Національна академія наук України

А.М. Швайка

МАГНІТНІ ВЛАСТИВОСТІ АКТИНІДІВ. ОГЛЯД

УДК: 537.622 **РАСS:** 75.20, 75.30

Магнітні властивості актинідів. Огляд

А.М. Швайка

Анотація. Проведений порівняльний аналіз різних сполук актинідів [металів, інтерметалідів (системи з важкими ферміонами, гратки Кондо, системи з проміжною валентністю) та діелектриків] на предмет встановлення механізмів формування магнітних моментів, ефективних взаємодій та магнітних властивостей. На основі проведеного аналізу встановлено, що сильний вплив оточення (розщеплення в кристалічному полі, sd-f гібридизація) приводить до сильної спінфононної взаємодії і чутливості магнітних властивостей сполук актинідів до структури (тип кристалічної гратки, локальне оточення, дефекти) та можливих типів збуджень (фонони, екситони).

Magnetic properties of actinides. The review

A.M. Shvaika

Abstract. A comparative analysis of the different actinide compounds [metals, intermetallic compounds (heavy fermion systems, Kondo lattices, mixed valence systems) and dielectrics] with respect to the formation of the magnetic moments, effective interactions and magnetic properties is performed. It is stressed that the strong influence of the environment (crystal electric field splitting, sd-f hybridization) leads to the strong spin-phonon interaction and sensitivity of the magnetic properties of the actinide compounds to the structure (crystal lattice type, local environment, defects) and different excitations (phonons, excitons, etc.).

© Інститут фізики конденсованих систем 2001 Institute for Condensed Matter Physics 2001

1	I	Трепринт
З№	міст	
1.	Вступ	2
2.	Особливості електронної будови актинідів	2
3.	Магнітні властивості у металічному стані	6
4.	Сполуки урану з кристалічною граткою типу N	aCl 8
5.	Сполуки нептунію з кристалічною структурою NaCl	типу 10
6.	Сполуки плутонію з кристалічною структурою NaCl	типу 10
7.	Тверді розчини та інші сполуки із структурою NaCl	типу 11
8.	Сполуки актинідів типу $An \mathbf{X}_2$ та $An \mathbf{X} \mathbf{Y}$	11
9.	Сполуки актинідів типу $oldsymbol{A}oldsymbol{n}_3 {f X}_4$	12
10.	. Інтерметалічні сполуки актинідів	13
11.	. Оксиди актинідів	17
12.	. Галіди актинідів	21
13.	. Висновки	22
Лi'	тература	23

Перелік позначень, скорочень

ЛПВМ	—	лавоподібні паливовмісні матеріали.
ПВМ	_	паливовмісні матеріали.
PAB	—	радіоактивні відходи.
КЕП	—	кристалічне електричне поле.
$A\Phi M, \Phi M$	—	антиферо- та феромагнітний стани речовини.
$\Phi\Pi$	—	фазовий перехід.
dHvA	—	де Гааз-ван Альфен (de Haas-van Alphen).
RKKY	—	взаємодія Рудемана-Кіттеля-Касуї-Йошіди.

An	— атом (іон) актиніду.
$E_{ m F}$	— енергія Фермі.
χ	— магнітна сприйнятливість.
$T_{ m N}$	— температура антиферомагнітного впорядкування.
χ_M	— молярна магнітна сприйнятливість.
θ, C	— постійні в законі Кюрі-Вейса.
μ	— магнітний момент іона (атома).
$\mu_{ m B}$	— магнетон Бора.
\parallel,\perp	— дана величина відноситься до напряму, паралель-
	ному виділеній в кристалі осі, або напряму, пер-
	пендикулярному до неї.

2

1. Вступ

Серед проблем, що виникають при вирішенні задач, пов'язаних з переробкою вилучених з об'єкту "Укриття" РАВ, важливою є розділення (сепарація) сполук урану та трансуранових елементів. Технологічною основою такого розділення може бути магнітна сепарація, яка грунтується на аномальних магнітних властивостях ЛПВМ [1].

Оскільки багато сполук актинідів володіють чітко вираженими магнітними властивостями, дуже чутливими до їхньої структури, корисно провести порівняльний аналіз різних сполук актинідів на предмет встановлення механізмів формування магнітних моментів, ефективних взаємодій та магнітних властивостей.

2. Особливості електронної будови актинідів

Магнітні властивості актинідів, так само як і перехідних та рідкісноземельних іонів, визначаються наявністю та особливістю будови внутрішніх незаповнених електронних оболонок: 3d, 4d або 5d для перехідних металів, 4f для рідкісноземельних та 5f для актинідів.

Так, наприклад, для чистих металів d та f стани проявляють як локальні так і колективні властивості. Наявність атомного потенціального бар'єру приводить до локалізації d та f атомів і зменшує перекриття між оболонками на різних вузлах. Однак значна частина електронної густини є поза межами потенціального бар'єру, що приводить до великих значень кінетичної енергії та широких зон, які є співмірні з ширинами s та p зон. Другим фактором, який визначає спектри, є сильне кулонівське відштовхування, яке сильно залежить від числа електронів в межах бар'єру, що приводить до дуже складних розщеплень спектру. Як наслідок, локалізація електронів незаповнених оболонок зменшується, коли рухатися по періодичній таблиці зліва направо та зверху вниз. Так, 3d електрони більш злокалізовані, ніж 4d і тим більше 5d електрони, що пояснює наявність магнітних впорядкувань, пов'язаних з наявністю чітких локальних моментів, тільки для 3d-металів.

Особливість фізичних явищ у сполуках актинідів зумовлена впливом 5*f* електронів, які проявляють різні ступені локалізації в різних сполуках, для яких спостерігаються різні випадки зонної поведінки (від повної локалізації до колективізованої). Ступінь локалізації також визначається зовнішніми параметрами, такими як температура та тиск. На відміну від лантанідів, для яких 4*f* електрони ϵ як правило локалізовані, хвильові функції 5f електронів ϵ більш протяжні і можуть перекриватися, що приводить до формування вузьких f зон. Крім того, такі 5f зони сильно гібридизуються з 6d та 7s зонами. З іншого боку, для багатьох сполук віддаль між сусідніми атомами актинідів є, як правило, більша ніж у чистих металах, f оболонки перекриваються слабо так що не задовільняється критерій Хілла [2] виникнення колективізованого стану. Однак, навіть при відсутності процесів прямого f - f переносу, може відбуватися колективізація *f* електронів внаслідок гібридизації з зонами іншого походження. Тому поведінка актинідів є проміжною між 3d та 4fсполуками, що приводить до великого різноманіття фізичних властивостей і великої чутливості до малих зовнішніх збурень. Малі зміни тиску чи хімічного складу можуть приводити до великих змін структури, магнітних чи електронних властивостей.

В сполуках актинідів спостерігається велика кількість цікавих фізичних ефектів, а саме:

- Перехід Мотта для *f* електронів, керований тиском, легуванням, температурою чи магнітним полем.
- Екзотичні магнітні властивості, починаючи від локалізованого магнетизму типу RKKY через фази з редукованим моментом чи колективізованими хвилями спінової густини до немагнітної важкоферміонної поведінки.
- Метамагнітні переходи.
- Незвичайна надпровідність.
- Взаємодії між мультипольними моментами вищого порядку іонів актинідів.

- Дипольний та квадрупольний ефекти Кондо, які приводять до подавлення магнітодипольних та квадрупольних ступеней вільності, відповідно, при низьких температурах за рахунок флуктуацій.
- Сильні магнітопружні ефекти.

ICMP-01-18U

Для легких актинідів (від Th до Pu) 5*f* — електрони формують широкі енергетичні зони і можуть розглядатися як колективізовані, а для актинідів з вищими атомними числами вони є локалізовані, хоча для Am, Cm, Bc та Cf може відбутися делокалізація під тиском [3].

Електронні оболонки 5f елементів мають дуже складну будову термів (див. Табл. 1 [4]) внаслідок сильної спін-орбітальної взаємодії, яка супроводжується значною делокалізацією f станів. На даний час теоретичні розрахунки структури термів, факторів Ланде, магнітних моментів стикаються із значними труднощами. З другого боку, d та 5f електрони, на відміну від 4f, є дуже чутливі до кристалічного поля, яке приводить, як мінімум, до подавлення орбітального моменту та руйнування атомних термів та перебудови основного стану, який може бути як синглетний, так і дублетний, триплетний чи більшої кратності з різними магнітними моментами.

Табл. 1. Структура термів 5 оболонок [4]

Конфігурація	Терми	Число
		станів
$f^1 f^{13}$	$^{2}\mathrm{F}^{0}$	14
$f^2 f^{12}$	¹ SDGI ³ PFH	91
$f^{3} f^{11}$	² PDFGHIKL ⁰ ⁴ SDFGI ⁰	364
$f^4 f^{10}$	¹ SDFGHIKLN ³ PDFGHIKLM ⁵ SDFGI	1001
$f^5 f^9$	² PDFGHIKLMNO ⁰ ⁴ SPDFGHIKLM ⁶ PFH	2002
$f^6 f^8$	¹ SPDFGHIKLMNQ ³ PDFGHIKLMNO	3003
	⁵ SPDFGHIKL ⁷ F ² SPDFGHIKLMNOQ ⁰	
f^7	⁴ SPDFGHIKLMN ⁶ PDFGHI ⁰ ⁸ S ⁰	3432

Кристалічне оточення приводить також до сильних ефектів гібридизації f рівнів (зон), з s, p та d рівнями (зонами), що ще більше ускладнює картину. Самоузгоджені зонні розрахунки є складними і дуже чутливими до вибору обмінно-кореляційного потенціалу [5–7]. Згідно розрахунків роботи [5], ширина 5f зон зменшується із зростанням атомного числа від урану (0.4 Ry) до плутонію (0.3 Ry). Електронний спектр урану поблизу рівня фермі містить 3d зону провідності, яка сильно гібридизована з достатньо широкою 5f зоною. 5f зони для плутонію є набагато плоскіші [5,8], що вказує на розміщення Ри на границі локалізації f-електронів. Проведені в [5] релятивістські розрахунки зонної структури важких актинідів (Am, Cm, Bc) показують, що, у порівнянні з легкими актинідами, зростає ширина 7s зони, 5f зони стають достатньо вузькими і плоскими, а також подавляється sd-5f гібридизація. Тобто відбувається сильна локалізація 5f електронів. Спектр також є дуже чутливим до числа f-електронів, що свідчить про велику роль внутріатомних кореляцій. Для важких актинідів може відбуватися делокалізація 5f електронів під тиском, що було встановлено при зонних розрахунках [9].

Значна кількість зонних розрахунків для актинідів зумовлена тим, що для більшості актинідів поверхня Фермі практично не досліджена. Відомо тільки, що вона має складну будову з багатьма поверхнями, в тому числі з великими ефективними масами електронів, і що хоча би для легких актинідів 5*f* електрони є локалізовані і приймають участь у формуванні електронного спектру поблизу рівня Фермі.

В теоретичному плані при побудові теоретичних моделей слід враховувати багато різних процесів, які співмірні за величиною, що робить неможливим створення простих мікроскопічних моделей навіть на якісному рівні. Скоріш за все у більшості випадків такі моделі не можуть бути створені через складну гру між різними мікроскопічними взаємодіями та процесами, а саме: гібридизація f орбіталей і станів провідності, ефекти кристалічного електричного поля, дипольні та мультипольні (магнітні і електричні) взаємодії типу RKKY та процеси Кондо. Крім того, суттєвий внесок, внаслідок протяжності f оболонок, вносять фонони, включаючи одноіонний ефект Яна-Теллера, непрямі квадрупольні взаємодії через фонони, а також зонні стани між збудженнями кристалічного поля та фононами. Тому, як наслідок, теоретичні моделі є напівкількісні і, як правило, трактують 5f електрони або локалізованими чи колективізованими. Тут слід відмітити, що за виключенням окремих випадків, наприклад UO₂, буває дуже важко встановити з експерименту ступінь локалізації 5 *f* електронів (як правило для цього проводять виміри магнітної ентропії, сприйнятливості, магнітного формфактору пружнього розсіяння нейтронів, анігіляція позитронів, ефекту де Гааза-ван Альфена, фото-електронної спектроскопії). Більше того, можливі випалки коли для тих самих сполук одні експерименти свідчать про локалізований характер 5f електронів, а інші — про колективізований.

Табл. 2. Типові енергії різних взаємодій, які характеризують локалізований магнетизм для іонів з незаповненими 3d, 4f та 5f оболонками [10].

Взаємодія	3d (meB)	4f (meB)	5f (meB)
Кулонівська	1000 - 10000	1000-10000	1000-10000
Спін-орбітальна	10 - 100	100	300
Кристалічне поле	1000	10	100
Обмінна	100	1	10

Як правило в сполуках актинідів спостерігаються складні магнітні структури. Наприклад, дуже часто спостерігають магнітні структури, які задаються декількома хвильовими векторами \mathbf{k} (прикладами є монопніктіди або UO₂). Стійкість багатовекторної структури забезпечується сильною анізотропією та наявністю квадрупольних взаємодій. Складна природа обмінних взаємодій може приводити до появи неспівмірних магнітних структур типу одномірних хвиль модуляції (гелікоїдальні структури як правило подавлюються сильною анізотропією).

Найбільш поширеним співмірними антиферомагнітними структурами є АФ-І ($\mathbf{k} = [001]$), АФ-ІІ ($\mathbf{k} = \begin{bmatrix} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{bmatrix}$) та АФ-ІА ($\mathbf{k} = \begin{bmatrix} \frac{1}{2} 00 \end{bmatrix}$).

3. Магнітні властивості у металічному стані

У металічному стані легкі актиніди з делокалізованими 5f електронами мають кристалічну структуру, подібну до d металів, але з набагато складнішими фазовими діаграмами. Наприклад, плутоній володіє найбільшою кількістю кристалічних модифікацій серед елементів періодичної системи елементів. Структура важких актинідів (починаючи з америцію) нагадує структуру лантаноїдів. Розрахунки стійкості кристалічної гратки, рівноважного об'єму та модулів пружності для легких актинідів Th, Pu, U проводилися в роботі [11]. Питома теплоємність при високих температурах містить до 10% електронної складової.

Магнітні властивості металів ряду актинідів визначаються ступенем локалізації 5*f* електронів, яка зростає з ростом атомного числа.

ICMP-01-18U

Легкі актиніди (Th, Pu, U) володіють звичайним паулівським парамагнетизмом і описуються моделями, де колективізовані 5f електрони утворюють широкі зони.

Нептуній та плутоній, подібно до Pt і Pd, володіють майже феромагнітними властивостями. Їхня магнітна сприйнятливість володіє немонотонною температурною залежністю при низьких температурах, і значний, типу T^2 , внесок від спінових флуктуацій у провідність та підвищення питомої теплоємності. Магнітна сприйнятливість америцію, яка є відносно великою, слабо залежить від температури і скоріше всього проявляє ван Флеківський парамагнетизм.

Для Cm, Bc та Cf (інші важкі актиніди не досліджувалися) при високих температурах справджується закон Кюрі-Вейса

$$\chi = \chi_0 + \frac{C}{T - \theta} \tag{1}$$

а ефективні магнітні моменти

$$\mu_{\rm eff} = \sqrt{8C} \tag{2}$$

узгоджуються з моментами для відповідних трьох валентних іонів [12], що свідчить про застосовність схеми взаємодій Рассела-Саундерса. Встановлено також сильну чутливість магнітних властивостей до типу кристалічної гратки. Так, згідно даних нейтронних досліджень, подвійна hcp структура α -кюрію впорядковується антиферомагнітно нижче 50 K, тоді як метастабільна fcc структура β -кюрію володіє нижче 205 K скінченним магнітним моментом насичення 0.4 $\mu_{\rm B}$ і скоріше за все є феромагнітною. Іншими прикладами є α -Вс, який є антиферомагнетиком з $T_{\rm N} = 22 \div 34$ K, та α -Cf, який, за одними даними, є АФМ з $T_{\rm N} \sim 60$ K та ФМ з $T_c \sim 32$ K [13], а за іншими [14] — ФМ з $\mu_0 = 6.1\mu_{\rm B}$ та $T_c \sim 51$ K. З другого боку не спостерігається ніяких магнітних впорядкувань для кубічних модифікацій β -Вс та β -Cf.

Кількісна теорія магнітних структур в актинідах розроблена ще недостатньо, оскільки сильна спін-орбітальна взаємодія приводить до сильного орбітального внеску у магнітні властивості. Так, релятивістські зонні розрахунки для δ -Pu [15] дають наступні значення магнітних моментів (в $\mu_{\rm B}$): $\mu_S = 5.5$, $\mu_L = -2.4$, $\mu_J = \mu_S + \mu_L = 2.1$, тоді як експериментальне значення для μ_J є порядку 1 $\mu_{\rm B}$. Крім того, спін-орбітальна взаємодія для деяких сполук актинідів (fcc-Pu, UGe₃, URh₃) може приводити у зовнішньому магнітному полі до антипаралельної орієнтації спінового моменту та паралельної орбітального [16].

4. Сполуки урану з кристалічною граткою типу NaCl

Сполуки актинідів з граткою типу NaCl мають загальну формулу AnX, де An — атом актиніду, а X=N, P, As, Sb, Bi, S, Se, Te, C. Ці сполуки мають просту структуру, але володіють різноманітними магнітними властивостями. Всі монопніктіди урану UN, UP, UAs, USb та UBi є антиферомагнетиками, тоді як моногалькогеніди урану US, USe та UTe є феромагнетиками. Для UC не спостерігається виникнення далекого магнітного порядку.

Незважаючи на велику кількість досліджень, магнітні властивості цих сполук не є до кінця зрозумілими.

Дослідження дифракції нейтронів у магнітному полі монокристалів монофосфіду урану UP [17, 18] вказують на виникнення антиферомагнітного впорядкування типу 1k-I (+ – +–) нижче $T_{\rm N} \approx 122$ K з магнітним моментом 1.7 $\mu_{\rm B}$ при T = 77 K. При $T_0 \approx 22.5$ K спостерігається перехід у фазу 2k-I зі стрибком магнітного моменту з 1.70 $\mu_{\rm B}$ до 1.90 $\mu_{\rm B}$ та зміною його орієнтації з (001) на (110). Подібну поведінку проявляє ізоструктурний моноарсенід урану UAs [19], але тепер 2k фаза є типу IA (+ + ––) [20]. Фазові переходи відбуваються при $T_{\rm N} \approx 124$ K до 1k-I структури та $T_0 \approx 63$ K до 2k структури зі стрибком магнітного моменту при T_0 від 1.92 $\mu_{\rm B}$ до 2.24 $\mu_{\rm B}$. Також проводилися експерименти з магнітного розсіяння рентгенівських променів [21,22]. Це дозволило розділити спінові та орбітальні внески у магнітний момент, відношення яких виявилося близьким до значення для вільного іона у 5f³ конфігурації, що свідчить про локалізацію електронів у UAs.

Моноантимонід урану USb проявляє зовсім відмінні властивості і впорядковується у 3k-I структуру з орієнтацією моментів вздовж напрямку (111) при 213 К. Унікальність USb проявляється також у існуванні спінових хвиль при низьких температурах з аномальними температурними залежностями їх енергії та затухання [23], що також свідчить про локалізований магнетизм.

Для опису магнітної поведінки UP, UAs та USb була запропонована модель [24] двохіонної взаємодії опосередкованої через гібридизацію, яка перемішує іонні та зонні хвильові функції. Цей підхід грунтується на переході від гібридизаційного члена

$$H_{mix} = \sum_{\mathbf{k}m} \left(V_{\mathbf{k}m} b^+_{\mathbf{k}m} c_m + V^*_{\mathbf{k}m} c^+_m b_{\mathbf{k}m} \right), \qquad (3)$$

де $c_m, b_{\mathbf{k}m}$ є електронні оператори для іонних та зонних станів, від-

повідно, шляхом перетворення Шріффера-Вольфа до гамільтоніану з обмінною взаємодією типу Когбліна-Шріффера (Cogblin-Shrieffer) між різними мультипольними моментами f оболонки. Далі у другому порядку теорії збурень отримують ефективну взаємодію між вузлами i та j у вигляді

$$H_{ij} = -E_{ij} \sum_{\mu\nu\epsilon\sigma} J^{\epsilon\sigma}_{\mu\nu} \left(\theta,\varphi\right)_{ij} L^{(i)}_{\mu\nu} L^{(j)}_{\epsilon\sigma}, \qquad (4)$$

де μ , ν , ϵ , σ — магнітні квантові числа для іонних станів, $L_{\mu\nu}^{(i)}$ — стандартний базисний оператор для іона у вузлі i [25], $J_{\mu\nu}^{\epsilon\sigma}(\theta,\varphi)_{ij}$ — певна функція кутів, які задають орієнтацію осі, що з'єднує вузли i та j, а E_{ij} — функція відстані між вузлами i та j, яка розглядається як феноменологічний параметр. Гамільтоніан H_{ij} описує взаємодію між магнітними та електричними мультиполями довільного, кінематично дозволеного типу. Додатково ще включають малу ізотропну гайзенбергівську взаємодію та кристалічне поле. Проведені дослідження даної моделі у наближенні середнього поля відтворили спостережувані магнітні структури у UP та USb, де багатовекторна структура пояснюється конкуренцією між одноіонною анізотропією зумовленою кристалічним полем та анізотропною обмінною взаємодією. Однак дана модель не може пояснити фазовий перехід між двома магнітновпорядкованими фазами.

Мононітрид урану UN, як і UP та UAs, при $T_N = 53$ К впорядковується антиферомагнітно зі структурою 1k-I [17]. Однак, фазовий перехід в UN є другого роду. Крім того, в UN *f* електрони є колективізовані: віддаль U-U є близька до значення 3.5 Å критерія Хілла [2] появи магнетизму в сполуках урану, що також підтверджується малим значенням магнітного моменту $\mu_0 = 0.75\mu_B$, яке є далеко від значень $2 - 3\mu_B$ типових для інших пніктідів та халькогенідів урану. Тому вважається, що UN є прикладом систем з вузькими зонами сильнокорельованих колективізованих 5*f* електронів.

Феромагнітні моногалькогеніди урану US, USe та UTe є напівметалами з температурами впорядкувань $T_c = 180$ K, 160 K та 108 K і моментами 1.5, 2.0 та $2.2\mu_{\rm B}$, відповідно. Серед вражаючих властивостей цих сполук є дуже велике значення константи анізотропії (US має найбільше значення серед кубічних кристалів [26,27]) внаслідок чого напрямок (111) є віссю легкого намагнічення. Також припускається, що ці моногалькогенініди урану є прикладами систем зі змінною валентністю [17].

Карбід урану UC має аніони малого радіусу, іони урану розміщені близько. Тому для UC не спостерігається ніякого магнітного впорядкування внаслідок сильної делокалізації f електронів.

5. Сполуки нептунію з кристалічною структурою типу NaCl

При зростанні атомного числа в групі актинідів 5*f* електрони стають все більше локалізованими. Але не дивлячись на це, сполуки нептунію володіють дуже різноманітною магнітною поведінкою.

Арсенід нептунію NpAs є одним з прикладів [28–30]. При температурах нижче $T_{\rm N} = 173$ K NpAs впорядковується у неспівмірну фазу з $\mathbf{k} = [00k]$, k = 0.233. При $T_k = 158$ K відбувається фазовий перехід у співмірну фазу з $k = \frac{1}{4}$, а при $T_0 \approx 140$ K — фазовий перехід першого роду у фазу з k = 1 з трьохвекторною (3**k**) структурою. При T = 4.2 K $\mu = 2.48\mu_{\rm B}$. Перехід при T_0 скоріше за все супроводжується локалізацією електронів.

Для важких пніктидів Np локалізація електронів є сильнішою. Так актимонід нептунію впорядковується при $T_{\rm N} \approx 200$ K у 3k-I A Φ структуру як і USb та NpAs [31] з магнітним моментом іонів Np $2.56 \pm 0.1 \mu_{\rm B}$ при 4.2 K і має місце сильна гібридизація 5f електронів з p станами аніонів. Ступінь локалізації є вищим у NpSb ніж у NpAs.

Фосфат нептунію NpP впорядковується у неспівмірну A Φ фазу з магнітними моментами паралельними до вектора модуляції [0, 0, 0.36]. $T_{\rm N} = 130$ K для полікристалічних зразків і $T_{\rm N} = 119$ K для малих монокристалів [32]. Причина такої великої різниці температур є до сих пір не зрозумілою. При $T_S = 74$ K структура типу NaCl зазнає тетрагональної деформації і спінова структура стає співмірною з періодом рівним трьом постійним гратки. Значення T_S є одинакове як для монокристалів, так і полікристалів. Момент насичення дорівнює $2.2\mu_{\rm B}$. Магнітна сприйнятливість $\chi(T)$ в парамагнітному стані задовільняє закон Кюрі-Вейса з ефективним моментом $2.2\mu_{\rm B}$, що є близько до значення для вільного іона $2.87\mu_{\rm B}$.

6. Сполуки плутонію з кристалічною структурою типу NaCl

Пніктіди плутонію є як у парамагнітному так і впорядкованому магнітному стані з малими у порівнянні зі сполуками U та Np магнітними моментами. Основним станом Pu³⁺ може бути Γ_7 дублет (з моментом $\mu \approx 0.34 \mu_B$) або Γ_8 квартет (з $\mu \approx 0.76 \mu_B$). Оскільки спостережувані моменти лежать в діапазоні між 0.5 та 0.75 μ_B , то більш

імовірно реалізується квартет.

Антимонід плутонію PuSb впорядковується у неспівмірну антиферомагнітну фазу з хвильовим вектором [00k], де k змінюється в межах від k = 0.13 при $T_{\rm N} = 85$ K до k = 0.090 при $T_{IC} = 67$ K [33]. При накладанні слабого магнітного поля у малому температурному інтервалі появляється співмірна фаза з $k = \frac{1}{8}$ замість неспівмірної.

Фосфід РиР та арсенід РиА
s плутонію є феромагнетиками з $T_c = 126$ К та 125 К, відповідно [33, 34].

Вісмутід плутонію РиВі є єдиною сполукою серед актинідів з довгоперіодичною $\mathbf{k} = \begin{bmatrix} 0, 0, \frac{3}{13} \end{bmatrix}$ антиферомагнітною структурою, яка існує при всіх температурах нижче $T_{\rm N} = 58$ К.

Моногалькогеніди плутонію PuS, PuSe та PuTe володіють подібною поведінкою магнітної сприйнятливості та електричного опору [35,36], зокрема їхня магнітна сприйнятливість є майже температурно незалежна з поступовим зростанням нижче 50К, що зумовлено скоріш за все наявністю домішок U³⁺. Дані сполуки є напівпровідниками з малою енергетичною щілиною.

7. Тверді розчини та інші сполуки із структурою типу NaCl

Пніктіди та халькогеніди актинідів утворюють тверді розчини одні з другими зі збереженням структури типу NaCl, які характеризуються дуже широким спектром властивостей зумовленим як особливостями фізичних властивостей складових компонент, так і наявністю безпорядку. Їхні фазові діаграми є дуже складні і багаті, з наявністю фаз з різними магнітними порядками. Огляд їх властивостей можна знайти в роботі [10].

8. Сполуки актинідів типу AnX_2 та AnXY

Ця група сполук складається з іонів актинідів An та елементів X та Y з груп VA та VIA періодичної таблиці елементів. Більшість цих сполук мають тетрагональну кристалічну структуру [17,37].

Дипніктіди урану UX₂ (X=P, As, Sb, Bi) є антиферомагнетиками з відносно високими температурами Неєля вище 200 К [38]. Великі значення магнітних моментів у парамагнітному та впорядкованому станах вказують на наявність локалізованих електронів. Малі значення магнітної ентропії вказують на те, що найнижчі стани є синглети (конфігурація $5f^2$), а магнітні моменти є індукованими. Самі магнітні моменти у впорядкованій фазі є немонотонними функціями Диарсенід нептунію NpAs₂ впорядковується антиферомагнітно нижче $T_{\rm N} = 52$ K і феромагнітно нижче 18 K [40, 41].

Пніктогалькогеніди урану UZX, де Z=P, As, Sb та X=S, Se, Te є металічними тетрагональними сполуками з достатньо локалізованими f електронами у 5f² конфігурації. Їхні властивості приведені у підсумковій таблиці 4 [42–45]. Основним механізмом появи магнітного впорядкування в UXY сполуках вважають надобмінну взаємодію, але слід також враховувати непряму взаємодію через електрони провідності типу RKKY.

Оксидогалькогеніди урану UOS та UOSe є напівпровідниками з тетрагональною кристалічною структурою і стають антиферомагнетиками при низьких температурах [46] з максимумом сприйнятливості для UOSe при 75 К. Температури фазового переходу для відповідних сполук нептунію є набагато менші: 4.2 К для NpOS та 11 К для NpOSe. Всі ці сполуки характеризуються сильною анізотропією обмінної взаємодії.

9. Сполуки актинідів типу An_3X_4

Сполуки An_3X_4 , де X=P, As, Sb, Bi або S, Se, Te є металами з гранецентрованою кубічною структурою типу Th₃P₄, елементарна комірка містить чотири формульних одиниці. Точкова симетрія для іонів актинідів є тетрагональною S_4 , що приводить до наявності семи незалежних параметрів кристалічного електричного поля [47].

Сполуки урану U₃X₄, а також Np₃As₄ є феромагнетиками, але в літературі є великі протиріччя щодо типу магнітного порядку і величини температури переходу для U₃Se₄ та U₃Te₄ [17,37]. Pu₃S₄ є антиферомагнетиком з $T_{\rm N} = 10$ K [48]. Для Am₃Se₄ та Am₃Te₄ не спостерігається ніякого магнітного впорядкування аж до гелієвих температур 4.2 К. Для інших сполук сімейства An_3 X₄ немає достатніх даних щодо магнітної структури.

Спільною рисою більшості сполук U₃X₄ є неколінеарність їх магнітних структур і надзвичайно велика магніто-кристалічна анізотропія [47,49,50] причому магнітні моменти не орієнтуються вздовж осі легкого намагнічення (111). Як правило, в теоретичному плані магнітні властивості сполук U_3X_4 досліджують використовуючи спрощені моделі з локалізованими спінами S = 1 з врахуванням кристалічного електричного поля та обмінної анізотропії, яка виникає внаслідок перемішування p та f станів [51].

10. Інтерметалічні сполуки актинідів

Інтерметалічні сполуки актинідів викликають особливий інтерес своїми фізичними властивостями, наявністю екзотичних фаз і часто об'єднують в окрему групу, т.зв. сполуки з важкими ферміонами. Як правило такі сполуки характеризуються сильною гібридизацією f станів з зонними станами, зарядовими флуктуаціями, одноіонними та гратковими флуктуаціями Кондо магнітодиполів чи електричних квадруполів, короткосяжними кореляціями. Всі вони є як правило металами, магнітні впорядкування виникають при дуже низьких температурах і характеризуються малими магнітними моментами (див. підсумкову таблицю 4).

Інтерметалічні та діелектричні сполуки актинідів демонструють багату картину магнітних властивостей. Згідно критерію Хілла [2], границя, коли припиняється перекриття f - f орбіталей і починається формування магнітних моментів, є на достатньо великих віддалях між іонами актинідів порядку $3.25 \div 3.50$ Å.

4f та 5f сполуки з аномальними електронними властивостями можна розділити на

- важко-ферміонні системи;
- гратки Кондо;
- системи з проміжною валентністю;
- діелектричні системи зі складними обмінними взаємодіями.

Важко-ферміонні системи володіють цілим рядом екзотичних властивостей:

- Величезні значення ефективних мас електрона.
- Велика лінійна питома теплоємність. Досягається граничне значення $\gamma = 400 \text{ мДж/моль-} \text{K}^2$.
- Велике значення парамагнітної сприйнятливості при низьких температурах і великий коефіцієнт при T^2 питомого опору.

• Незвичайна надпровідність в UBe₁₃, UPt₃, яка характеризується анізотропним спарюванням та співіснує з антиферомагнітним впорядкуванням [52, 53].

Властивості "класичних" важкоферміонних систем UBe₁₃, UPt₃, U₂Zn₁₇, UCd₁₁ детально розглядаються в огляді [54]. Дані з електронної питомої теплоємності та магнітних властивостей деяких аномальних сполук на основі актинідів приведені в Табл. 3 (див. також огляди [55–59]).

Табл. 3. Електронна питома теплоємність та магнітні характеристики (парамагнітна сприйнятливість $\chi(0)$, точка Неля T_N або Кюрі T_c (в дужках), магнітний момент в основному стані M_s , парамагнітна температура Кюрі θ) для деяких аномальних сполук актинідів (важкоферміонні системи, гратки Кондо та системи з проміжною валентністю) [60].

	γ	$\chi(0)10^{-3}$	$T_{\rm N}(T_c)$	M_s	- heta	Посилання
	$ m mJ/mol~K^2$	$\mathrm{emu}/\mathrm{mol}$	Κ	μK		
UPt_3	450	7	5.0	0.02	200	[61]
URu_2Si_2	180		17.5	0.03	65	[62, 63]
UBe_{13}	1100	15			53 - 70	[54, 64, 65]
$UZn_{8,5}$	535	12.5	9.7	0.8	105	[54, 63, 66]
UCd ₁₁	800	45	5.0		23	[54, 63]
$UAgCu_4$	310		18			[56, 67]
UNiAl	164		19	0.8		[68]
UNi_2Al_3			5.2	0.24		[69]
$\mathrm{UPd}_2\mathrm{Al}_3$	150		14	0.85	47	[69]
UPdIn	280		20			[70, 71]
U_2PtSi_3	400		(8)			[72]
$NpBe_{13}$	900	56	3.4		42	[53]
$NpAl_2$	193		(57)			[73]

В теоретичному плані найпростішою моделлю до опису систем з важкими ферміонами є s - f обмінна модель. На відміну від систем з сильними хаббардівськими кореляціями, гола взаємодія між носіями струму та локалізованими моментами, яка приводить до аномальної поведінки, є достатньо слабою. Однак, внаслідок резонансного характеру s - f розсіяння поблизу рівня Фермі, ефективна взаємодія в багатоелектронній системі стає дуже великою.

ICMP-01-18U

Системи зі змінною (проміжною) валентністю характеризуються дробовим (не цілим) числом f-електронів на один атом. Це може спостерігатися, коли дві різні конфігурації $5f^n (6d7s)^m$ та $5f^{n-1} (6d7s)^{m+1}$ є майже вироджені (мають дуже близькі енергії), що приводить до сильних міжконфігураційних флуктуацій. 5f іони в сполуках актинідів проявляють велику різноманітність валентних станів: від 1+ до 7+ [12], але внаслідок сильної гібридизації флуктуації валентності є дуже швидкими.

Експериментальні дослідження останніх років переконливо показують, що магнітне впорядкування і значні спінові флуктуації є широко розповсюджені серед важкоферміонних систем і інших аномальних 5*f* сполук, які розглядаються як концентровані Кондо системи. "Кондо" магнетики характеризуються наступними властивостями:

- Логарифмічна температурна залежність питомого опору при $T > T_{\rm K}.$
- Мале значення магнітної ентропії у точці впорядкування в порівнянні з R ln (2S + 1) як для звичайних магнетиків з локалізованими моментами, яке пов'язане з подавленням питомої магнітної теплоємності внаслідок ефекту Кондо.
- Магнітний момент впорядкування M_s є малий у порівнянні з високотемпературним моментом, який визначається з постійної Кюрі (2) і близький до іонних значень. Це нагадує поведінку магнетиків зі слабою провідністю.
- Парамагнітна температура Кюрі $\theta \in як$ правило від'ємна (навіть для феромагнетиків) і по модулю перевищує значення температури магнітного впорядкування. Це є наслідком сильного одновузлового внеску Кондо у парамагнітну сприйнятливість $(\chi(T=0) \approx \frac{1}{T_{\rm K}}).$

Для чистих важкоферміонних систем ситуація є ще складнішою. Існують однозначні вказівки на існування антиферомагнетизму в UCd₁₁ та U₂Zn₁₇ [54]. Для UPt₃ та URu₂Si₂ магнітний момент складає $M_s \cong 2 \div 3 \cdot 10^{-2} \mu_{\rm B}$ [61–63]. В загальному, характерною рисою важкоферміонних систем є висока чутливість M_s до зовнішніх чинників, як тиск та легування малою кількістю домішок. Наприклад, UBe₁₃ стає AΦM з великим M_s при тиску P > 23 кбар; магнітний момент в UPt₃ зростає до значень порядку 1 $\mu_{\rm B}$ при заміщенні 5% Pt на Pd, або 5% U на Th [75]. Ряд важкоферміонних систем демонструють метамагнітний перехід у слабких полях із різким зростанням величини магнітних моментів [76].

Як правило, для сполук на основі урану багато аномалій можна пояснити на основі квадрупольного (двохканального) сценарію Кондо. Але пояснення деяких ефектів можливе тільки при суттєвому врахуванні збуджених рівнів кристалічного електричного поля.

U₃Cu₄Si₄ та U₃Cu₄Ge₄ володіють орторомбічною кристалічною структурою типу Gd₃Cu₄Ge₄ [77]. U₃Cu₄Si₄ є AMΦ з $T_{\rm N}$ = 135 K, тоді як U₃Cu₄Ge₄ є ΦM з T_c = 67 K. Для обох сполук магнітна сприйнятливість задовільняє модифікований закон Кюрі-Вейса (1) з параметрами: χ_0 = 4.9 · 10⁻⁴ e.m.u./mole, θ = 71 K, $\mu_{\rm eff}$ = 3.05 $\mu_{\rm B}$ /атом U для U₃Cu₄Si₄ та χ_0 = 5.0 · 10⁻⁴ e.m.u./mole, θ = 74 K, та $\mu_{\rm eff}$ = 2.72 $\mu_{\rm B}$ /атом U для U₃Cu₄Ge₄. Провідність має напівметалічний характер, але якщо для U₃Cu₄Si₄ основний внесок дає розсіяння на спінових хвилях, то для U₃Cu₄Ge₄ суттєвим є Кондо механізм.

U₂NiSi₃ володіє гексагональною структурою типу AlB₂ і зазнає ФМ ФП з $T_c = 25$ К [78]. Магнітна сприйнятливість є сильно анізотропна: $\mu_{\rm eff} = 3.05 \mu_{\rm B}/$ атом U, але $\theta_{\perp} = 6$ K, а $\theta_{\parallel} = -70$ K. При $T < T_c$ має місце дальній ФМ порядок з $\mu_{\perp} = 0.6 \mu_{\rm B}/$ атом U.

UNi₄B володіє гексагональною кристалічною структурою типу CaCu₅ і є A Φ M з $T_{\rm N} = 20$ K та $\mu_S = 1.2\mu_{\rm B}/{\rm atom}$ U [79].

У сполуці U_2 PtSi₃ випадковий розподіл атомів Pt та Si приводить до випадково фрустрованої обмінної взаємодії U-U через 5f(U) - 5d(Pt) гібридизацію з утворенням спінового скла. Також спостерігається важкоферміонна поведінка [80].

Потрійні сполуки і тверді розчини U(M, M')₂X₂, де M, M'=Co, Ni, Cu, a X=Si, Ge з об'ємоцентрованою тетрагональною структурою характеризуються великим різноманіттям магнітних структур з $\mathbf{k} = (0, 0, k_z)$. Магнітний момент $\mu = 1.5 \div 2.2 \mu_B$ зосереджений тільки на атомах урану. Внаслідок сильної спін-орбітальної взаємодії в 5f оболонках і 5f-6d гібридизації відбувається делокалізація 5f електронів і формування великих значень магнітного обміну через (M, M') атоми, що приводить до ФМ взаємодії у площинах. Між площинами є далекодіюча RKKY взаємодія. Деякі сполуки з X=Ge і примітивною тетрагональною структурою є немагнітні [81].

UNiSi₂ з орторомбічною структурою є прикладом ФМ, з $T_c = 95$ К, гратки Кондо з добре злокалізованими 5f електронами. Для парамагнітної сприйнятливості (1) отримано значення: $\chi_0 = 1.45 \cdot 10^{-3}$ emu/mole, $\theta = 94.1$ К, $\mu_{\rm eff} = 1.9\mu_{\rm B}/$ атом U, що є набагато менше, внаслідок ефекту Кондо, від значень $3.58\mu_{\rm B}$ та $3.64\mu_{\rm B}$ для U⁴⁺

Для тетрагональних структур U_2T_2M (T=Ni, Rh, Pd, Ir, Pt та M=In, Sn) спостерігається велике різноманіття магнітних властивостей:

- \bullet насичений парамагнетизм для $U_2Co_2In,\,U_2Ru_2Sn$
- спінові флуктуації для U_2Co_2Sn , U_2Rh_2In
- далекодіючий $A\Phi M$ для U_2Ni_2M
- важкоферміонна поведінка для U_2Pt_2In

Для цих сполук віддаль U-U вздовж осі c є більша за критичне значення Хілла, тобто 5f електрони сильно злокалізовані, але має місце сильна 5f - d гібридизація, яка приводить до ефекту Кондо або обмінної взаємодії типу RKKY. Конкуренція між механізмами Кондо та RKKY приводить до великого різноманіття основного стану від $A\Phi$ до немагнітного Кондо металу [83].

Цікавими є властивості карбідів U_2TC_2 (T=Ru, Os, Rh, Ir, Pt) з об'ємоцентрованою тетрагональною структурою. Якщо сполуки з Ru та Os володіють великою парамагнітною сприйнятливістю (в 10 раз більшою від паулівського парамагнетизму) слабо залежного від температури, що є типово для уранових сполук із флуктуацією (зміною) валентності, то сполуки з Rh, Ir та Pt володіють сильним температурно-залежним парамагнетизмом від локалізованих на комплексах C-T-C неспарених спінів без усякого внеску у магнітні властивості від урану [84].

Як правило важкоферміонні сполуки мають металічний основний стан і класифікуються як концентровані Кондо системи або гратки Кондо. Однак існує цілий ряд прикладів діелектричних граток Кондо з малою енергетичною щілиною (порядку декілька Кельвінів). Формування діелектричного стану в них відбувається за рахунок когерентного розсіяння Кондо з перетворенням резонанса Абрикосова-Сугла у вузьку, багатоелектронну за своєю природою, щілину (псевдощілину) порядку температури Кондо $T_{\rm K}$ з формуванням відповідних піків на густині станів поблизу рівня Фермі, який зміщається поза межі щілини. Така картина енергетичного спектру підтверджується даними ІЧ спектроскопії [85].

11. Оксиди актинідів

Оксиди актинідів включають велике число різних сполук, які відповідають різним ступеням окислення іонів актинідів. Так для урану відомі UO₂, U₄O₉, U₃O₈, UO₃. Але найбільш дослідженими є діоксиди.

Діоксиди актинідів є діелектриками з кубічною структурою типу CaF_2 . Їхня зонна картина є типовою для ізоляторів і включає заповнену валентну зону утворену з 2p орбіталей кисню та пусту зону провідності, утворену 3d та 7s орбіталями актинідів. 5f стани розміщені в енергетичній щілині. Хоча f орбіталі не утворюють 5fзон, але можлива їх гібридизація з іншими орбіталями, зокрема pорбіталями, причому вважається, що така гібридизація не впливає на магнітні властивості цих сполук [86,87].

Хоча діоксиди актинідів є діелектриками з добре локалізованими 5f електронами, прості теоретичні моделі кристалічного поля не можуть адекватно описати їхні магнітні властивості. В дійсності ці сполуки проявляють складну гру внесків кристалічного поля, обмінних, магнітно-пружних та квадрупольних взаємодій, що до сих пір не дозволяє досягнути задовільного розуміння їхніх властивостей.

Серед діелектричних сполук актинідів найбільш дослідженим є діоксид урану UO₂, який, як вважається, є чотирьохпідгратковим антиферомагнетиком з температурою Неєля $T_{\rm N} = 30.8 \div 0.3$ К та магнітним моментом $\mu_0 = 1.74 \div 0.02 \mu_{\rm B}$ (фазовий перехід першого роду з парамагнітної у поперечну АФ-І структуру) [88]. Саме ці уявлення про магнітне впорядкування в UO₂ покладені в основу теорії [89], яка пов'язує його з обміном вищої степені за спіном.

Під дією кристалічного поля (2J + 1)-кратно вироджений рівень *f* іона розщеплюється на компоненти меншої кратності. Якщо найнижча компонента віддалена достатньо широкою щілиною від інших, то магнітні властивості системи визначаються тільки цим мультиплетом з ефективним спіном *S* та кратністю 2S + 1 [90].

В UO₂іон урану містить два f електрони в стані ³H₄, який під дією кристалічного поля розщеплюється і вважається, що найниж чий стан є триплетний (S = 1), причому в одному з цих станів середнє значення $J^z = 0$, а для двох інших — одинакові по модулю, але протилежні за знаком. Відповідно в [91], виходячи з моделі надобміну Андерсона [92], було отримано ефективний магнітний гамільтоніан

$$H_{12} = -J_1 \left(\mathbf{S}_1 \mathbf{S}_2 \right) - J_2 \left(\mathbf{S}_1 \mathbf{S}_2 \right)^2 - J_3 \left[\left(S_1^x S_2^x \right)^2 + \left(S_1^y S_2^y \right)^2 + \left(S_1^z S_2^z \right)^2 \right]$$
(5)

Принциповим моментом даного розрахунку є співмірність величин білінійного та біквадратного обміну: $J_1 = -1.26$ у.о., $J_2 = -0.34$ у.о., $J_3 = 0.003$ у.о., хоча дана дуже спрощена модель дає занижені значення анізотропного обміну J_3 .

Слід відмітити, що невизначеність у нейтронографічних даних не дозволяє однозначно встановити чи дійсно впорядкування в UO₂ є багатопідграткове, оскільки ті ж спектри можуть бути наслідком багатодоменності кристалів з двопідгратковим впорядкуванням. Ситуація ще більше ускладнюється ефектом Яна-Теллера, який також спостерігається в UO₂. Крім того також відмічається, що ФП 1-го роду в UO₂ походить від сильної спін-граткової взаємодії, а стан нижче T_N є співіснуванням антиферомагнітного та антифероквадрупольного впорядкувань [93]. В останніх дослідженнях ЯМР в антиферомагнітному UO₂ [94] встановлено, що взаємодія між магнонними та фононними збудженнями домішує спінові хвилі до фононних коливань (сильна спін-граткова взаємодія) і через механізм Рамана для змішаних магнон-фононних мод може привести до прямого індукування магнітних процесів фононами.

За екстраполяцією даних для кореляційної довжини отримано оцінку для межі стійкості парамагнітної фази $T \cong 25$ K [95]. При $T_{\rm N}$ має місце також скачок об'єму та пружніх постійних, що вказує на взаємодію між магнітними та гратковими ступенями вільності. Така взаємодія пояснюється тим, що основний Г₅ триплетний стан іона урану в кубічному кристалічному полі володіє як магнітодипольним моментом так і електричним квадрупольним моментом. Спінграткова взаємодія приводить до появи ефективної квадрупольної взаємодії між іонами U, яка конкурує з магнітним надобміном при встановленні основного стану [96]. Зокрема цим можна пояснити перший рід фазового переходу, а також зменшення магнітного моменту насичення з $2\mu_{\rm B}$, що є характерне для триплету Γ_5 при відсутності квадрупольної взаємодії до спостережуваного значення 1.74µ_B. Крім того взаємодія з орторомбічною деформацією приводить до пом'якшення нижче 200 К пружньої постійної С₄₄, яка пов'язана з однорідною квадрупольною сприйнятливістю, яка в свою чергу підкоряється закону Кюрі-Вейса з $T_1 = 6.4$ К, що при відсутності магнітних взаємодій привело би до появи фероквадрупольного порядку. Теоретична модель Аллена [96] пояснює багато зі спостережуваних фактів для UO_2 , але не всі. Так дослідження з розсіяння нейтронів [97] показали наявність деформації гратки, яка відповідає замороженню оптичних фононів з хвильовим вектором в точці Х зони Бріллюена, а також $2\mathbf{k}$ магнітної структури з моментами вздовж напрямку (110), тоді як теорія Аллена передбачає 1k структуру. Крім того останнім часом для пояснення експериментів з розсіяння нейтронів була запропонована 3k структура [98]. Така структура зберігає кубічну симетрію і характеризується орієнтацією магнітних моментів та зміщеннями киснів вздовж напрямку (111). Самі зміщення киснів описують як суперпозицію трьох заморожених оптичних мод, для яких хвильові вектори утворюють зірку векторів X. Теоретичні роботи, які виконувалися після роботи Аллена [96], так і не змогли пояснити виникнення **3k** магнітної структури [99–101], що є до сих пір відкритим питанням.

У впорядкованій фазі UO₂ проводилися виміри спектру спінових хвиль [95,102], які виявили наявність трьох гілок та сильної магнонфононної взаємодії. Дуже дивним виявився той факт, що як статичні, так і низькочастотні динамічні магнітні властивості UO₂ краще узгоджуються з 1**k** структурою Аллена ніж зі спостережуваною 3**k** структурою. Тільки високочастотний магнітний відгук, який походить від рівнів кристалічного поля, що лежать вище континууму спінових хвиль, узгоджується з 3**k** структурою.

Експерименти з високоенергетичного непружнього розсіяння нейтронів [103] показують, що стани кристалічного поля Γ_3 , Γ_4 та Γ_1 лежать в діапазоні 150÷175 меВ вище основного стану Γ_5 . З другого боку в цій же ж роботі показано що таке розщеплення збуджених станів зберігається і при температурах вище T_N , що вступає в протиріччя з наявністю кубічного кристалічного поля у парамагнітній фазі. Скоріше за все це можна пояснити динамічним ефектом Яна-Теллера. Останні дослідження з непружнього розсіяння нейтронів [104] виявили широкий непружній сигнал в діапазоні 0÷15 меВ, який спостерігається аж до температур порядку 200 К. Одним з можливих пояснень існування цього піка є ефективне зменшення *g*-фактора у магнітній сприйнятливості внаслідок ефекту Яна-Теллера.

За виключенням зазначених вище проблем, інші властивості UO₂ є зрозумілі, хоча би якісно. Але цього не можна сказати про діоксид нептунію NpO₂, чиї властивості, зокрема фазовий перехід при $T_c = 25$ К вже довший час є загадкою. При T_c спостерігаються великі аномалії питомої теплоємності [105] та сприйнятливості [106]. Але з другого боку дослідження ефекту Месбауера [107] та дифракції нейтронів [108] не виявляють ніяких ознак магнітного порядку ($\mu < 0.01 \mu_{\rm B}$) чи спотворення гратки (< 0.02 Å). Поведінка сприйнятливості не узгоджується з відсутністю магнітного порядку, наприклад вона є скінченою при $T \rightarrow 0$. Одним з можливих пояснень цих аномалій може бути інша природа параметра порядку. Відсутність магнітного порядку та помітної деформації гратки вказує на те, що параметр порядку фазового переходу не повинен бути інваріантним відносно інверсії часу. Можливим кандидатом на параметр порядку, крім магнітного дипольного моменту, є магнітний октополь, а фазо

вий перехід зумовлений чисто електронною взаємодією, наприклад, надобміном. Така надобмінна взаємодія є набагато складнішою за звичайну гайзенбергівську дипольну взаємодію і включає мультиполі вищого порядку.

Наступним представником цього ряду сполук є діоксид плутонію PuO₂. Це з одного боку є дуже проста сполука, оскільки основним станом є синглет Γ_1 , який віддалений від триплету Γ_4 на 110 меВ. Як наслідок для PuO₂ не спостерігається ніяких фазових переходів, а магнітна сприйнятливість є скінченою аж до T = 0 [109]. Але з другого боку величина сприйнятливості складає тільки половину від значення, яке слід очікувати за рахунок ван-Флеківської взаємодії між станами Γ_1 та Γ_4 . Крім того, пік нейтронного розсіяння при 120 меВ є аномально широкий. Такі особливості, як правило, пояснюють однією з наступних можливостей: статичний ефект Яна-Теллера; динамічний ефект Яна-Теллера для збуджених рівнів триплету Γ_4 ; надобмінна взаємодія між іонами Pu, яка може привести до просторової дисперсії $\Gamma_1 - \Gamma_4$ переходів.

Діоксид кюрію CmO₂ має немагнітний основний стан J = 0, а магнітна сприйнятливість задовільняє закон Кюрі-Вейса з ефективним моментом 3.36 $\mu_{\rm B}$. Правда через малі розміри досліджуваних зразків це значення для різних зразків давало великий розкид [110]. Ще більше значення магнітного моменту $\mu_{\rm eff} = 6.2 \mu_{\rm B}$ спостерігається для сполуки Cm₂O₇, яка з кристалохімічного погляду веде себе як суміш оксидів (2Cm₂O₃+3CmO₂) [111,112].

12. Галіди актинідів

Галіди актинідів утворюють наступні групи сполук: AnX_2 , AnX_3 , AnX_4 та AnX_6 , де X є один з елементів F, Cl, Br, I [113]. Для цих сполук спостерігаються різні кристалічні структури, наприклад, гексагональні (UBr₃, UCl₃), орторомбічні (UI₃), моноклінні (UF₃), тетрагональні (NpCl₄) або тригональні (UCl₆). При зміні температури чи тиску їхні структури можуть перетворюватися з одного типу в інший.

Тригаліди урану є неметалічними сполуками з основним станом $4I_{9/2}$ для іонів U^{3+} . Трийодит урану UI_3 має орторомбічну структуру і зазнає фазового переходу у антиферомагнітну фазу при $T_N \approx 2.6$ К [114]. У гексагональних сполуках триброміду UBr₃ та трихлориду UCl₃, згідно даних для сприйнятливості [115,116], утворюється одномірний короткосяжний магнітний порядок вздовж осі z при 15 К та 22 К, відповідно, що є наслідком сильної антиферомагнітної взає-

модії між найближчими сусідами. Трьохмірний порядок появляється при $T_{\rm N} = 6.5$ К для UCl₃ та 5.3 К для UBr₃, коли магнітні моменти впорядковуються вздовж осі z з утворенням конфігурацій у площинах "0 + —" (фаза m_z). При нижчих температурах ($T_1 = 2.7$ К для UBr₃ та $T_1 = 2.5$ для UCl₃) магнітні моменти зменшуються і орієнтуються паралельно до осей x або y (фаза m_x).

Тетрахлорид урану UCl₄ характеризується сильною анізотропією магнітних сприйнятливостей. Сприйнятливість χ_{\parallel} (вздовж тетрагональної вісі) в діапазоні температур від 1.6 до 350 К практично не залежить від температури і при низьких температурах приблизно в 30 раз менша за χ_{\perp} [117]. Експерименти з дифракції нейтронів не виявили ніякого магнітного порядку в UCl₄ аж до T = 4.2 K [17].

13. Висновки

В цьому огляді основна увага була звернена на прості сполуки актинідів, як на найбільш вивчені, але які при своїй простоті проявляють велике різноманіття фізичних властивостей, опис яких все ще лежить за межами можливостей теорії.

Проведений аналіз літературних даних з магнітних властивостей актинідів, у першу чергу урану, виділяє наступні суттєві моменти:

- Сильні спін-орбітальна та кулонівські взаємодії приводять до дуже складної структури термів окремих іонів, яка сильно перебудовується при зміні валентності (зарядового стану).
- Ця складна структура термів зазнає суттєвої перебудови в кристалічному полі з утворенням мультиплетів різної кратності.
- В середовищі вплив оточення приводить також до сильної *sd-f* гібридизації з відповідною перебудовою спектру.
- Ступінь локалізації 5*f* електронів зростає при переході від легких актинідів до важких.

Такий сильний вплив оточення (розщеплення в кристалічному полі, *sd-f* гібридизація) приводить до сильної спін-фононної взаємодії і чутливості магнітних властивостей сполук актинідів до структури (тип кристалічної гратки, локальне оточення, дефекти) та можливих типів збуджень у системі (фонони, екситони).

З аналізу експериментальних даних стає зрозумілим, що на даний час немає єдиного погляду чи загальної теорії, які б давали пояснення хоча би досить значній частині спостережуваних явищ. Як вже З другого боку, аналіз існуючих даних ще раз засвідчує, що визначальним моментом для фізичних властивостей тих чи інших сполук актинідів є симетрія та мультиплетність основного стану іона актиніду в кристалічному полі. Оскільки така задача не може бути вирішена теоретично, є велика необхідність у проведенні комплексних досліджень (оптичні, резонансні, магнітні, структурні) ЛПВМ.

Література

- 1. Жидков А.В. Ферримагнетизм топливосодержащих материалов объекта "Укрытие" // Проблеми Чорнобиля 6 (2000) 6.
- 2. Hill H.H. // Nucl. Mat. 17 (1970) 2.
- 3. Benedict U., et al. // Physica B 144 (1986) 14.
- 4. Веселов М.Г., Лобзовский Л.Н. *Теория атома: строение электронных оболочек.* — М.: Наука, Гл. ред. физ.-мат. лит., 1986.
- Freeman A.J., Koelling D.D. In: *The Actinides: Electronic Structure and Related Properties*, ed. A.J. Freeman, J.B. Darby, N. M., Academic Press, 1974.
- 6. Карпенко Б.В. Физические свойства и электронная структура актинидов В: Электронная структура и физические свойства редких земель и актинидов. Свердловск: УНЦ АН СССР, 1981.
- 7. Немошкаленко В.В., Антонов В.Н. *Методы вычислительной* физики в теории твердого тела. К.: Наукова думка, 1985.
- 8. Weinberger P., et al // Phys. Rev. B 31 (1985) 1964.
- 9. Eriksson O., Wills J.M. // Phys. Rev. B 45 (1992) 3198.
- 10. Santini P., Lémanski R., Erdos P. // Adv. Phys. 48 (1999) 537.
- 11. Wills J.M., Eriksson O. // Phys. Rev. B 45 (1992) 13879.
- 12. Гуртовой К.Г., Левитин Р.З. // УФН 153 (1987) 193.
- 13. Huray P.G., et al // J. Less-Common Metals 93 (1983) 393.
- 14. Nave S.E., et al // Physica B 130 (1985) 225.
- 15. Solovyev I.V., et al // Phys. Rev. B 43 (1991) 14414.
- 16. Hjelm A., et. al. // J. Magn. Magn. Mat. 140-144 (1995) 1353.
- Erdos D., Robinson J. The Physics of Actinide Compounds. New York, London: Plenum Press. - 1983.
- Burlet P., Quezel S. Rossat-Mignod J. // Solid State Commun. 55 (1985) 1057.

19. Asch L., et al. // Europhys. Lett. 10 (1989) 673.

ICMP-01-18U

- 20. Therond P.G., et al. // J. Magn. Magn. Mater. $\mathbf{66}$ (1987) 45.
- 21. McWan D.B., et al. // Phys. Rev. B 42 (1990) 6007.
- 22. Langridge S., et al. // Phys. Rev. B 55 (1997) 6392.
- Hagen M., Stirling W.G., Lander G.H. // Phys. Rev. B 37 (1998) 1846.
- 24. Thayamballi P., Cooper B.R. // Phys. Rev. B 31 (1985) 6004.
- 25. Haley S.B., Erdos P. // Phys. Rev. B 5 (1972) 1106.
- 26. Lander G.H., et al. // Appl. Phys. Lett. 57 (1990) 989.
- 27. Lander G.H., et al. // J. Appl. Phys. 69 (1991) 4803.
- 28. Burlet P., et al. // J. Less-Common Metals 121 (1986) 325.
- 29. Burlet P., et al. // J. Magn. Magn. Mater. 63&64 (1987) 151.
- 30. Jones D.L., et al. // J. Phys.: Condens. Matter 3 (1991) 3551.
- 31. Sanchez J.P., et al. // Solid State Commun. 67 (1998) 999.
- 32. Aldred A.T., et al. // Phys. Rev. B 9 (1974) 3766.
- 33. Burlet P., et al. // Phys. Rev. B 30 (1984) 6660.
- 34. Lander G.H., Lam D.J. // Phys. Rev. B 14 (1976) 4064.
- 35. Lander G.H., et al. // Physica B 146 (1987) 341.
- 36. Fournier J.M., et al. // Physica B 163 (1990) 493.
- 37. Fournier J.M., Troć R. Bulk properties of the actinides. In: Handbook on the Physics and Chemistry of the Actinides, vol. 2, edt. A.J.Freeman and G.H.Lander (New York: North-Holland).
- Rossat-Mignod J., Lander G.H., Burlet P. Neutron electric scattering of the actinides. — In: Handbook on the Physics and Chemistry of the Actinides, vol. 2, edt. A.J.Freeman and G.H.Lander (New York: North-Holland).
- 39. Amoretti G., Blaise A., Mulak J. // J. Magn. Magn. Mater. 42 (1984) 65.
- 40. Therond P.G., et al. // Physica B 130 (1985) 102.
- 41. Therond P.G., et al. // J. Less-Common Metals 121 (1986) 227.
- 42. Bazan C., Zygmunt A. // Phys. Stat. Sol. A 12 (1972) 649.
- 43. Reim W., Schoenes J., Hulliger F. // Physica B 130 (1985) 64.
- Kaczorowski D., Noel H., Zygmunt A. // J. Magn. Magn. Mater. 140–144 (1995) 1431.
- 45. Kaczorowski D., et al. // J. Phys. Chem. Solids 55 (1994) 1363.
- 46. Amoretti G., et al. // J. Magn. Magn. Mater. 46 (1984) 57.
- 47. Amoretti G., et al. // J. Magn. Magn. Mater. 53 (1986) 299.
- 48. Raphael D., de Novion C.H. // J. Phys. (Paris) 30 (1969) 261.
- 49. Szewczyk A., Henkie Z. // J. Magn. Magn. Mater. 81 (1989) 277.
- 50. Troć R., Aldred A.T. // Z. Phys. B 53 (1983) 295.
- 51. Henkie Z., et al. // J. Magn. Magn. Mater. 68 (1987) 54.

- 52. Lee P.A., et al // Comm. Cond. Mat. Phys. 12 (1986) 99.
- 53. de Visser A., France J.J.M. // J. Magn. Magn. Mater. 100 (1991) 204.
- 54. Stewart G.R. // Rev. Mod. Phys. 56 (1984) 755.
- 55. Lawrence J.M., et al // Rep. Progr. Phys. 44 (1981) 1.
- Adroya D.T., Malik S.K. // J. Magn. Magn. Mater. 100 (1991) 126.
- 57. Brandt N.B., Moshchalkov V.V. // Adv. Phys. **33** (1984) 373; Мощалков В.В., Брандт Н.Б. // УФН **149** (1986) 585.
- 58. Steglich F. // J. Magn. Magn. Mater. 100 (1991) 186.
- 59. Bauer E. // Adv. Phys. 40 (1991) 417.
- 60. Irkhin V.Yu., Irkhin Yu.P. // Preprint arXiv:cond-mat/9812072
- 61. Aeppli G., et al // Phys. Rev. Lett. 60 (1988) 615.
- 62. Palstra T.T.M., et al // Phys. Rev. Lett. 55 (1985) 2727.
- Kjems J.K., Broholm C. // J. Magn. Magn. Mater. 76–77 (1988) 371.
- 64. Kleiman R.N., et al // Phys. Rev. Lett. 64 (1990) 1975.
- 65. de Visser A., et al // Phys. Rev. B 45 (1992) 2962.
- 66. Degiorgi L., et al // Europhys. Lett. 26 (1994) 221.
- Thompson J.D., et al. // J. Magn. Magn. Mater. 54–57 (1986) 393.
- 68. Brueck E., et al // Phys. Rev. B 49 (1994) 8562.
- Geibel C., et al // Z. Phys. B 83 (1991) 305; Schröder A., et al. // Phys. Rev. Lett. 72 (1994) 136.
- 70. Geibel C., et al // Z. Phys. B 84 (1991) 1.
- 71. Brueck E., et al // Europhys. Lett. 7 (1988) 177.
- 72. Sugiura E. et al // J. Magn. Magn. Mater. 90-91 (1990) 65; Fujii H., et al // J. Magn. Magn. Mater. 90-91 (1991) 507.
- 73. Sato N. et al // J. Phys. Soc. Jap. 60 (1991) 757.
- 74. Столяров В.А. и др. // ФТТ **28** (1986) 2474.
- 75. Frings P., et al // J. Magn. Magn. Mater. 63-64 (1987) 202.
- 76. Onuki Y. et al // J. Magn. Magn. Mater. 76–77 (1989) 119; Luthi B., et al // J. Magn. Magn. Mater. 90–91 (1990) 37.
- 77. Kaczorowski D., et al // Physica B 208&207 (1995) 457.
- 78. Schröder A., et al // J. Magn. Magn. Mater. 140–144 (1995) 1407.
- 79. Mentink S.A.M., et al // Physica B 206&207 (1995) 473.
- 80. Li D.X., et al // J. Magn. Magn. Mater. 176 (1997) 261.
- 81. Kuznietz M., et al. // Physica B 223&224 (1996) 234.
- 82. Taniguchi T., et al // J. Magn. Magn. Mater. 177-181 (1998) 55.
- 83. Tran V.H., et al // Solid State Commun. 101 (1997) 709.
- 84. Ebel T., et al // Solid State Commun. 97 (1996) 815.

- 85. Marabelly F., Wachter P. // J. Magn. Magn. Mater. **70** (1989) 364.
- 86. Brooks M.S.S., Kelly P.J. // Solid State Commun. 45 (1983) 689.
 87. Gunnarson O., et al. // J. Appl. Phys. 63 (1988) 3676.
- 88. Faber J., Lander G. // Phys. Rev. B 14 (1976) 1151.
- 49. Дзялошинский И.Е. // ЖЭТФ 47 (1964) 336; 72 (1977) 1930.
- 90. Нагаев Э.Л. Магнетики со сложным обменным взаимодейст-
- вием. М.: Наука. Гл. ред. физ.-мат. лит., 1988. 232 с.
- 91. Elliot R., Thorpe M. // J. Appl. Phys. **39** (1968) 802.
- 92. Anderson P. // Solid State Phys. 14 (1965) 99.
- 93. Allen S.J. // Phys. Rev. 166 (1968) 167.
- 94. Ikushima K., et al // Physica B 281&282 (2000) 197.
- 95. Bugers W.J.L., Holden T.M. Neutron scattering from spins and phonons in actinide systems. — In: Handbook on the Physics and Chemistry of the Actinides, 2, edt. A.J.Freeman and G.H.Lander (New York: North-Holland).
- 96. Allen S.J. // Phys. Rev. 166 (1968) 530; 167 (1968) 492.
- 97. Faber Jr.J., Lander G.H. // Phys. Rev. B 14 (1976) 1151.
- 98. Burlet P., et al. // J. Less-Common Metals **121** (1986) 121.
- 99. Siemann R., Cooper B.R. // Phys. Rev. B 20 (1979) 2869.
- 100. Solt G., Erdos P. // Phys. Rev. B 22 (1980) 4718.
- 101. Gianozzi P., Erdos P. // J. Magn. Magn. Mater. 67 (1987) 75.
- 102. Cowley R.A., Dolling G. // Phys. Rev. 167 (1968) 464.
- 103. Amoretti G., et al. // Phys. Rev. B 40 (1989) 1856.
- 104. Caciuffo R., et al. // Phys. Rev. B (in press).
- 105. Osborne D.W., Westrum Jr. E.F. // J. Chem. Phys. **21** (1953) 1884.
- 106. Erdos P., et al. // Physica 102B (1980) 164.
- 107. Friedt J.M., Litterst F.J., Rebizant J. // Phys. Rev. B 32 (1985) 257.
- 108. Caciuffo R., et al. // Solid State Commun. 64 (1987) 149.
- 109. Raphael G., Lallement R. // Solid State Commun. 6 (1968) 383.
- 110. Morss L.R., et al. // J. Less-Common Metals 156 (1989) 273.
- 111. Mosley L.R. // J. Inorg. Nucl. Chem. 34 (1972) 539.
- 112. Morss L.R. In: Abst. of the 20^{èmes} Journées des Actinides, Prague, Czechoslovakia, 17–20 April 1990. — P. 39.
- 113. Benedict U. // J. Less-Common Metals 128 (1987) 7.
- 114. Parks S.I., Moulton W.G. // Phys. Rev. 173 (1968) 333.
- 115. Murasik A., Furrer A., Szczepaniak W. // Solid State Commun. 33 (1980) 1217.
- 116. Jones Jr. E.R., et al. // J. Chem. Phys. 60 (1974) 2088.
- 117. Gamp E., et al. // J. Chem. Phys. 79 (1983) 2023.

Табл. 4: Деякі фізичні властивості сполук актинідів [10]. Використані позначення: LRO — тип далекодіючого порядку (ФМ — феромагнітний, АФ — антиферомагнітний, КП — квадрупольний, НП — надпровідний, SG — спінове скло, ПМ — парамагнітний, НС — неспівмірний;); T_i — температура фазового переходу; μ — магнітний момент в магнетонах Бора на один атом актиніду; КЕП — кристалічне електричне поле. Позначення різних типів магнітних структур (наприклад, 1**k**-I) приведені на стор. 6.

Символ	LRO	$T_i(\mathbf{K})$	$\mu(\mu_{ m B})$	Примітки, що мірялося		
			T=0K			
1	2	3	4	5		
UP	1 k -I	122	1.70			
	2 k -I	22.5	1.90			
UAs	1 k -I	124	1.92	перерваний фазовий пере-		
				хід		
	$2\mathbf{k}$ -IA	63	2.24			
USb	3 k- I	213	2.85	спінові хвилі, критичні ін-		
				декси		
UN	1 k -I	53	0.75	ФП II-го роду		
US	ΦM	180	1.54	велика анізотропія, ефект		
				Keppa		
USe	ΦM	160	2.0	велика анізотропія, від'-		
				ємне відношення Пуассо-		
				на, ефект Керра, неполя-		
				ризовані спінові хвилі		
UTe	ΦM	108	2.25	велика анізотропія, від'-		
				ємне відношення Пуассо-		
				на, ефект Керра, спінові		
0				хвилі		
UC	IIM	-		ефект dHvA		
NpAs	1 k HC	173		тетрагональне спотворен-		
				ня		
	$1\mathbf{k}(4+,4+)$	158	a 10			
	3 k -1	140	2.48	кубічна; КЕП?		
NpSb	3 k -1	200	2.56	KEII?		
NpP	$3\mathbf{k}$ HC	119-130		-		
	1k(3+, 3-)	74	2.2	Тетрагональне спотворен-		
M D'		100 5	a (a	НЯ		
мрві	3 k -1	192.5	2.48	спінові хвилі; КЕП?		
NPN N C	ΦM	87				
NpS N=S-	nk AΦ-II	23	0.7			
мръе м	nκ AΨ-11	38	1 1 2 2	$-120 \pi / - \pi^2$		
мрте	ΑΨ-Π	30-40	1.3-2	$\gamma = 130$ мДж/моль К ²		
продовжується на наступній сторінці						

Табл. 4 (продовження)							
1	2	3	4	5			
PuSb	1 k HC	80-87		гібридизаційний внесок у			
				КЕП			
	ΦM	58 - 67	0.74	спінові хвилі			
PuP	ΦM	126	0.71	гібридизаційний внесок у			
				КЕП			
PuAs	ΦM	125	0.58	гібридизаційний внесок у			
				КЕП			
PuBi	$A\Phi$	58	0.5				
PuS	ΠМ						
PuSe	ΠМ						
PuTe	ΠМ			від'ємне відношення Пуа-			
				ссона			
$\mathrm{UAs}_{1-x}\mathrm{Se}_x$				перехід від АФ до ФМ зі			
				зростом x			
$\mathrm{USb}_{1-x}\mathrm{Te}_x$							
$U_{1-x}Th_xSb$							
$U_{1-x}Th_xAs$							
$U_{1-x}La_xS$							
$U_{1-x}La_xTe$				вказівки на рощеплення			
				КЕП			
$\operatorname{PuSb}_{1-x}\operatorname{Te}_x$							
$NpSb_{1-x}Te_x$				неколінеарний феримаг-			
				нетик			
$UP_{1-x}S_x$				складна фазова діаграма			
$\mathrm{UC}_{x}\mathrm{N}_{1-x}$				розрахунки електронної			
				структури			
Cf-пніктіди				$\chi(T)$			
Ст-пніктіди				$\chi(T)$			
Bk-пніктіди				$\chi(T)$			
UP_2	AΦ	203	2.0				
UAs_2	AΦ	283	1.61				
USb_2	AΦ	206	1.68				
$\bigcup B_{12}$	AΦ	183	2.1				
$NpAs_2$	$A\Psi$	52	1.45	а : <i>(</i> Т)			
	ΦM	18	1.45	2-miphe $\rho(T)$			
UASSE	ΦM	110	1.0	$\rho(T)$			
UASIE	ΨM ΦM	120(00)	1.0				
	ΨM ΦM	00(11)					
UF 10 UC 10	ΨM	80 199	1.4				
USDSe	ΨM	128	1.1				
	Φ_{M}	110	1.9				
010	Ψ M	118	1.0	e a u a u a amunuiti amoriaiai			
продовжується на наступній сторінці							

Табл. 4 (продовж	Табл. 4 (продовження)							
1	2	3	4	5				
UNTe	ΦM	53	0.62					
UNSe	ΠМ							
UOS	$A\Phi$	70	2.0	сильно анізотропний об-				
				мін				
UOSe	$A\Phi$	100(75)	2.2	сильно анізотропний об-				
				мін				
NpOS	$A\Phi$	4.2	0.8	сильно анізотропний об-				
-				мін				
NpOSe	АΦ	11	1.6	сильно анізотропний об-				
1				мін				
$PuSb_{0.66}Te$				$\chi(T)$				
U_3P_4	ΦM	138	1.55	великий ефект Керра;				
5				відбивання: eddekt dHvA:				
				склалне КЕП				
U_3As_4	ΦM	198	1.71	великий ефект Керра:				
0.01104		100		відбивання: ефект dHvA:				
				склалне КЕП				
U₂Sh₄	ΦM	146	16	склалне КЕП				
U3Bi4	ΦM	108	1.5	склалне КЕП				
ND3 AS4	ΦM	85	1.75	ефект Месбауера: склалне				
1.152104		00	1.1.0	КЕП				
U3Se4	ΦM	130	0.35	склалне КЕП				
U3Te4	ΦM	120	0.44	склалне КЕП				
Pu_3S_4	AΦ	10	0.11	склалне КЕП				
Am_3Se_4	ПМ			склалне КЕП				
Am ₃ Te ₄	ПМ			склалне КЕП				
UBh_3	ПМ			колективізовані 5 <i>f</i> елект-				
0 10-0				рони				
NpRh ₃	ПМ			спінові флуктуації				
PuRh ₃	AΦ			локалізовані 5 гелектро-				
				ни				
UAb	ΠМ			спінові флуктуації				
UC_{02}	ПМ			спінові флуктуації				
USn ₃	ПМ			спінові флуктуації				
UPt ₃	АФ	5	0.02	спінові флуктуації: співіс-				
v0		0	0.01	нування $A\Phi$ та $H\Pi$				
	нп	0.49						
	нп	0.44						
UNia	ΦM	21	0.06	взаємна компенсація сці-				
01112			0.00	нового та орбітального				
				моментів П				
		mno	nenever.	reg na nacmunuiti cmoniuui				
продовжується на наступніц сторінці								

Табл. 4 (продовження)								
1	2	3	4	5				
UFe_2	ΦM	165	0.6	взаємна компенсація спі-				
				нового та орбітального				
				моментів U				
$\mathrm{URu}_2\mathrm{Si}_2$	$A\Phi$	17.5	0.03	співіснування АФ та				
				НП; особливості КЕП;				
				антифероквадрупольний				
				порядок?				
	ΗП	1.5						
UPd_3	КП	7.8						
	КП	6.8		3-к антифероквадруполь-				
				ний порядок; гострі збу-				
				дження КЕП				
	$A\Phi$	4.5	0.02	малі моменти				
UBe_{13}	ΗП	0.87		квадрупольний ефект				
				Кондо?				
U_2PtC_2	ΗП	1.47		відстань U-U дуже близь-				
				ка до границі Хілла				
${ m UPd_2A1_3}$	$A\Phi$	14.5	0.85	співіснування АФ та НП;				
				колективізовані та лока-				
				лізовані властивості				
	ΗП	2						
$\mathrm{UNi}_2\mathrm{A1}_3$	$A\Phi$	4.6	0.1	співіснування АФ та НП				
	ΗП	1						
UCu_5	$A\Phi$	16	1.5	співіснування важних				
				ферміонів та АФ				
	$A\Phi$?	1?						
U_2Zn_{17}	$A\Phi$	9.5	0.8					
$NpPd_2A1_3$	$A\Phi$	38		неспівмірний				
	$A\Phi$	25	1.7	співмірний				
$NpNi_2A1_3$	$A\Phi$	23						
$NpPt_3$	$A\Phi$	29						
$NpSn_3$	$A\Phi$	9	0.3	гратка Кондо				
$NpRu_2Si_3$	$A\Phi$	28	1.2 - 1.5	неспівмірний				
$NpBe_{13}$	$A\Phi$	5	0.94 - 1.16	$\gamma pprox 900$ мДж/моль K^2				
$\mathrm{URh}_2\mathrm{Ge}_2$	SG	10		кристалографічний без-				
				порядок				
$An\mathrm{Fe}_4\mathrm{A1}_8$	$\mathrm{SG}/\mathrm{A}\Phi?$			магнітна підгратка Fe				
UNi_4B	$A\Phi$	20	1.2	парамагнітні ланцюжки				
UNiSn	$A\Phi$	45	1.55	зворотній перехід метал-				
				ізолятор				
UO_2	$3\mathbf{k} \ \mathbf{A} \Phi \mathbf{-} \mathbf{I}$	30.8	1.74	сильні магніто-пружні				
				ефекти				
		npo	довжуєтч	ься на наступній сторінці				

31

 $U_{1-x}Sb$

Табл. 4 (продовження)						
1	2	3	4	5		
NpO_2	?	25		фазовий перехід невідо-		
				мої природи; зонні стани		
				КЕП-фононів		
PuO_2	ПМ			$\chi(T)$; розсіяння нейтронів		
$\rm CmO_2$	ПМ			$\mu_{\rm eff} = 3.36 \mu_{\rm B}$		
$\rm Cm_7O_{12}$	ПМ			$\mu_{\rm eff} = 6.2 \mu_{\rm B};$ суміш окси-		
				дів $(2 \mathrm{Cm}_2 \mathrm{O}_3 + 3 \mathrm{Cm} \mathrm{O}_2)$		
CfO_2	$A\Phi$	7				
UI_3	AΦ	2.6	1.98	ФП I-го роду		
UBr ₃	AΦ	5.3		фаза m_z "0 + —"		
	AΦ	2.7	0.82	<i>m_x</i> фаза; квазі-1D власти-		
				вості		
UCl_3	AΦ	6.5		фаза m_z "0 + —"		
	AΦ	2.5	0.8	m_x фаза; квазі-1D власти-		
				вості		
UCl_4	ПМ			ефекти ковалентності		
$NpCl_4$	ΦM	6.7	1.28	-		
$PaCl_4$	ΦM	183		високе значення T_c		
AmF_3 , CmF_3	ПМ			тригональні		
CmF_4 , BkF_4	ПМ			моноклінні		
UI ₄	ПМ			ефект Месбауера		
NpI ₃				ефект Месбауера		
PuI ₃	ΦM	4.75		ефект Месбауера		
$NpF_n(n=3,4,5,6)$				ефект Месбауера		
UF ₄	ПМ			розсіяння нейтронів		
AmCl ₃ , CfCl ₃ , CfE	$r_3?$			Кристалічна структура		
US ₃	$^{\circ}$ A Φ ?	50?		$\chi(T)$: лифракція нейтро-		
				нів: КР світла: ЕПР		
Use ₃	AΦ?			$\chi(T)$: лифракція нейтро-		
0.000				нів: КР світла		
UTe ₃	ΑФ?	4?		$\gamma(T)$: лифракція нейтро-		
0 1 00				нів: КР світла: ЕПР		
U ₃ Se ₅	ФМ	24		,,		
U_5Sb_4	ΦM	86	1.7			
U ₄ O ₄ Te ₃	ΦM	80	±.,			
~ - ~ 4 + ~ 0	± 1,1	$\frac{00}{23}$		реорієнтація магнітних		
		20		моментів		
Pdre Sizo e Uzo e				ікоселричні квазікриста-		
± ≪00.80±20.0 €20.6				ли: аморфний		
KaUCh	۵۳	3 8	2 94	vpazi-1D		
KoUBre	ΔΦ	5.0 2.8	0.24 9.21			
Kall	Δ	1 45	2.01	KBASI-ID		
112 0 15	лΨ	1.40	1.0	ATT-1000L		

Габл. 4 (продовження)							
1	2	3	4	5			
U-Y-Ba-Cu-O	ΗП	90		ВТНП			
$\operatorname{Cm}_{2-x}\operatorname{Th}_{x}\operatorname{CuO}_{4}$	AΦ			подавлення НП за раху-			
				нок ковалентності			
$\mathrm{Cs}_2\mathrm{NaAmCl}_6$	ΠM			$\chi(T,H)$			
$U_{1-x}Sb$	ΦM			сильно анізотропний			
				ho(T); аморфний			

Препринти Інституту фізики конденсованих систем НАН України розповсюджуються серед наукових та інформаційних установ. Вони також доступні по електронній комп'ютерній мережі на WWW-сервері інституту за адресою http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine are distributed to scientific and informational institutions. They also are available by computer network from Institute's WWW server (http://www.icmp.lviv.ua/)

Андрій Михайлович Швайка

Магнітні властивості актинідів. Огляд

Роботу отримано 27 листопада 2001 р.

Затверджено до друку Вченою радою ІФКС НАН України

Рекомендовано до друку семінаром ІФКС НАН України

Виготовлено при ІФКС НАН України © Усі права застережені