℄.For the e�e
tive Hamiltonian (4), the �xed point stru
ture is wellestablished [5℄. It is s
hemati
ally shown in Figs. 2.a, 2.b. Two qualita-tively di�erent s
enarios are observed: for m > m
 the 
riti
al behaviourof the disordered magnet is governed by the �xed point of the pure mag-net (u� > 0, v� = 0), whereas for m < m
 the new stable �xed point(u� > 0, v� < 0) governs the asymptoti
 
riti
al behaviour of the disor-dered magnet. At the marginal dimensionality m
 whi
h separates thesetwo regimes, the � exponent of the pure magnet equals zero in agreementwith the Harris 
riterion.Best theoreti
al estimates of m
 de�nitely support m
 < 2: m
 =1:942 � 0:026 [26℄, m
 = 1:912 � 0:004 [27℄. Consequently, the �xedpoint stru
ture of the model of diluted Heisenberg-like magnet (m = 3)is given by Fig. 2.a: the stable rea
hable �xed points of the dilutedand pure Heisenberg-like magnets do 
oin
ide (u� 6= 0; v� = 0), hen
etheir asymptoti
 
riti
al exponents do 
oin
ide as well. However the laststatement does not 
on
ern the e�e
tive exponents. These are de�nedby the running values of the 
ouplings u(`) 6= 0; v(`) 6= 0 and will be
al
ulated in the next se
tion.
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Figure 2. Fixed points stru
ture for the e�e
tive Hamiltonian (4) at d = 3and arbitrary m. a: m > m
, b: m < m
. Stable �xed points are shownby �lled boxes, unstable ones are shown by �lled 
ir
les. Only stable�xed points with 
oordinates u� > 0, v� � 0 are rea
hable for the modelof the quen
hed magnet (3).3. The RG �ows and the e�e
tive 
riti
al behaviourThe RG fun
tions of the model (4) are known by now in pretty highorders of the perturbation theory [5,29℄. For the purpose of present studywe will restri
t ourselves by the �rst approximation where the des
ribed
rossover phenomena manifests itself for the Heisenberg-like disorderedmagnets in non-trivial way. Within the two loop approximation in theminimal subtra
tion RG s
heme [30℄ the RG-fun
tions read [31℄:�u(u; v) = �u("� m+ 86 u� 2v + 3m+ 1412 u2 +5mn+ 8236 v2 + 11m+ 5818 uv); (10)�v(u; v) = �v("� m+ 23 u� mn+ 86 v + 5(m+ 2)36 u2 +3mn+ 1412 v2 + 11(m+ 2)18 uv); (11)
�(u; v) = m+ 272 u2 + mn+ 272 v2 + m+ 236 uv; (12)
ICMP�02�07E 8�
�2(u; v) = m+ 26 u+ mn+ 26 v � m+ 212 u2 � mn+ 212 v2�m+ 26 uv: (13)Here, " = 4� d and repli
a limit n = 0 is to be taken.Starting form the expressions (10)�(13) one 
an either develop the"-expansion, or work dire
tly at d = 3 putting in (10), (11) " = 1 and
onsidering renormalized 
ouplings u; v as the expansion parameters [32℄.However, su
h RG perturbation theory series with several 
ouplings areknown to be asymptoti
 at best [16℄. One should apply appropriate re-summation te
hnique to improve their 
onvergen
e to get reliable numer-i
al data on their basis. We used several di�erent resummation s
hemesfor this purpose. Here we will give the results obtained by the methodwhi
h allowed to analyze the largest region in the parametri
 u�v spa
e.The method was proposed in Ref. [33℄ and was su

essfully applied tostudy random d = 3 Ising model [29℄. Moreover, it was shown that theRG fun
tions of the d = 0 random Ising model are Borel-summable bythis method [33℄. The main idea proposed in Ref. [33℄ is to 
onsider re-summation in variables u and v separately. Taken that the RG fun
tionf(u; v) is given to the order of p loops, one �rst rewrites it as a powerseries in v: f(u; v) = pXk=0Ak(u)vk : (14)Then ea
h 
oe�
ient Ak(u) is 
onsidered as power series in u and resum-med as a fun
tion of a single variable u thus obtaining the resummedfun
tions Aresk (u). Next one substitutes these fun
tions into (14) andresumes the RG fun
tion f in single variable v. For the resummation ina single variable one may use any of familiar methods. Our results areobtained by making use of the Pad�e-Borel-Leroy method [34℄.First, applying the above des
ribed resummation pro
edure to the �-fun
tions (10), (11) we get the pure Heisenberg �xed point 
oordinatesu� = 0:8956, v� = 0. The stability matrix (7) eigenvalues are positive atthis �xed point (!1 = 0:577, !2 = 0:147) providing its stability. Then forthe resummed values of the asymptoti
 
riti
al exponents we get [35℄:
 = 1:382; � = 0:701; � = �0:104; � = 0:030; � = 0:361: (15)We do not give the 
on�den
e intervals in (15), as far as they 
an beestimated only by 
omparison of 
hanges introdu
ed by di�erent ordersof perturbation theory. Note however that the results (15) are in a goodagreement with the most a

urate estimates of the exponents in the O(3)



9 Ïðåïðèíòuniversality 
lass (2). This brings about that both the 
onsidered heretwo-loop approximation as well as the 
hosen resummation te
hniquegive an adequate des
ription of asymptoti
 
riti
al phenomena.Before passing to the e�e
tive 
riti
al exponents let us �rst analyzethe 
orre
tions to s
aling. For the pure Heisenberg magnet, taking intoa

ount the leading 
orre
tion to s
aling results in the following formulafor the isothermal sus
eptibility:�(�) = �0��
(1 + �1��); (16)where the 
orre
tion-to-s
aling exponent is given by � = !� with ! =��u(u)=�uju=u� and non-universal 
riti
al amplitudes �0;�1. For the di-luted Heisenberg magnet the 
orresponding formula in
ludes two leading
orre
tions �1, �2 (see e.g. [12℄):�(�) = �00��
(1 + �01��1 + �02��2); (17)with 
riti
al amplitudes �00;�01;�02. The exponents �i are expressed interms of the stability matrix (7) eigenvalues !i in the pure Heisenberg�xed point: �i = �!i. At this �xed point, the eigenvalues of the stabilitymatrix (7) read:!1 = ��u(u; v)�u ju� 6=0;v�=0; !2 = ��v(u; v)�v ju� 6=0;v�=0: (18)It is straightforward to see that the value !1 
oin
ides with the exponent! of the pure model whereas it may be shown (see e.g. [12,31℄) that theexponent !2 = j�j=� where � and � are the heat 
apa
ity and 
orrelationlength 
riti
al exponent of the pure Heisenberg model. On the base ofthe numeri
al values of the exponents (15) we get:�1 = 0:405; �2 = 0:104: (19)Again, obtained by us in the two-loop approximation numbers (19) 
anbe 
ompared with those in the six-loop approximation making use of thedata (2) together with the value of ! of pure 3d Heisenberg model ! =0:782�0:0013 [2℄. As we have noted above, in order to get the numeri
alvalues of the 
orre
tion-to-s
aling exponents of diluted Heisenberg modelit is no need to 
onsider the RG fun
tions (10)�(13) in the whole regionof 
ouplings u; v: it is enough to know them for the 
ase of the puremodel (i.e. for u 6= 0; v = 0). However, to get the e�e
tive exponents it isne
essary to study 
omplete set of the RG fun
tions (10)�(13) workingalso in the region where both 
ouplings u and v di�er from zero.
ICMP�02�07E 10To this end we use the above des
ribed resummation te
hnique inorder to restore the 
onvergen
e of the RG expansions in 
ouplings u,v. First we solve the system of di�erential equations (5) and get therunning values of 
ouplings u(`), v(`) (10)�(13). They de�ne the �ow inthe parametri
 spa
e u; v and in the limit ` ! 0 attain the stable �xedpoint value (shown by the �lled box in Fig. 3). Chara
ter of the �ow
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Figure 3. Flows in the parametri
 spa
e of 
ouplings. The �lled boxdenotes the stable �xed point u� = 0:8956; v� = 0. Curve 1 
orrespondsto the �ow from initial values with v0 = 0, 
urve 2 starts with a smallratio jv0=u0j whereas �ow 3 
orresponds to larger jv0=u0j.depends on the initial 
onditions u0; v0 for solving the system of di�er-ential equations (5). For the model (3), the 
oupling v is proportional tovarian
e of disorder [5℄ thus one 
an use the ratio jv0=u0j to de�ne thedegree of dilution. Typi
al �ows whi
h are obtained for di�erent ratiosjv0=u0j are shown in Fig. 3 by 
urves 1-3. We 
hoose the starting valuesin the region with the appropriate signs of 
ouplings u > 0; v < 0 nearthe origin (in the vi
inity of the Gaussian �xed point u� = v� = 0 shownby the �lled 
ir
le in the �gure). The �ow No 1 is obtained for v0 = 0, it
orresponds to the pure Heisenberg model. The �ow No 2 results fromthe small ratio jv0=u0j and 
orresponds to the weak disorder whereas the�ow No 3 is obtained for large jv0=u0j and 
orresponds to the strongerdilution.



11 ÏðåïðèíòObtained running values of 
oupling 
onstant presented by �ows inFig. 3 allow one to get the e�e
tive 
riti
al exponents. Cal
ulating re-summed expression for the e�e
tive exponent 
e� (9) along the �ows 1-3we get the results shown in the Fig. 4. Again, the 
urve 1 
orresponds
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geff

ln lFigure 4. E�e
tive 
riti
al exponent 
e� versus logarithm of the �owparameter. The 
urves 
orrespond to �ows from the Fig. 3 denoted by
orresponding numbers.to the e�e
tive 
riti
al exponent of the pure Heisenberg model, whereas
urves 2 and 3 provide two possible s
enarios for the e�e
tive exponentsof the disordered Heisenberg model. Curve 2 
orresponds to the weak di-lution region: here, the exponent in
reases with approa
h to the 
riti
alpoint, although the 
rossover region is larger in 
omparison with the puremagnet (
ompare 
urves 1 and 2 in Fig. 4). This may lead to the pe
u-liar situation that the asymptoti
 value of the exponent is rea
hed earlierthan the asymptoti
 values of the 
oupling. The e�e
tive exponents forthe �ows originating from non-zero ratio jv0=u0j always attain the valuewhi
h are larger than the asymptoti
 one. But the absolute value of this�overshooting" for small enough jv0=u0j is too small to be observed ex-perimentally. An experimental observation of su
h type of 
e� behaviourof the disordered Heisenberg-like magnet is provided e.g. by Fig. 1d. Dif-ferent behaviour of 
e� is demonstrated by the 
urve 3 in Fig. 4. Here,before rea
hing the asymptoti
 region the exponent possess a distin
tpeak. Su
h behaviour is in agreement with observed experimental datapresented by Figs. 1a�1
, 1e�1h. The value of maximum depends on
ICMP�02�07E 12the initial values for the RG �ows. Larger ratio jv0=u0j (i.e. strongerdisorder) leads to the larger maximum. Thus, within unique approa
hone may explain both s
enarios observed in the diluted Heisenberg-likemagnets e�e
tive 
riti
al exponent 
e� behaviour.As we have noti
ed in the se
tion 2, the 
rossover behaviour of ran-dom Heisenberg-like magnets was analyzed by means of an alternativeapproa
h in [20�23℄. There, the quen
hed disordered magnet was de-s
ribed as an equilibrium one with additional for
es of 
onstraints [24℄.This resulted in an e�e
tive Hamitonian whi
h di�ers from (4). The �xedpoint stru
ture of this Hamiltonian di�ers from those given in Fig. 2 and,for di�erent 
on
entrations, leads to di�erent 
rossover regimes. In par-ti
ular, it predi
ts that there exists a limiting value of 
on
entrationwhere the 
riti
al behaviour is governed by Fisher-renormalized tri
riti-
al exponents [23℄ whi
h 
oin
ide with those of a d = 3 spheri
al model:
 = 2, � = 1, � = �1, � = 0, � = 1=2. There exist two more �xed pointswhi
h may be stable in the weak dilution regime. Their stability di�ersin di�erent orders of the perturbation theory (
ompare [20℄ and [22℄) butthe numeri
al values of the 
riti
al exponents do not di�er essentially atthese �xed points. The maximal possible value of the e�e
tive 
riti
alexponent 
e� has been estimated as 
e� ' 2:6 [22℄. However, the dis-tin
t feature of the behaviour of 
e�(�) obtained in [21℄ is its monotoni
dependen
e. Hen
e, the experimentally observed peaks (see Fig. 1) 
annot be explained within su
h approa
h.4. Con
lusionsIn the present paper we used the �eld-theoreti
al RG te
hnique to studythe e�e
tive 
riti
al behaviour of diluted Heisenberg-like magnets. Thequestion of parti
ular interest was to explain the peak in the exponent
e� as fun
tion of distan
e from T
 observed in some experiments. Ourtwo-loop 
al
ulations re�ned by the resummation of the perturbationtheory series resulted in typi
al behaviour of diluted Heisenberg-likemagnets 
e� exponent represented by 
urves 2 and 3 in Fig. 4. Theexponent 
an either rea
h it asymptoti
 value without demonstratingdistin
t maximum or it 
an �rst rea
h the peak and then 
ross-over tothe asymptoti
 value from above. The strength of disorder is a physi
alreason whi
h dis
riminates between these two regimes.Our 
al
ulations are quite general and do not spe
ify any parti
u-lar obje
t. In order to �t our 
urves to 
ertain experiment one shouldin
lude into 
onsideration non-universal parameters to spe
ify the mag-neti
 system. The same 
on
erns the �ow parameter ` whi
h as we have



13 Ïðåïðèíòalready noted is related to the distan
e to the 
riti
al point � . In prin
i-ple su
h 
al
ulations may be done. However we want to emphasize thatour analysis shows the reason of the peak in 
e�(�) dependen
e for di�er-ent disordered magnets whi
h belong to the O(3) universality 
lass andthis reason may be explained within the traditional RG approa
h. This
on
erns not only the magneti
 sus
eptibility e�e
tive 
riti
al exponent.One more example is given by the order parameter e�e
tive exponents�e� whi
h has minimum when � goes to zero (see e.g. [15℄). Interpretationof this e�e
t will be the goal of a separate studyIn 
on
lusion we want to note that similar pe
uliarities of the e�e
tive
riti
al behaviour may be observed in studies of disordered easy-planemagnets whi
h belong to the O(2) universality 
lass. Sin
e the heat 
a-pa
ity does not diverge in su
h systems, the RG �xed point s
enario isgiven by the Fig. 2a as for the Heisenberg-like disordered magnets. Upto our knowledge su
h experiments have not been performed yet and wehope that our 
al
ulations may stimulate them.M. D. a
knowledges the Ernst Ma
h resear
h fellowship of the �Oster-rei
hisher Austaus
hdienst. This work was supported in part by �Oster-rei
his
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