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Awnoranis. g cucremu, MO CKJIATAETHCA 3 TOYKOBOIO DE3CITIHOBOTO
3apsAly Ta I'€HepOBAHOIO HUM €JIEKTPOMArHETHOIO I0JisA, m0o0ymIoBaHi
30epezKyBaHi BEJTMINHN, IO BiIMOBIAAIOTH CUMETPii 3a/1ati BimHOCHO 1me-
perBopens 3 rpynu Ilyamkape. Ili 36epexyBani BendwHH BUPAXKEHi
B TepMiHaX 3MIHHWX YaCTUHOK. BuaBmmoch, mo piBHanHA Jlopena-
Hipaka cynepednts mudepeHIiiiHOMY HAC/IIIKOBI iHTerpaga pyxy IeH-
Tpa Mac, AKWI BUHWKAE i3 IHBAPIAHTHOCTI CUCTEMHU BiTHOCHO MEPETBO-
peub Jlopenna.

On the validity of the Lorentz-Dirac equation
Yu.Yaremko

Abstract. Ten conserved quantities corresponding to the symmetry of
the composite system of point-like charged particle and electromagnetic
field under Poincaré group are expressed in terms of particle variables.
It is shown that the Lorentz-Dirac equation contradicts the differential
consequence of ”center-of-mass” conserved quantity which arises from
the invariance of the system under Lorentz transformation.
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1. Introduction

The Lorentz-Dirac equation is an equation of motion for a charged parti-
cle under the influence of an external force as well as its own electromag-
netic field. The particle’s world line is described by the functions z%(7)
which give the particle’s coordinates as functions of proper time 7. We
denote u®(71) = dz(7)/dr the four-velocity, and a®(7) = du®(7)/dr is
the four-acceleration. The Lorentz-Dirac equation is written as

ma = By + 26 (6 — u*(a,a) | (1)
where m is the particle’s rest mass, e its charge, F., the external force,
and a*(7) = da®(7)/dr. The third term takes into account the energy
loss due to radiation, the second one follows from a proper relativistic
treatment given first by Schott (1915), and is called the ”Schott term”. If
the first term is the Lorentz force, the Schott term is necessary in order
to preserve equality u,uf = —1.

The problems of runaway solutions (where acceleration grows expo-
tentially with time) and pre-acceleration (when acceleration begins to
increase prior to time at which the external force switches on) occur in
this theory [1]. They cast a serious doubt on the validity of the Lorentz-
Dirac equation.

The law of conservation of the total four-momentum of composite
(particle + field) system provides the foundation for Dirac’s derivation [2]
of radiation-reaction force. The verification of energy conservation is not
a trivial matter, since the Lorentz-Dirac equation is derived with the help
of a mass renormalization procedure, which involves the manipulation of
the divergent self-energy of a point charge.

There are many derivations which are patterned after Dirac’s classi-
cal paper [2] (see, for instance, [1,3,4]). Although they differ from it in
their technical aspects, all the derivations involve the Taylor expansion
of a finite sized charged sphere in which the first two terms lead to the
electromagnetic self-energy and the Abraham radiation reaction four-
vector, respectively. Following ref.[2], the authors enclose a world line
within a thin world tube and calculate an electromagnetic flow across
this surface per unit proper time. In fact, they calculate the time deriva-
tive of energy-momentum four-vector. My main objective is to calcu-
late how much electromagnetic-field momentum flows across hyperplane
¥, = {y € M: y° =t} at fixed instant time ¢. Thanks to such a compu-
tation we make sense of the so-called ”mass renormalization” procedure
and the separation of ”structure-independent” Schott term. These meth-
ods are very important to obtain the Lorentz-Dirac equation (1).
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The physical meaning of a decomposition of electromagnetic field’s
stress-energy tensor into radiative and bound component will be fully
elucidated too. The Schott term in the Lorentz-Dirac equation is orig-
inated from the bound component of the Maxwell energy-momentum
tensor density. Teitelboim shows [3] that due to volume integration of
this component we obtain an electromagnetic four-momentum carried
by the particle around it. In fact, by this he means the particle four-
momentum

2
' =mu* — §e2a“ (2)

which contains, apart from the usual velocity term, also a contribution
from the acceleration when the particle is charged. We substantiate Teit-
elboim’s concept so far as particle’s electromagnetic ”fur” is concerned.

The main goal of present paper is to check up the consistency
of Lorentz-Dirac equation with fundamental principles like energy-
momentum conservation and the conservation of total angular momen-
tum. By ”fundamental principles” are meant the ten conserved quantities
corresponding to Poincaré-invariance of composite particle+field system.

Of course, the divergent self-energy term arises unavoidably whenever
one introduces point charges in a classical electrodynamics. Following
ref. [1], we assume that an intrinsic structure of a charged particle is
beyond the limits of classical theory (except that its ”radius” does not
vanish, though is too small to be observed). For this reason the mass
renormalization is not necessary.

Our emphasis will be on rigorous calculations and exact solu-
tions based on standard classical electrodynamics supplemented with
Rohrlich’s heuristic assumptions so far as the dynamics of a single
charged particle are concerned [1, Sect.6-2,6-4].

2. Energy-momentum conservation

In this section we check a balance between electromagnetic-field momen-
tum and mechanical momentum of an arbitrary moving particle. We only
assume that the particle is asymptotically free at the remote past and
at the distant future. We suppose ”that action of the force is reasonably
limited in space-time” [1].

2.1. Preliminaries

We choose metric tensor 7, = diag(—1,1,1,1) for Minkowski space IM
We use the Heaviside-Lorentz system of units with the velocity of light
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¢ = 1. Summation over repeated indices is understood throughout the
paper; Greek indices run from 0 to 3, and Latin indices from 1 to 3. The
particle trajectory

¢ : R—-M
t— (t,2'(t)), (3)
is meant as a local section of trivial bundle (M, IR) where the projection
1t M—=R
% y") = y°, (4)

defines the instant form of dynamics [5].

We denote u° := v and u’ := yvi, v' = dz'(t)/dt, the components
of particle’s four-velocity; its four-acceleration is a# = ydu* /dt where
factor v := 1/+/1 — v2. We shall use the particle’s momentarily comoving
Lorentz frame (MCLF) where particle is momentarily at the rest at the
instant time ¢. The Lorentz matrix

1 vy
V1 —v? V1 —v?
IA% || = - ; (5)
v 51 + o)k

V1-—2

e(v?) = v72(y — 1), determines the transformation to MCLF where
four-velocity u® = (1,0,0,0) and four-acceleration a® = (0,a’ ). The
components a’ = A¥ ,a® constitute three-vector a which is (non-trival)
spatial part of the particle acceleration taken in MCLF.

We suppose that the components of total four-momentum of our
particle+field system are

p’(t) = mu”(t) + P do, T, (6)
PR
where do,, is the vectorial surface element on a space-like hypersurface
Y; which intersects a trajectory at the point (¢,z(t)). (By X; we take
a fibre [6] of ”instant” bundle (4) over t € IR.) By T" we denote the
components of the Maxwell energy-momentum tensor density

THY = fEAFYN = 1/ f<X fx . (7)

The tensor has an r~* singularity on a particle trajectory. In eq.(6) capi-
tal letter P denotes the principal value of the singular integral, defined by
removing from X; a sphere K(0,¢) around the particle and then passing
to the limit € — 0.
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2.2. Coordinate system

An appropriate coordinate system for flat spacetime is the key to the
problem. The structure of (retarded) Lienard-Wiechert potential moti-
vates the introduction of a coordinate system centered on an accelerated
world line. A wide class of such coordinate systems was considered by
Newman and Unti [7]. The set of curvilinear coordinates for flat space-
time IMinvolves the retarded time, say u, and the retarded distance r.
The former is the root of algebraic equation

W’ —u)?’=> (v —q'w)?, (8)

(3

which is related to the observation time ¢ by the causality condition
t —u > 0. The latter is the distance between an observer event y and
the particle, as measured at the retarded time in the MCLF:

r(y) = —nas(y® — ¢ (w)u’(u). (9)
We start with the following coordinate transformation:
Y =u+ rA° o n® , oyt =2t u) + rAl gn® , (10)

which is a specific example of Newman and Unti class of coordinate sys-
tems, presented in ref.[4]. The null vector n := (1, n) has the components
(1, cos ¢psin ¥, sin ¢ sind, cos¥); ¥ and ¢ are two polar angles.

To adopt these curvilinear coordinates to the instant form of dynam-
ics (4), we replace the retarded distance r by the expression

V1-—02

r:1+(vn)

(t—u), (11)
where t is the observation time. On rearrangement, the final coordinate
transformation (y) — (t,u,, @) looks as follows:

V1-—02

1% (vm) (t —u)Afyn® . (12)

=t y=q'+
Since the bundle (4) is trivial [6], we consider space-time IMas a disjoint
union of fibres i~!(t) := X; parametrized by the coordinates (u,v, ).
This coordinate system is global because different ¥’s do not intersect.
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2.3. Electromagnetic field’s stress-energy tensor

The components of Lienard-Wiechert potential A = Aydy® depend on
the state of the particle’s motion at the retarded time only:
Ua (1)
Ay = e——=. (13)
()
Here u,(u) are the components of velocity one-form 4. The electromag-
netic field is written as follows [4]

f_ [u+r( a+a)| ANk, (14)

where one-form k = kody® has the components k, = nagkﬁ, kP =
A'BBI n?, and scalar aj, = kqa®. To express the components fap in terms
of curvilinear coordinates (12) we substitute the right side of eq.(11) for
the retarded distance r in this expression.

It is straightforward to substitute these components into eq.(7) to cal-
culate the electromagnetic field’s stress-energy tensor. Following ref.[3],
we present TP as a sum of radiative and bound components,

Taﬁ = T:;ﬁ + T‘t?n[ii ’ (15)
where
e [14 (vn)]*
47T, = CEMERTEE (a® — (an)?) ,
i e [1+ (vn)]? PR
4T = oy [(1_(1}2) ;2 (a2 — (an)?) (v +n )A  (16)

are the radiative components, and

e? vn)]* .
47TTbnd = % (t — u)4 [:tl_{—_( UQ))] [ 2(vn)2 + ’UZ] +
¢ 1+ (Vn)]4 an)(vn
* (t —u)? (1- 02) /2 [(av) — (an)(vn)] , (17)
T = (t f u)l [(114;(7;1)1)}2 [ (Vn)nil] Ay +
¢ [L+ ()
F e g (@) - iy

+ [(av) - (an) = 2(vn)(an)n’ +[1 + (vm)la’ ) ATy (18)
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are the bound components. The results coincide with the components
T%* obtained in [4, eqgs.(5.4),(5.5)] where k® should be replaced by
A%y n® and the right side of eq.(11) should be substituted for the re-
tarded distance.

2.4. Electromagnetic field momentum

Now we calculate the electromagnetic field momentum
pgm = / da—OTON7 (19)
o

where an integration hypersurface ¥; = {y € IM: y° = t} is a surface of
constant t. The surface element is given by dog = /—gdudiddd where

(L- o)

~ "7 (t—u)’sin® 20
[1+(vn)]3(t ) (20)

V=

is the determinant of metric tensor of Minkowski space viewed in curvi-
linear coordinates (12). The angular integration can be handled via the

relations
2w
/ dﬁsmﬁ/ dén' =0,

2m
/ dﬁsmﬁ/ dén‘n' = — i',
27 o
/ dﬁsinﬁ/ deninin* = 0. (21)
0 0
The calculation reveals that the decomposition of stress-energy tensor

into radiative and bound components is meaningful. Indeed, radiative
component (16) scales as r—2; its contribution is regular:

2, ! ‘
p?ad :/ dO—OTr(;Od = 362/ duaz (u)7
y0=t —00
) ) 9 . [t . )
Poa= [ dnTl = 3¢ [ awtii. @)
y0= —o0

The radiative momentum is accumulated: its amount in ¥; at fixed time
t depends on all previous motion of a source. While the bound four-
momentum depends on the state of particle’s motion at the observation
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time only! The matter is that the total (retarded) time derivatives arise
from angular integration:

0 P/ dooT° 2ez/t du 1 1 + 1 +
= ox = — R —_— _
Pond Jog 0T bud 39 L M a—w2 \ T T T2
1 2(vv
N (v¥)
t—u(l—v?)?
2, 1 1 1
= Z20im (= 23
3¢ u1—>mt< 4+1—vz(u)>t—u’ (23)
i P/ dogTY 2e2/t | v
= ol = — B
DPbnd ot 0L bnd 3 - (t—u)2 1 — 2

+
-~
| | =
<
N
—
| |<
-
<
[V
N )
—~
| 1<
< |=
MRS
vms
~
| S

(24)

This is explained by Teitelboim in ref.[3, pg.1581]:"It is of interest
to emphasize that the tensor 7. and, in particular, its components
Tt?l’jd, which are to be interpreted as the negatives of the energy and
momentum densities in the rest frame, are retarded functions. Thus a
change in the energy-momentum density on o(7) can be caused only by
a change of the kinematics of the charge prior to 7'. Nevertheless, if
one adds all the contributions from the various volume elements, the net
result depends only on a neighborhood of the present event z(7). Thus
it looks as if the charge carried a rigid electromagnetic cloud, but a truly
rigid eletromagnetic configuration would contradict the finite speed of
propagation of the interactions.”

From the formal point of view the bound components (23) and (24),
involved in particle four-momentum, are divergent. We arrive at the
gap between structureless point particles and finite field energies. In
Rohrlich’s opinion [1], it is impossible to fill in the gap using the methods
of classical electrodynamics. A higher-level theory is necessary. For this
reason we do not make any assumptions about the particle structure,
its charge distribution, and its size. We assume only that the particle
four-momentum is finite. To substantiate our point of view we are going
to analize commonly used manipulations with divergent terms (23) and
(24).

1The author deals with covariant proper time 7; o(7) is the spacelike surface (26)
which intersects a world line at point 2(7) = (¢, z(t)).
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2.5. Schott term

We face the problem how the Schott term arises due to integration of the
bound component of energy-stress tensor. One usually works in frame
of covariant approach where the proper time 7 is used as an evolution
parameter. Since dr = /1 — v2(t)dt, we substitute small parameter ¢ for

1 —v2(t)(t —u) in eqs.(23) and (24). In terms of covariant coordinates
the components of singular four-momentum involve the term

2 13 _
2 2y W —e)

3 =0 € (25)

(Only zeroth component has the additional term.) We are interested in
the limit € — 0 and, therefore, we expand this singularity in the immedi-
ate vicinity of world line. In Taylor expansion of eq.(25) the structureless
term is proportional to particle four-acceleration.? It is the well-known
Schott term involved in the Lorentz-Dirac equation (1).

2.6. Renormalization of mass

It is often assumed that the particle is a ”matter” core ”dressed” in
the electromagnetic ”cloud”. The divergent term — the first term of the
Taylor expansion of (25) — should be added to a rest mass of ”matter”
core, so that this already renormalized mass is meaningful.

We have a problem how such a renormalization procedure for bound
four-momentum with components (23) and (24) should be defined. In-
deed, zeroth component contains the term which is not proportional to
zeroth component of four-velocity while the spatial components are pro-
portional to u’. The reason is that we use surface ¥; = {y € M: y° = t}
as an integration hypersurface in eq.(19). Rohrlich [1] and Teitelboim [3]
suggest that the momentarily comoving Lorentz frame of the charge plays
a privileged role in the definition of the energy momentum corresponding
to the bound part of the energy-momentum tensor. The authors use the
spacelike surface o; defined by

u(T) (y* —2*(1)) = 0 (26)

as the integration hypersurface. Our aim is to make strict sense of this
”privileged role”.

So, we have to calculate the volume integral (19) over tilted hyper-
planes. To apply our previous results we make such Lorentz transforma-
tion  that a tilted hyperplane becomes ¥y = {y € IM: YO = t'}. After

20One usually assumes some radius of the particle and proclaims the structure-
independent terms as ones of true physical meaning.
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trivial calculations we arrive at

1 _ v
Pppa = doyTng
Ot

/ doo TS Qq
yO’:t/
= OFuping.- (27)

Using Q*, = A¥,/, where matrix elements A*,/ are given by eq.(5), we
arrive at the frame in which the particle is momentarily at rest at time
t. In MCLF particle velocity v’ = (1,0,0,0) and the spatial components
(24) of bound four-momentum vanish:

o 1 2 ]_ il

Phnd = hint T Pbna = 0. (28)

As usual, the divergent quantity e?/2¢ is linked together with the me-
chanical "matter” mass of a particle, so that renormalized mass is con-
sidered to be finite.

We see that the computation of the rate of electromagnetic-field mo-
mentum which flows across all the hyperplane y° = const does not con-
tradict the usual approach in which one calculates an electromagnetic
flow across a thin tube around world line per unit proper time. But it al-
lows to explain the meaning of manipulations with divergent terms such
as "renormalization” of mass and separation of ”structure-independent”
Schott term.

3. Total angular momentum tensor of the electromag-
netic field

The charged particle cannot be separated from its bound electromagnetic
”cloud”. We would like to construct particle four-momentum in terms of
its state functions (velocity, acceleration etc.). Usual approach based on
the "renormalization” of mass and separation of ”structure-independent”
Schott term leads to the Teitelboim’s formula (2). This approach is math-
ematically incorrect. To obtain an additional information we calculate
the conserved quantities corresponding to the invariance of the theory
under proper homogeneous Lorentz transformations.

We are now concerned with total angular momentum tensor of the
electromagnetic field [1]:

Mb = / doo (y" T — y"T") . (29)
PR
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Conservation of the space part M@, of the tensor M/ is due to in-
variance under space rotations. Conservation of the mixed space-time
components, M2 | expresses the center-of-mass theorem. It takes place
due to invariance under Lorentz transformations.

We substitute eq.(15) and eq.(12) into eq.(29) to calculate the elec-
tromagnetic field’s angular momentum tensor. Routine scrupuleous cal-
culation reveals the (divergent) components of bound four-momentum
(23) and (24) in the proper places! The components of the angular mo-
mentum tensor are as follows:

Tont = MG, = iz Opla + (30)
¢ ¢

+ %62 / dua®(u)e® ;2  (u)v? (u) + §e2 / dug® vt (u)a? (u)
— o0

Ko = —Mgy = ~tphng + 2" (Ophaa + (31)

t

t
2 5 2 i i 4 5 v'(u)(a-v)
+ 36 / dua®(u)[z*(u) — v (u)u]+3e du T
— 00 — 00
This result reinforces our conviction that the bound momentum and its
“matter” mechanical counterpart constitute the four-momentum ppa,¢ of
charged structureless particle.

Taking into account the mechanical part of angular four-momentum,
we obtain the following ten conserved quantities which are due to the in-
variance of our composite particle+field system under infinitesimal trans-
formations of Poincaré group:

2, [ .
P = Bt 3¢ [ ), (52)
. ) 2., [t . ,
Vo= Stz [ dutwei), (33)
JE = 6kijzi( )Phare + (34)
+ —e / dua®(u)e® ;2 (u)v (u / due® vt (u)a? (u)

Ki = _tppart +2z ( )ppart + (35)

+ —e/ dua®(u)[z'(u) — v'(u u]+ / du 1—v2)'

Thus we finally arrive at the natural decomposition of the conserved
quantities into particle component and radiative component. The former
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depends on the instant characteristics of charged particle while the latter
is accumulated with time.

To construct the particle motion equation we only need to consider
the vicinity of world line. We calculate how much electromagnetic-field
momentum and angular momentum flow across hypersurface ;. We
can do it at a time ¢t + At. We demand that change in these quantities
be balanced by a corresponding change in the particle’s ones, so that
the total energy-momentum (p°,p) and angular momentum (J, K) are
properly conserved. Via the differentiation of eqs.(32)-(35) we arrive at
the following system of differential equations:

. 2 .

pgart = _§e2a2(t) ) (36)
¥ 2 . )

Ppart = —§e2az(t)vz(t) ; (37)
"0 (D Phars = —5€°€" 150" (1)

—eek (el 1), (39)
i in0 4 svi(t)(a-v)

Ppart = V' ()Ppar = 3¢ v

Its solution is a motion with constant velocity where pf, ., do not change.

The problem of particle motion in presence of external force requires
careful consideration. We do not know what is the rate of external device
in the balance condition of total angular momentum (J, K). (Considering
the energy-momentum we use the Lorentz force, or capacity for non-
electromagnetic force.)

Of course, one would prefer an expression which explains how four-
momentum of charged particle depends on its velocity and acceleration
etc. It is obvious that this expression should satisfy the differential con-
sequences of the total angular momentum. To check up the Teitelboim’s
expression we substitute the right side of eq.(2) for ppar in eqgs.(38) and
(39). We see that eq.(38) is satisfied identically while eq.(39) is not ful-
filled. Therefore, Teitelboim’s expression (2) contradicts the differential
consequence of ”center-of-mass” conserved quantity.

(39)

4. Conclusions

We can briefly summarize our conclusions as follows:

e a charged particle can not be separated from its bound electro-
magnetic "fur”, so that the four-momentum of the particle is the
sum of the mechanical momentum and the electromagnetic bound
four-momentum;
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e Teitelboim’s expression for particle four-momentum as a linear
function of particle’s velocity and acceleration contradicts the
structure of center-of-mass conserved quantity originated from an
invariance of our composite system under Lorentz transformations.

Moreover, the system of six linear equations (38) and (39) in variables
psart does not possess solution whenever particle’s motion is accelerated.
Does it mean that there is no expression of type (2) within an interaction
area? The problem requires careful consideration. Worthy of note that
in the absence of an external force the motion of classical point charge
satisfies the law of inertia (Newton’s first law).

Acknowledgments

The author would like to thank Prof.V.Tretyak and Dr.A.Duviryak for
helpful discussions and critical comments.

References

1. F.Rohrlich, Classical Charged Particles (Addison-Wesley, Redwood
City, 1990).

2. P.A.M.Dirac, Classical theory of radiating electron, Proc.Roy.Soc.
London A167, 14868 (1938).

3. C.Teitelboim, Splitting of the Maxwell tensor: radiation reaction
without advanced fields, Phys.Rev.D 1 N6 (1970), pp.1572-82.

4. E.Poisson, An introduction to the Lorentz-Dirac equation, Prepr.
gr-qc/9912045, 1999.

5. R.P.Gaida, Yu.B.Kluchkovsky, and V.I.Tretyak, Forms of relativis-
tic dynamics in classical Lagrangian description of particle system,
Theor.Math.Phys. 55, 372 (1983).

6. D.J.Saunders, The Geometry of Jet Bundles, (Lecture Notes Series
142, Cambridge Univ. Press, 1989).

7. E.-T.Newman and T.W.J.Unti, A class of null flat-space coordinate
systems, J.Math.Phys. 4 1467-69 (1963).




Ipenpunrn Incruryry disuku konnencoBanux cucrem HAH Ykpainu
PO3IOBCIOKYIOTHC Cepell HAyKoBuX Ta indopmartiitiux ycranos. Bonn
TAKOXK HOCTYIIHI IO eJIeKTPOHHIi#T KoM toTepHili mepexi Ha WWW-cep-
Bepi iHcTHTYTY 32 agpecoro http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

IOpiit I'puroposuy Apemko
10 MUTAHHA PO KOPEKTHICTH PIBHAHHA JIOPEHIIA-IIPAKA
Pobory orpumano 30 smucronama 2001 p.

Barsepmxkeno 10 apyky Buenoio panoio IOKC HAH Ykpaiau

PekomennoBano mo IpyKy cemMiHapoM BifIiiy Teopil MeTasTiB Ta
CTIIaBiB

Burorossieno npu I®OKC HAH Yxkpainu
(© Vci npaBa 3acrepexeni



