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 equationYu.YaremkoAbstra
t. Ten 
onserved quantities 
orresponding to the symmetry ofthe 
omposite system of point-like 
harged parti
le and ele
tromagneti
�eld under Poin
ar�e group are expressed in terms of parti
le variables.It is shown that the Lorentz-Dira
 equation 
ontradi
ts the di�erential
onsequen
e of "
enter-of-mass" 
onserved quantity whi
h arises fromthe invarian
e of the system under Lorentz transformation.

ðÏÄÁ¤ÔØÓÑ × J.Phys.ASubmitted to J.Phys.A


 ¶ÎÓÔÉÔÕÔ Æ�ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ 2001Institute for Condensed Matter Physi
s 2001



1 ðÒÅ�ÒÉÎÔ1. Introdu
tionThe Lorentz-Dira
 equation is an equation of motion for a 
harged parti-
le under the in
uen
e of an external for
e as well as its own ele
tromag-neti
 �eld. The parti
le's world line is des
ribed by the fun
tions z�(�)whi
h give the parti
le's 
oordinates as fun
tions of proper time � . Wedenote u�(�) = dz�(�)=d� the four-velo
ity, and a�(�) = du�(�)=d� isthe four-a

eleration. The Lorentz-Dira
 equation is written asma� = F�ext + 23e2 ( _a� � u�(a�a�)) ; (1)where m is the parti
le's rest mass, e its 
harge, F�ext the external for
e,and _a�(�) = da�(�)=d� . The third term takes into a

ount the energyloss due to radiation, the se
ond one follows from a proper relativisti
treatment given �rst by S
hott (1915), and is 
alled the "S
hott term". Ifthe �rst term is the Lorentz for
e, the S
hott term is ne
essary in orderto preserve equality u�u� = �1.The problems of runaway solutions (where a

eleration grows expo-tentially with time) and pre-a

eleration (when a

eleration begins toin
rease prior to time at whi
h the external for
e swit
hes on) o

ur inthis theory [1℄. They 
ast a serious doubt on the validity of the Lorentz-Dira
 equation.The law of 
onservation of the total four-momentum of 
omposite(parti
le + �eld) system provides the foundation for Dira
's derivation [2℄of radiation-rea
tion for
e. The veri�
ation of energy 
onservation is nota trivial matter, sin
e the Lorentz-Dira
 equation is derived with the helpof a mass renormalization pro
edure, whi
h involves the manipulation ofthe divergent self-energy of a point 
harge.There are many derivations whi
h are patterned after Dira
's 
lassi-
al paper [2℄ (see, for instan
e, [1,3,4℄). Although they di�er from it intheir te
hni
al aspe
ts, all the derivations involve the Taylor expansionof a �nite sized 
harged sphere in whi
h the �rst two terms lead to theele
tromagneti
 self-energy and the Abraham radiation rea
tion four-ve
tor, respe
tively. Following ref.[2℄, the authors en
lose a world linewithin a thin world tube and 
al
ulate an ele
tromagneti
 
ow a
rossthis surfa
e per unit proper time. In fa
t, they 
al
ulate the time deriva-tive of energy-momentum four-ve
tor. My main obje
tive is to 
al
u-late how mu
h ele
tromagneti
-�eld momentum 
ows a
ross hyperplane�t = fy 2 MI : y0 = tg at �xed instant time t. Thanks to su
h a 
ompu-tation we make sense of the so-
alled "mass renormalization" pro
edureand the separation of "stru
ture-independent" S
hott term. These meth-ods are very important to obtain the Lorentz-Dira
 equation (1).
ICMP{01{22E 2The physi
al meaning of a de
omposition of ele
tromagneti
 �eld'sstress-energy tensor into radiative and bound 
omponent will be fullyelu
idated too. The S
hott term in the Lorentz-Dira
 equation is orig-inated from the bound 
omponent of the Maxwell energy-momentumtensor density. Teitelboim shows [3℄ that due to volume integration ofthis 
omponent we obtain an ele
tromagneti
 four-momentum 
arriedby the parti
le around it. In fa
t, by this he means the parti
le four-momentum p� = mu� � 23e2a� (2)whi
h 
ontains, apart from the usual velo
ity term, also a 
ontributionfrom the a

eleration when the parti
le is 
harged. We substantiate Teit-elboim's 
on
ept so far as parti
le's ele
tromagneti
 "fur" is 
on
erned.The main goal of present paper is to 
he
k up the 
onsisten
yof Lorentz-Dira
 equation with fundamental prin
iples like energy-momentum 
onservation and the 
onservation of total angular momen-tum. By "fundamental prin
iples" are meant the ten 
onserved quantities
orresponding to Poin
ar�e-invarian
e of 
omposite parti
le+�eld system.Of 
ourse, the divergent self-energy term arises unavoidably wheneverone introdu
es point 
harges in a 
lassi
al ele
trodynami
s. Followingref. [1℄, we assume that an intrinsi
 stru
ture of a 
harged parti
le isbeyond the limits of 
lassi
al theory (ex
ept that its "radius" does notvanish, though is too small to be observed). For this reason the massrenormalization is not ne
essary.Our emphasis will be on rigorous 
al
ulations and exa
t solu-tions based on standard 
lassi
al ele
trodynami
s supplemented withRohrli
h's heuristi
 assumptions so far as the dynami
s of a single
harged parti
le are 
on
erned [1, Se
t.6-2,6-4℄.2. Energy-momentum 
onservationIn this se
tion we 
he
k a balan
e between ele
tromagneti
-�eld momen-tum and me
hani
al momentum of an arbitrary moving parti
le. We onlyassume that the parti
le is asymptoti
ally free at the remote past andat the distant future. We suppose "that a
tion of the for
e is reasonablylimited in spa
e-time" [1℄.2.1. PreliminariesWe 
hoose metri
 tensor ��� = diag(�1; 1; 1; 1) for Minkowski spa
e MI .We use the Heaviside-Lorentz system of units with the velo
ity of light



3 ðÒÅ�ÒÉÎÔ
 = 1. Summation over repeated indi
es is understood throughout thepaper; Greek indi
es run from 0 to 3, and Latin indi
es from 1 to 3. Theparti
le traje
tory � : RI ! MIt 7! (t; zi(t)) ; (3)is meant as a lo
al se
tion of trivial bundle (MI ; i; RI ) where the proje
tioni : MI ! RI(y0; yi) 7! y0 ; (4)de�nes the instant form of dynami
s [5℄.We denote u0 := 
 and ui := 
vi, vi = dzi(t)=dt, the 
omponentsof parti
le's four-velo
ity; its four-a

eleration is a� = 
du�=dt wherefa
tor 
 := 1=p1� v2. We shall use the parti
le's momentarily 
omovingLorentz frame (MCLF) where parti
le is momentarily at the rest at theinstant time t. The Lorentz matrixk���0k = 0BBB� 1p1� v2 vl0p1� v2vkp1� v2 Ækl0 + '(v2)vkvl0 1CCCA ; (5)'(v2) = v�2(
 � 1), determines the transformation to MCLF wherefour-velo
ity u�0 = (1; 0; 0; 0) and four-a

eleration a�0 = (0; ai0). The
omponents ai0 = �i0�a� 
onstitute three-ve
tor a whi
h is (non-trival)spatial part of the parti
le a

eleration taken in MCLF.We suppose that the 
omponents of total four-momentum of ourparti
le+�eld system arep�(t) = mu�(t) + P Z�t d��T �� ; (6)where d�� is the ve
torial surfa
e element on a spa
e-like hypersurfa
e�t whi
h interse
ts a traje
tory at the point (t; z(t)). (By �t we takea �bre [6℄ of "instant" bundle (4) over t 2 RI .) By T �� we denote the
omponents of the Maxwell energy-momentum tensor densityT�� = f��f�� � 1=4���f��f�� : (7)The tensor has an r�4 singularity on a parti
le traje
tory. In eq.(6) 
api-tal letter P denotes the prin
ipal value of the singular integral, de�ned byremoving from �t a sphere K(0; ") around the parti
le and then passingto the limit "! 0.

ICMP{01{22E 42.2. Coordinate systemAn appropriate 
oordinate system for 
at spa
etime is the key to theproblem. The stru
ture of (retarded) Lienard-Wie
hert potential moti-vates the introdu
tion of a 
oordinate system 
entered on an a

eleratedworld line. A wide 
lass of su
h 
oordinate systems was 
onsidered byNewman and Unti [7℄. The set of 
urvilinear 
oordinates for 
at spa
e-time MI involves the retarded time, say u, and the retarded distan
e r.The former is the root of algebrai
 equation(y0 � u)2 =Xi (yi � qi(u))2 ; (8)whi
h is related to the observation time t by the 
ausality 
onditiont � u > 0. The latter is the distan
e between an observer event y andthe parti
le, as measured at the retarded time in the MCLF:r(y) = ����(y� � q�(u))u�(u) : (9)We start with the following 
oordinate transformation:y0 = u+ r�0�0n�0 ; yi = zi(u) + r�i�0n�0 ; (10)whi
h is a spe
i�
 example of Newman and Unti 
lass of 
oordinate sys-tems, presented in ref.[4℄. The null ve
tor n := (1;n) has the 
omponents(1; 
os� sin#; sin� sin#; 
os#); # and � are two polar angles.To adopt these 
urvilinear 
oordinates to the instant form of dynam-i
s (4), we repla
e the retarded distan
e r by the expressionr = p1� v21 + (vn) (t� u) ; (11)where t is the observation time. On rearrangement, the �nal 
oordinatetransformation (y�) 7! (t; u; #; �) looks as follows:y0 = t ; yi = qi(u) + p1� v21 + (vn) (t� u)�i�0n�0 : (12)Sin
e the bundle (4) is trivial [6℄, we 
onsider spa
e-time MI as a disjointunion of �bres i�1(t) := �t parametrized by the 
oordinates (u; #; �).This 
oordinate system is global be
ause di�erent �'s do not interse
t.



5 ðÒÅ�ÒÉÎÔ2.3. Ele
tromagneti
 �eld's stress-energy tensorThe 
omponents of Lienard-Wie
hert potential ^A = A�dy� depend onthe state of the parti
le's motion at the retarded time only:A� = eu�(u)r(y) : (13)Here u�(u) are the 
omponents of velo
ity one-form ^u. The ele
tromag-neti
 �eld is written as follows [4℄^f = er2 [^u+ r(ak^u+ ^a)℄ ^ ^k ; (14)where one-form ^k = k�dy� has the 
omponents k� = ���k�, k� =���0n�, and s
alar ak = k�a�. To express the 
omponents f�� in termsof 
urvilinear 
oordinates (12) we substitute the right side of eq.(11) forthe retarded distan
e r in this expression.It is straightforward to substitute these 
omponents into eq.(7) to 
al-
ulate the ele
tromagneti
 �eld's stress-energy tensor. Following ref.[3℄,we present T�� as a sum of radiative and bound 
omponents,T�� = T��rad + T��bnd ; (15)where4�T 00rad = e2(t� u)2 [1 + (vn)℄4(1� v2)2 �a2 � (an)2� ;4�T 0irad = e2(t� u)2 [1 + (vn)℄3(1� v2)3=2 �a2 � (an)2� �vi0 + ni0��ii0 (16)are the radiative 
omponents, and4�T 00bnd = 12 e2(t� u)4 [1 + (vn)℄4(1� v2)3 �1� 2(vn)2 + v2�++ 2 e2(t� u)3 [1 + (vn)℄4(1� v2)5=2 [(av)� (an)(vn)℄ ; (17)4�T 0ibnd = e2(t� u)4 [1 + (vn)℄4(1� v2)5=2 hvi0 � (vn)ni0i�ii0 ++ e2(t� u)3 [1 + (vn)℄3(1� v2)2 �[(av)� (an)(vn)℄vi0++ [(av)� (an)� 2(vn)(an)℄ni0 + [1 + (vn)℄ai0��ii0 (18)
ICMP{01{22E 6are the bound 
omponents. The results 
oin
ide with the 
omponentsT 0� obtained in [4, eqs.(5.4),(5.5)℄ where k� should be repla
ed by���0n�0 and the right side of eq.(11) should be substituted for the re-tarded distan
e.2.4. Ele
tromagneti
 �eld momentumNow we 
al
ulate the ele
tromagneti
 �eld momentump�em = Z�t d�0T 0� ; (19)where an integration hypersurfa
e �t = fy 2 MI : y0 = tg is a surfa
e of
onstant t. The surfa
e element is given by d�0 = p�gdud#d� wherep�g = (1� v2)2[1 + (vn)℄3 (t� u)2 sin# (20)is the determinant of metri
 tensor of Minkowski spa
e viewed in 
urvi-linear 
oordinates (12). The angular integration 
an be handled via therelations Z �0 d# sin# Z 2�0 d�ni = 0 ;Z �0 d# sin# Z 2�0 d�ninj = 4�3 Æij ;Z �0 d# sin# Z 2�0 d�ninjnk = 0 : (21)The 
al
ulation reveals that the de
omposition of stress-energy tensorinto radiative and bound 
omponents is meaningful. Indeed, radiative
omponent (16) s
ales as r�2; its 
ontribution is regular:p0rad = Zy0=t d�0T 00rad = 23e2 Z t�1 dua2(u) ;pirad = Zy0=t d�0T 0irad = 23e2 Z t�1 dua2(u)vi(u) : (22)The radiative momentum is a

umulated: its amount in �t at �xed timet depends on all previous motion of a sour
e. While the bound four-momentum depends on the state of parti
le's motion at the observation



7 ðÒÅ�ÒÉÎÔtime only! The matter is that the total (retarded) time derivatives arisefrom angular integration:p0bnd = P Zy0=t d�0T 00bnd = 23e2 Z t�1 du � 1(t� u)2 ��14 + 11� v2�++ 1t� u 2(v _v)(1� v2)2 �= 23e2 limu!t��14 + 11� v2(u)� 1t� u ; (23)pibnd = P Zy0=t d�0T 0ibnd = 23e2 Z t�1 du � 1(t� u)2 vi1� v2++ 1t� u � _vi1� v2 + 2(v _v)vi(1� v2)2��= 23e2 limu!t vi(u)1� v2(u) 1t� u : (24)This is explained by Teitelboim in ref.[3, pg.1581℄:"It is of interestto emphasize that the tensor T��bnd and, in parti
ular, its 
omponentsT 0�bnd, whi
h are to be interpreted as the negatives of the energy andmomentum densities in the rest frame, are retarded fun
tions. Thus a
hange in the energy-momentum density on �(�) 
an be 
aused only bya 
hange of the kinemati
s of the 
harge prior to �1. Nevertheless, ifone adds all the 
ontributions from the various volume elements, the netresult depends only on a neighborhood of the present event z(�). Thusit looks as if the 
harge 
arried a rigid ele
tromagneti
 
loud, but a trulyrigid eletromagneti
 
on�guration would 
ontradi
t the �nite speed ofpropagation of the intera
tions."From the formal point of view the bound 
omponents (23) and (24),involved in parti
le four-momentum, are divergent. We arrive at thegap between stru
tureless point parti
les and �nite �eld energies. InRohrli
h's opinion [1℄, it is impossible to �ll in the gap using the methodsof 
lassi
al ele
trodynami
s. A higher-level theory is ne
essary. For thisreason we do not make any assumptions about the parti
le stru
ture,its 
harge distribution, and its size. We assume only that the parti
lefour-momentum is �nite. To substantiate our point of view we are goingto analize 
ommonly used manipulations with divergent terms (23) and(24).1The author deals with 
ovariant proper time � ; �(�) is the spa
elike surfa
e (26)whi
h interse
ts a world line at point z(�) = (t; z(t)).

ICMP{01{22E 82.5. S
hott termWe fa
e the problem how the S
hott term arises due to integration of thebound 
omponent of energy-stress tensor. One usually works in frameof 
ovariant approa
h where the proper time � is used as an evolutionparameter. Sin
e d� =p1� v2(t)dt, we substitute small parameter " forp1� v2(t)(t�u) in eqs.(23) and (24). In terms of 
ovariant 
oordinatesthe 
omponents of singular four-momentum involve the term23e2 lim"!0 u�(� � ")" : (25)(Only zeroth 
omponent has the additional term.) We are interested inthe limit "! 0 and, therefore, we expand this singularity in the immedi-ate vi
inity of world line. In Taylor expansion of eq.(25) the stru
turelessterm is proportional to parti
le four-a

eleration.2 It is the well-knownS
hott term involved in the Lorentz-Dira
 equation (1).2.6. Renormalization of massIt is often assumed that the parti
le is a "matter" 
ore "dressed" inthe ele
tromagneti
 "
loud". The divergent term | the �rst term of theTaylor expansion of (25) | should be added to a rest mass of "matter"
ore, so that this already renormalized mass is meaningful.We have a problem how su
h a renormalization pro
edure for boundfour-momentum with 
omponents (23) and (24) should be de�ned. In-deed, zeroth 
omponent 
ontains the term whi
h is not proportional tozeroth 
omponent of four-velo
ity while the spatial 
omponents are pro-portional to ui. The reason is that we use surfa
e �t = fy 2 MI : y0 = tgas an integration hypersurfa
e in eq.(19). Rohrli
h [1℄ and Teitelboim [3℄suggest that the momentarily 
omoving Lorentz frame of the 
harge playsa privileged role in the de�nition of the energy momentum 
orrespondingto the bound part of the energy-momentum tensor. The authors use thespa
elike surfa
e �t de�ned byu�(�) (y� � z�(�)) = 0 (26)as the integration hypersurfa
e. Our aim is to make stri
t sense of this"privileged role".So, we have to 
al
ulate the volume integral (19) over tilted hyper-planes. To apply our previous results we make su
h Lorentz transforma-tion 
 that a tilted hyperplane be
omes �t0 = fy 2 MI : y00 = t0g. After2One usually assumes some radius of the parti
le and pro
laims the stru
ture-independent terms as ones of true physi
al meaning.



9 ðÒÅ�ÒÉÎÔtrivial 
al
ulations we arrive atp�bnd = Z�t d��T ��bnd= Zy00=t0 d�00T 00�0bnd 
�0�= 
��0p�0bnd : (27)Using 
��0 = ���0 , where matrix elements ���0 are given by eq.(5), wearrive at the frame in whi
h the parti
le is momentarily at rest at timet. In MCLF parti
le velo
ity u0 = (1; 0; 0; 0) and the spatial 
omponents(24) of bound four-momentum vanish:p00bnd = limu0!t0 12e2 1t0 � u0 ; pi0bnd = 0 : (28)As usual, the divergent quantity e2=2" is linked together with the me-
hani
al "matter" mass of a parti
le, so that renormalized mass is 
on-sidered to be �nite.We see that the 
omputation of the rate of ele
tromagneti
-�eld mo-mentum whi
h 
ows a
ross all the hyperplane y0 = 
onst does not 
on-tradi
t the usual approa
h in whi
h one 
al
ulates an ele
tromagneti

ow a
ross a thin tube around world line per unit proper time. But it al-lows to explain the meaning of manipulations with divergent terms su
has "renormalization" of mass and separation of "stru
ture-independent"S
hott term.3. Total angular momentum tensor of the ele
tromag-neti
 �eldThe 
harged parti
le 
annot be separated from its bound ele
tromagneti
"
loud". We would like to 
onstru
t parti
le four-momentum in terms ofits state fun
tions (velo
ity, a

eleration et
.). Usual approa
h based onthe "renormalization" of mass and separation of "stru
ture-independent"S
hott term leads to the Teitelboim's formula (2). This approa
h is math-emati
ally in
orre
t. To obtain an additional information we 
al
ulatethe 
onserved quantities 
orresponding to the invarian
e of the theoryunder proper homogeneous Lorentz transformations.We are now 
on
erned with total angular momentum tensor of theele
tromagneti
 �eld [1℄:M��em = Z�t d�0 �y�T 0� � y�T 0�� : (29)
ICMP{01{22E 10Conservation of the spa
e part M ijem of the tensor M��em is due to in-varian
e under spa
e rotations. Conservation of the mixed spa
e-time
omponents, M0iem, expresses the 
enter-of-mass theorem. It takes pla
edue to invarian
e under Lorentz transformations.We substitute eq.(15) and eq.(12) into eq.(29) to 
al
ulate the ele
-tromagneti
 �eld's angular momentum tensor. Routine s
rupuleous 
al-
ulation reveals the (divergent) 
omponents of bound four-momentum(23) and (24) in the proper pla
es! The 
omponents of the angular mo-mentum tensor are as follows:Jkem : = "kijM ijem = "kijzi(t)pjbnd + (30)+ 23e2 tZ�1 dua2(u)"kijzi(u)vj(u) + 23e2 tZ�1 du"kijvi(u)aj(u) ;Kiem : = �M0iem = �tpibnd + zi(t)p0bnd + (31)+ 23e2 tZ�1 dua2(u)[zi(u)� vi(u)u℄ + 43e2 tZ�1 duvi(u)(a � v)p1� v2 :This result reinfor
es our 
onvi
tion that the bound momentum and its"matter" me
hani
al 
ounterpart 
onstitute the four-momentum ppart of
harged stru
tureless parti
le.Taking into a

ount the me
hani
al part of angular four-momentum,we obtain the following ten 
onserved quantities whi
h are due to the in-varian
e of our 
omposite parti
le+�eld system under in�nitesimal trans-formations of Poin
ar�e group:p0 = p0part + 23e2 Z t�1 dua2(u) ; (32)pi = pipart + 23e2 Z t�1 dua2(u)vi(u) ; (33)Jk = "kijzi(t)pjpart + (34)+ 23e2 Z t�1 dua2(u)"kijzi(u)vj(u) + 23e2 Z t�1 du"kijvi(u)aj(u) ;Ki = �tpipart + zi(t)p0part + (35)+ 23e2 Z t�1 dua2(u)[zi(u)� vi(u)u℄ + 43e2 Z t�1 duvi(u)(a � v)p1� v2 :Thus we �nally arrive at the natural de
omposition of the 
onservedquantities into parti
le 
omponent and radiative 
omponent. The former



11 ðÒÅ�ÒÉÎÔdepends on the instant 
hara
teristi
s of 
harged parti
le while the latteris a

umulated with time.To 
onstru
t the parti
le motion equation we only need to 
onsiderthe vi
inity of world line. We 
al
ulate how mu
h ele
tromagneti
-�eldmomentum and angular momentum 
ow a
ross hypersurfa
e �t. We
an do it at a time t +4t. We demand that 
hange in these quantitiesbe balan
ed by a 
orresponding 
hange in the parti
le's ones, so thatthe total energy-momentum (p0;p) and angular momentum (J;K) areproperly 
onserved. Via the di�erentiation of eqs.(32)-(35) we arrive atthe following system of di�erential equations:_p0part = �23e2a2(t) ; (36)_pipart = �23e2a2(t)vi(t) ; (37)"kijvi(t)pjpart = �23e2"kijvi(t)aj(t) ; (38)pipart � vi(t)p0part = 43e2 vi(t)(a � v)p1� v2 : (39)Its solution is a motion with 
onstant velo
ity where p�part do not 
hange.The problem of parti
le motion in presen
e of external for
e requires
areful 
onsideration. We do not know what is the rate of external devi
ein the balan
e 
ondition of total angular momentum (J;K). (Consideringthe energy-momentum we use the Lorentz for
e, or 
apa
ity for non-ele
tromagneti
 for
e.)Of 
ourse, one would prefer an expression whi
h explains how four-momentum of 
harged parti
le depends on its velo
ity and a

elerationet
. It is obvious that this expression should satisfy the di�erential 
on-sequen
es of the total angular momentum. To 
he
k up the Teitelboim'sexpression we substitute the right side of eq.(2) for ppart in eqs.(38) and(39). We see that eq.(38) is satis�ed identi
ally while eq.(39) is not ful-�lled. Therefore, Teitelboim's expression (2) 
ontradi
ts the di�erential
onsequen
e of "
enter-of-mass" 
onserved quantity.4. Con
lusionsWe 
an brie
y summarize our 
on
lusions as follows:� a 
harged parti
le 
an not be separated from its bound ele
tro-magneti
 "fur", so that the four-momentum of the parti
le is thesum of the me
hani
al momentum and the ele
tromagneti
 boundfour-momentum;

ICMP{01{22E 12� Teitelboim's expression for parti
le four-momentum as a linearfun
tion of parti
le's velo
ity and a

eleration 
ontradi
ts thestru
ture of 
enter-of-mass 
onserved quantity originated from aninvarian
e of our 
omposite system under Lorentz transformations.Moreover, the system of six linear equations (38) and (39) in variablesp�part does not possess solution whenever parti
le's motion is a

elerated.Does it mean that there is no expression of type (2) within an intera
tionarea? The problem requires 
areful 
onsideration. Worthy of note thatin the absen
e of an external for
e the motion of 
lassi
al point 
hargesatis�es the law of inertia (Newton's �rst law).A
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