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ÓÄÊ: 530.145PACS: 61.43.-j,64.60.Ak, 11.10.GhÅ�åêòèâíà êðèòè÷íà ïîâåäiíêà ðîçâåäåíèõ ìàãíåòèêiâ ãàé-çåíáåð iâñüêîãî òèïóÌ. Äóäêà, �. Ôîëüê, Þ. �îëîâà÷, Ä. IâàíåéêîÀíîòàöiÿ. Çà êðèòåði¹ì �àðiñà ñëàáêå çàìîðîæåíå ðîçâåäåííÿ íå-ìàãíiòíîþ êîìïîíåíòîþ íå âïëèâà¹ íà àñèìïòîòè÷íi êðèòè÷íi ïî-êàçíèêè òðèâèìiðíèõ (3d) ìàãíåòèêiâ ãàéçåíáåð iâñüêîãî òèïó. Óåêñïåðèìåíòàõ, îäíàê, çíàõîäÿòü êîíöåíòðàöiéíî i òåìïåðàòóðíî çà-ëåæíi ïîêàçíèêè. Ùîá ïîÿñíèòè öi ñïîñòåðåæåííÿ, ìè âèêîðèñòîâó-¹ìî òåîðåòèêî-ïîëüîâèé ðåíîðìàëiçàöiéíèé ãðóïîâèé ïiäõiä, îá÷èñ-ëþþ÷è å�åêòèâíi êðèòè÷íi ïîêàçíèêè ñëàáî ðîçâåäåíîãî çàìîðîæå-íîãî ãàéçåíáåð iâñüêîãî ìàãíåòèêà òèïó. Áóäó÷è íåóíiâåðñàëüíèìè,öi ïîêàçíèêè çìiíþþòüñÿ ç âiäñòàíþ äî êðèòè÷íî¨ òî÷êè T i â àñèìï-òîòè÷íié ãðàíèöi ñïiâïàäàþòü iç ïîêàçíèêàì ÷èñòîãî 3d ãàéçåíáåð iâ-ñüêîãî ìàãíåòèêà, ÿê ñïîñòåðiãà¹òüñÿ åêñïåðèìåíòàëüíî.E�etive ritial behaviour of diluted Heisenberg-like magnetsMaxym Dudka, Reinhard Folk, Yurij Holovath, Dmytro IvaneikoAbstrat. In agreement with the Harris riterion, asymptoti ritialexponents of three-dimensional (3d) Heisenberg-like magnets are not in-�uened by weak quenhed dilution of non-magneti omponent. How-ever, often in the experimental studies of orresponding systems on-entration- and temperature-dependent exponents are found with valuesdi�ering from those of the 3d Heisenberg model. In our study, we use the�eld�theoretial renormalization group approah to explain this obser-vation and to alulate the e�etive ritial exponents of weakly dilutedquenhed Heisenberg-like magnet. Being non-universal, these exponentshange with distane to the ritial point T as observed experimentally.In the asymptoti limit (at T) they equal to the ritial exponents ofthe pure 3d Heisenberg magnet as predited by the Harris riterion.Ïîäà¹òüñÿ â Journal of Magnetism and Magneti MaterialsSubmitted to Journal of Magnetism and Magneti Materials Iíñòèòóò �içèêè êîíäåíñîâàíèõ ñèñòåì 2002Institute for Condensed Matter Physis 2002



1 Ïðåïðèíò1. IntrodutionRelevane of strutural disorder for the ritial behaviour remains to bean important problem of modern ondensed matter physis. Even a weakdisorder may hange drastially the behaviour near the ritial point andin this respet may be related to the global harateristis of a physialsystem, suh as the spae dimension, order parameter symmetry and theorigin of interpartile interation. In this paper, we are going to disusssome peuliarities of a paramegneti-ferromagneti phase transition inmagnets, where the randomness of struture has the form of substitu-tional random-site or random-bond quenhed disorder. Solid solutions ofmagnets with small onentration of non-magneti omponent as well asamorphous magnets with large relaxation times may serve as an exampleof suh systems.Intuitively, it is lear that for a weak enough disorder the ferromag-neti phase persists in suh systems. Obviously, intuition fails to preditwhether the ritial exponents haraterizing phase transition into fer-romagneti state will di�er in a disordered system and in a �pure" one.The answer here is given by the Harris riterion [1℄ whih states thatthe ritial exponents of the disordered system are hanged only if theheat apaity ritial exponent of a pure system is positive, otherwise theritial exponents of a disordered system oinide with those of a pureone. Returning to d = 3 dimensional magnets with O(m) symmetrispontaneous magnetization one is lead to the onlusion, that here onlythe ritial exponents of uniaxial magnets desribed by the d = 3 Isingmodel (m = 1) are the subjet of in�uene by weak quenhed disorder.Indeed, the heat apaity diverges � = 0:109� 0:004 > 0 [2℄ for m = 1,whereas it does not diverge for the easy-plane and Heisenberg-like mag-nets: � = �0:011� 0:004 and � = �0:122� 0:010 for m = 2 and m = 3,respetively [2℄.Note however that the Harris riterion tells about the saling be-haviour at the ritial point T. In other words it predits (possible)hanges in the asymptoti values of the ritial exponents de�ned at T.In real situations one often deals with the e�etive ritial exponents gov-erning saling when T still is not reahed [3℄. These are non-universal.As far as in our study of partiular interest will be the isothermal mag-neti suseptibility �T let us de�ne the orresponding e�etive exponentby [3℄: e�(�) = �d ln�(�)d ln � ; with � = jT � Tj=T: (1)In the limit T ! T the e�etive exponent oinides with the asymptoti
ICMP�02�07E 2one e� = .Already in the �rst experimental studies of weakly diluted uniaxial(Ising-like) d = 3 random magnets [4℄ the asymptoti values of ritialexponents were found. For the solid solutions, the exponents do notdepend on the onentration of non-magneti omponent and belong tothe new universality lass [5℄ as predited by the Harris riterion. Wedo not know analogous experiments where an in�uene of disorder onritiality of easy-plane magnets was examined. However its irrelevanewas experimentally proven [7℄ for the super�uid phase transition in He4whih belongs to the same O(2) universality lass as the ferromagnetiphase transition in easy-plane magnets.As far as the disorder should be irrelevant for the asymptoti ritialbehaviour of the Heisenberg magnets, the diluted d = 3 Heisenberg mag-nets should belong to the same O(3) universality lass as the pure ones.Theoretially predited values of the isothermal magneti suseptibili-ty, orrelation length, heat apaity, pair orrelation funtion, and theorder parameter asymptoti ritial exponents in this universality lassread [2℄:=1:3895� 0:0050; �=0:7073� 0:0035; �=� 0:122� 0:009; (2)� = 0:0355� 0:0025; � = 0:3662� 0:0025:The experimental piture is more ontravensional. The bulk of experi-ments on ritial behaviour of disordered Heisenberg-like magnets per-formed up to middle 80-ies is disussed in the omprehensive reviews[8,9℄. More reent experiments may be found in [10�15℄ and referenestherein. We show typial results of measurements of the isothermal mag-neti suseptibility e�etive ritial exponent e� (1) in Figs. 1. As it isseen from the pitures, the behaviour of e� is non-monotoni. The ex-ponent di�ers from its value predited in the asymtoti limit (2) and isa subjet of a wide rossover behaviour. Before reahing asymtotis e�possess maximum (exept of the �g. 1.d), the value of the maximum issystem dependent: it di�ers for di�erent magnets.It is standard now to rely on the renormalization group (RG) method[16℄ to get a reliable quantitative desription of the behaviour in theviinity of ritial point. Namely in this way the ited above values (2)of the ritial exponents of d = 3 Heisenberg model were obtained. TheRG approah appeared to be a powerful tool to desribe asymptoti[5℄ and e�etive [6℄ ritial behaviour of disordered Ising-like magnetsas well. The purpose of the present paper is to desribe the rossoverbehaviour of disordered Heisenberg-like magnets in frames of the �eld-theoretial RG tehnique. In partiular we want to alulate theoretially



3 Ïðåïðèíò
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g. h.Figure 1. Experimentally measured isothermal magneti suseptibili-ty e�etive ritial exponent e� for disordered Heisenberg-like mag-nets (� = (T � T)=T). a.: Fe20Ni56B24 (F�ahnle et al., 1983 [11℄); b.:Fe32Ni36Cr14P12B6 (Kaul, 1985 [9℄); .: Fe20Ni60P14B6, Fe40Ni40P14B6(Kaul, 1985 [9℄); d.: Fe10Ni70B19Si1 (Kaul, 1988 [12℄); e.: Fe16Ni64B19Si1(Kaul et al., 1994 [13℄); f.: Fe86Co4Zr10 (Babu et al., 1997 [14℄); g.:Fe90Zr10 (Babu et al., 1997 [14℄); h.: Fe90�xMnxZr10 (Perumal et al.,2001 [15℄).

ICMP�02�07E 4the isothermal magneti suseptibility e�etive ritial exponent and toexplain in this way the appearane of the peak in its typial experimentaldependenies. The rest of the paper is organized as follows. In the Setion2 we formulate the model and review main theoretial results obtainedfor it so far by means of the RG tehnique, e�etive ritial behaviouris analyzed in the Setion 3, we end by onlusions and outlook in theSetion 4.2. The model and its RG analysisThe model of a random quenhed magnet we are going to onsider isdesribed by the following Hamiltonian:H = �12 XR;R0 J(jR�R0j)~SR~SR0RR0 : (3)Here, the sum spans over all sites R of d-dimensional hyperubi lattie,J(jR�R0j) is a short-range (ferro)magneti interation between lassial�spins" ~SR and ~SR0 . We onsider the spins ~SR to be m-omponent ve-tors and the Hamiltonian (3) ontains their salar produt. Obviously,for the partiular ase of Heisenberg spins we will put later m = 3. Therandomness is introdued into the Hamiltonian (3) by the oupationnumbers R whih are equal 1 if the site R is oupied by a spin and0 if the site is empty. Considering the ase when oupied sites are dis-tributed without any orrelation and �xed in ertain on�guration oneobtains so-alled unorrelated quenhed m-vetor model.In priniple, the above information is enough to apply the RG ap-proah for a study of the ritial behaviour of the model (3). One shouldobtain an e�etive Hamiltonian orresponding to the model under on-sideration and then one analyzes its long-distane properties by analyz-ing appropriate RG equations [16℄. But already on this step there are atleast two di�erent possibilities to proeed and both were exploited forthe model (3). On one hand, to get the free energy of the model onean average the logarithm of on�guration-dependent partition funtionover di�erent possible on�gurations of disorder [17℄. Then, making useof the replia trik [18℄ one arrives to the familiar e�etive Hamiltonian[19℄: He� = �Z ddR(12 nX�=1 h�02j~��j2+j~r~��j2i+u04! nX�=1 j~��j4+



5 Ïðåïðèíòv04! nX�=1 j~��j2!2) (4)desribing in the replia limit n ! 0 ritial properties of the model(3). Here, �0 is a bare mass, u0 > 0 and v0 � 0 are bare ouplings and~�� � ~��(R) is an �-replia of m-omponent vetor �eld. The prevailingamount of RG studies of the ritial behaviour of quenhed m-vetormodel was performed on the base of the e�etive Hamiltonian (4) [5℄.However, one more e�etive Hamiltonian orresponding to the mod-el (3) is disussed in the literature [20�23℄. It is obtained exploiting theidea that a quenhed disordered system an be desribed as an equilib-rium system with additional fores of onstraints [24℄. In suh approahboth variables ~SR and R are treated equivalently and one ends up withthe e�etive Hamiltonian whih di�ers from (4) and, onsequently, leadsto di�erent results for the ritial behaviour of the model (3) [20�23℄.Whereas the e�etive Hamiltonian (4) was used in the wide ontext ofgeneral m-vetor models [5℄, the approah of Refs. [20�23℄ was mainlyused in explanations of rossover behaviour in Heisenberg-like systems[25℄. Below, we will disuss our results, based on the e�etive Hamilto-nian (4) for m = 3 and ompare them with those derived in [20�23℄.As it is well known, the renormalization group (RG) approah makesuse of the saling symmetry of the system in the asymptoti limit toextrat the universal ontent and at the same time removes divergenieswhih our for the evaluation of the bare funtions in this limit [16℄. Ahange in the renormalized ouplings u, v of the e�etive Hamiltonian(3) under the RG transformation is desribed by the �ow equations:` dd`u(`) = �u (u(`); v(`)) ; ` dd`v(`) = �v (u(`); v(`)) : (5)Here, ` is the �ow parameter related to the distane � to the ritialpoint. The �xed points (u�; v�) of the system of di�erential equations(5) are given by: �u (u�; v�) = 0; �v (u�; v�) = 0: (6)A �xed point is said to be stable if the stability matrixBij � ��ui=�uj ; i; j = 1; 2; ui = fu; vg; (7)possess in this point eigenvalues !1; !2 with positive real parts. In thelimit ` ! 0, u(`) and v(`) attain the stable �xed point values u�; v�.If the stable �xed point is reahable from the initial onditions (let us
ICMP�02�07E 6reall that for the e�etive Hamiltonian (3) they read u > 0; v � 0)it orresponds to the ritial point of the system. The asymptoti rit-ial exponents values are de�ned by the �xed point values of the RG-funtions. In partiular the isothermal magneti suseptibility expo-nent  is expressed in terms of the RG funtions � and ��2 desribingrenormalization of the �eld � and of the two-point vertex funtion witha �2 insertion orrespondingly [16℄:�1 = 1� ��22� � : (8)In Eq. (8), the funtions � � �(u; v), ��2 � ��2(u; v) are alulatedin the stable �xed point u�; v�. In the RG sheme, the e�etive ritialexponents are alulated in the region, where ouplings u(`); v(`) havenot reahed their �xed point values and depend on `. In partiular forthe exponent e� one gets:�1e� (�) = 1� ��2 [uf`(�)g; vf`(�)g℄2� �[uf`(�)g; vf`(�)g℄ + : : : : (9)In (9) the seond part is proportional to the ��funtions (5) and omesfrom the hange of the amplitude part of the suseptibility. In the sub-sequent alulations we will neglet this part, taking the ontribution ofthe amplitude funtion to the rossover to be small [28℄.For the e�etive Hamiltonian (4), the �xed point struture is wellestablished [5℄. It is shematially shown in Figs. 2.a, 2.b. Two qualita-tively di�erent senarios are observed: for m > m the ritial behaviourof the disordered magnet is governed by the �xed point of the pure mag-net (u� > 0, v� = 0), whereas for m < m the new stable �xed point(u� > 0, v� < 0) governs the asymptoti ritial behaviour of the disor-dered magnet. At the marginal dimensionality m whih separates thesetwo regimes, the � exponent of the pure magnet equals zero in agreementwith the Harris riterion.Best theoretial estimates of m de�nitely support m < 2: m =1:942 � 0:026 [26℄, m = 1:912 � 0:004 [27℄. Consequently, the �xedpoint struture of the model of diluted Heisenberg-like magnet (m = 3)is given by Fig. 2.a: the stable reahable �xed points of the dilutedand pure Heisenberg-like magnets do oinide (u� 6= 0; v� = 0), henetheir asymptoti ritial exponents do oinide as well. However the laststatement does not onern the e�etive exponents. These are de�nedby the running values of the ouplings u(`) 6= 0; v(`) 6= 0 and will bealulated in the next setion.
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Figure 2. Fixed points struture for the e�etive Hamiltonian (4) at d = 3and arbitrary m. a: m > m, b: m < m. Stable �xed points are shownby �lled boxes, unstable ones are shown by �lled irles. Only stable�xed points with oordinates u� > 0, v� � 0 are reahable for the modelof the quenhed magnet (3).3. The RG �ows and the e�etive ritial behaviourThe RG funtions of the model (4) are known by now in pretty highorders of the perturbation theory [5,29℄. For the purpose of present studywe will restrit ourselves by the �rst approximation where the desribedrossover phenomena manifests itself for the Heisenberg-like disorderedmagnets in non-trivial way. Within the two loop approximation in theminimal subtration RG sheme [30℄ the RG-funtions read [31℄:�u(u; v) = �u("� m+ 86 u� 2v + 3m+ 1412 u2 +5mn+ 8236 v2 + 11m+ 5818 uv); (10)�v(u; v) = �v("� m+ 23 u� mn+ 86 v + 5(m+ 2)36 u2 +3mn+ 1412 v2 + 11(m+ 2)18 uv); (11)�(u; v) = m+ 272 u2 + mn+ 272 v2 + m+ 236 uv; (12)
ICMP�02�07E 8��2(u; v) = m+ 26 u+ mn+ 26 v � m+ 212 u2 � mn+ 212 v2�m+ 26 uv: (13)Here, " = 4� d and replia limit n = 0 is to be taken.Starting form the expressions (10)�(13) one an either develop the"-expansion, or work diretly at d = 3 putting in (10), (11) " = 1 andonsidering renormalized ouplings u; v as the expansion parameters [32℄.However, suh RG perturbation theory series with several ouplings areknown to be asymptoti at best [16℄. One should apply appropriate re-summation tehnique to improve their onvergene to get reliable numer-ial data on their basis. We used several di�erent resummation shemesfor this purpose. Here we will give the results obtained by the methodwhih allowed to analyze the largest region in the parametri u�v spae.The method was proposed in Ref. [33℄ and was suessfully applied tostudy random d = 3 Ising model [29℄. Moreover, it was shown that theRG funtions of the d = 0 random Ising model are Borel-summable bythis method [33℄. The main idea proposed in Ref. [33℄ is to onsider re-summation in variables u and v separately. Taken that the RG funtionf(u; v) is given to the order of p loops, one �rst rewrites it as a powerseries in v: f(u; v) = pXk=0Ak(u)vk : (14)Then eah oe�ient Ak(u) is onsidered as power series in u and resum-med as a funtion of a single variable u thus obtaining the resummedfuntions Aresk (u). Next one substitutes these funtions into (14) andresumes the RG funtion f in single variable v. For the resummation ina single variable one may use any of familiar methods. Our results areobtained by making use of the Pad�e-Borel-Leroy method [34℄.First, applying the above desribed resummation proedure to the �-funtions (10), (11) we get the pure Heisenberg �xed point oordinatesu� = 0:8956, v� = 0. The stability matrix (7) eigenvalues are positive atthis �xed point (!1 = 0:577, !2 = 0:147) providing its stability. Then forthe resummed values of the asymptoti ritial exponents we get [35℄: = 1:382; � = 0:701; � = �0:104; � = 0:030; � = 0:361: (15)We do not give the on�dene intervals in (15), as far as they an beestimated only by omparison of hanges introdued by di�erent ordersof perturbation theory. Note however that the results (15) are in a goodagreement with the most aurate estimates of the exponents in the O(3)



9 Ïðåïðèíòuniversality lass (2). This brings about that both the onsidered heretwo-loop approximation as well as the hosen resummation tehniquegive an adequate desription of asymptoti ritial phenomena.Before passing to the e�etive ritial exponents let us �rst analyzethe orretions to saling. For the pure Heisenberg magnet, taking intoaount the leading orretion to saling results in the following formulafor the isothermal suseptibility:�(�) = �0��(1 + �1��); (16)where the orretion-to-saling exponent is given by � = !� with ! =��u(u)=�uju=u� and non-universal ritial amplitudes �0;�1. For the di-luted Heisenberg magnet the orresponding formula inludes two leadingorretions �1, �2 (see e.g. [12℄):�(�) = �00��(1 + �01��1 + �02��2); (17)with ritial amplitudes �00;�01;�02. The exponents �i are expressed interms of the stability matrix (7) eigenvalues !i in the pure Heisenberg�xed point: �i = �!i. At this �xed point, the eigenvalues of the stabilitymatrix (7) read:!1 = ��u(u; v)�u ju� 6=0;v�=0; !2 = ��v(u; v)�v ju� 6=0;v�=0: (18)It is straightforward to see that the value !1 oinides with the exponent! of the pure model whereas it may be shown (see e.g. [12,31℄) that theexponent !2 = j�j=� where � and � are the heat apaity and orrelationlength ritial exponent of the pure Heisenberg model. On the base ofthe numerial values of the exponents (15) we get:�1 = 0:405; �2 = 0:104: (19)Again, obtained by us in the two-loop approximation numbers (19) anbe ompared with those in the six-loop approximation making use of thedata (2) together with the value of ! of pure 3d Heisenberg model ! =0:782�0:0013 [2℄. As we have noted above, in order to get the numerialvalues of the orretion-to-saling exponents of diluted Heisenberg modelit is no need to onsider the RG funtions (10)�(13) in the whole regionof ouplings u; v: it is enough to know them for the ase of the puremodel (i.e. for u 6= 0; v = 0). However, to get the e�etive exponents it isneessary to study omplete set of the RG funtions (10)�(13) workingalso in the region where both ouplings u and v di�er from zero.
ICMP�02�07E 10To this end we use the above desribed resummation tehnique inorder to restore the onvergene of the RG expansions in ouplings u,v. First we solve the system of di�erential equations (5) and get therunning values of ouplings u(`), v(`) (10)�(13). They de�ne the �ow inthe parametri spae u; v and in the limit ` ! 0 attain the stable �xedpoint value (shown by the �lled box in Fig. 3). Charater of the �ow
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Figure 3. Flows in the parametri spae of ouplings. The �lled boxdenotes the stable �xed point u� = 0:8956; v� = 0. Curve 1 orrespondsto the �ow from initial values with v0 = 0, urve 2 starts with a smallratio jv0=u0j whereas �ow 3 orresponds to larger jv0=u0j.depends on the initial onditions u0; v0 for solving the system of di�er-ential equations (5). For the model (3), the oupling v is proportional tovariane of disorder [5℄ thus one an use the ratio jv0=u0j to de�ne thedegree of dilution. Typial �ows whih are obtained for di�erent ratiosjv0=u0j are shown in Fig. 3 by urves 1-3. We hoose the starting valuesin the region with the appropriate signs of ouplings u > 0; v < 0 nearthe origin (in the viinity of the Gaussian �xed point u� = v� = 0 shownby the �lled irle in the �gure). The �ow No 1 is obtained for v0 = 0, itorresponds to the pure Heisenberg model. The �ow No 2 results fromthe small ratio jv0=u0j and orresponds to the weak disorder whereas the�ow No 3 is obtained for large jv0=u0j and orresponds to the strongerdilution.



11 ÏðåïðèíòObtained running values of oupling onstant presented by �ows inFig. 3 allow one to get the e�etive ritial exponents. Calulating re-summed expression for the e�etive exponent e� (9) along the �ows 1-3we get the results shown in the Fig. 4. Again, the urve 1 orresponds
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ln lFigure 4. E�etive ritial exponent e� versus logarithm of the �owparameter. The urves orrespond to �ows from the Fig. 3 denoted byorresponding numbers.to the e�etive ritial exponent of the pure Heisenberg model, whereasurves 2 and 3 provide two possible senarios for the e�etive exponentsof the disordered Heisenberg model. Curve 2 orresponds to the weak di-lution region: here, the exponent inreases with approah to the ritialpoint, although the rossover region is larger in omparison with the puremagnet (ompare urves 1 and 2 in Fig. 4). This may lead to the peu-liar situation that the asymptoti value of the exponent is reahed earlierthan the asymptoti values of the oupling. The e�etive exponents forthe �ows originating from non-zero ratio jv0=u0j always attain the valuewhih are larger than the asymptoti one. But the absolute value of this�overshooting" for small enough jv0=u0j is too small to be observed ex-perimentally. An experimental observation of suh type of e� behaviourof the disordered Heisenberg-like magnet is provided e.g. by Fig. 1d. Dif-ferent behaviour of e� is demonstrated by the urve 3 in Fig. 4. Here,before reahing the asymptoti region the exponent possess a distintpeak. Suh behaviour is in agreement with observed experimental datapresented by Figs. 1a�1, 1e�1h. The value of maximum depends on
ICMP�02�07E 12the initial values for the RG �ows. Larger ratio jv0=u0j (i.e. strongerdisorder) leads to the larger maximum. Thus, within unique approahone may explain both senarios observed in the diluted Heisenberg-likemagnets e�etive ritial exponent e� behaviour.As we have notied in the setion 2, the rossover behaviour of ran-dom Heisenberg-like magnets was analyzed by means of an alternativeapproah in [20�23℄. There, the quenhed disordered magnet was de-sribed as an equilibrium one with additional fores of onstraints [24℄.This resulted in an e�etive Hamitonian whih di�ers from (4). The �xedpoint struture of this Hamiltonian di�ers from those given in Fig. 2 and,for di�erent onentrations, leads to di�erent rossover regimes. In par-tiular, it predits that there exists a limiting value of onentrationwhere the ritial behaviour is governed by Fisher-renormalized tririti-al exponents [23℄ whih oinide with those of a d = 3 spherial model: = 2, � = 1, � = �1, � = 0, � = 1=2. There exist two more �xed pointswhih may be stable in the weak dilution regime. Their stability di�ersin di�erent orders of the perturbation theory (ompare [20℄ and [22℄) butthe numerial values of the ritial exponents do not di�er essentially atthese �xed points. The maximal possible value of the e�etive ritialexponent e� has been estimated as e� ' 2:6 [22℄. However, the dis-tint feature of the behaviour of e�(�) obtained in [21℄ is its monotonidependene. Hene, the experimentally observed peaks (see Fig. 1) annot be explained within suh approah.4. ConlusionsIn the present paper we used the �eld-theoretial RG tehnique to studythe e�etive ritial behaviour of diluted Heisenberg-like magnets. Thequestion of partiular interest was to explain the peak in the exponente� as funtion of distane from T observed in some experiments. Ourtwo-loop alulations re�ned by the resummation of the perturbationtheory series resulted in typial behaviour of diluted Heisenberg-likemagnets e� exponent represented by urves 2 and 3 in Fig. 4. Theexponent an either reah it asymptoti value without demonstratingdistint maximum or it an �rst reah the peak and then ross-over tothe asymptoti value from above. The strength of disorder is a physialreason whih disriminates between these two regimes.Our alulations are quite general and do not speify any partiu-lar objet. In order to �t our urves to ertain experiment one shouldinlude into onsideration non-universal parameters to speify the mag-neti system. The same onerns the �ow parameter ` whih as we have
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