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1 ðÒÅ�ÒÉÎÔ1. IntrodutionModern understanding of universal properties of matter in the viin-ity of ritial points to a great extend is due to the appliation of therenormalization group (RG) ideas [1℄. Applied in the problems of on-densed matter physis in the early 70-ies the RG tehnique proved to bea powerful tool to study ritial phenomena. For example, expressionsfor ritial exponents governing magneti phase transition in regular sys-tems are known by now with reord auray both for isotropi [2℄ (O(m)symmetrial) and ubi [3℄ magnets. The RG approah also sheds lighton the inuene of strutural disorder on ferromagnetism. In the presentpaper we will apply the �eld theoretial RG approah to study peuliar-ities of magneti behaviour inuened by disorder in a form of randomanisotropy axis [4℄. It is speial pleasure for us to dediate this paperto Prof. Hagen Kleinert on the oasion of his 60th anniversary. Hisontribution to the �eld is hard to be overestimated.Although an inuene of a weak quenhed strutural disorder onuniversal properties of a ferromagneti phase transition is a problem ofintensive study during already several deades there remains a number ofunsettled questions. Here, one should disriminate between random site,random-�eld and random anisotropy magnets. A weak quenhed disorderpreserves 2nd order phase transition in three dimensional (d = 3) randomsite magnets [5℄ but an destroy this transition in random �eld systems[6℄ for d < 4. The situation for the random-anisotropy magnets is not solear.Typial examples of random-anisotropy magnets are amorphous rare-earth { transition metal alloys. Some of these systems order magnetiallyand for the desription of the ordered struture it has been proposed[4℄ to onsider a regular lattie of magneti ions, eah of them being asubjet to a loal anisotropy of random orientation. The Hamiltonian ofthis random anisotropy model (RAM) reads [4℄:H = �XR;R0 JR;R0 ~SR~SR0 �D0XR (^xR~SR)2; (1)where ~SR is an m-omponent vetor on a lattie site R, JR;R0 is anexhange interation, D0 is an anisotropy strength, and ^xR is an unitvetor pointing in the loal (quenhed) random diretion of an uniaxialanisotropy.The model was investigated by variety of tehniques inluding mean{�eld theory [7℄, omputer simulations [8℄, 1=m{expansion [9℄, renor-malization group "{expansion [10{12℄. The limiting ase of an in�nite
ICMP{00{18E 2anisotropy was subjet of a detailed study as well [13,14℄. However thenature of low{temperature phase in RAM is not ompletely lear up tonow, and several low{temperature phases were disussed like ferromag-neti ordering [7,8℄, spin{glass phase [8,9℄, and quasi long{range ordering[15℄.The nature of ordering is onneted with the distribution of the ran-dom variables ^xR in (1). For an isotropi distribution arguments similarto those applied by Imry and Ma [16℄ for a random-�eld Ising modelbring about the absene of ferromagneti order for spae dimensionsd < 4 [12,17℄. Whereas anisotropi distributions may lead to a ferromag-neti order [18℄.Appliation of Wilson RG tehnique to RAM with the isotropi distri-bution of a loal anisotropy axis suggests [10℄ the possibility of \runaway"solutions of the reursion equations. Suh behaviour was interpreted asa smeared transition. However this result was obtained in �rst order of"{expansion and remains to be on�rmed also in higher orders.Here, we will report results obtained by means of the �eld theoretialRG tehnique in two loop approximation re�ned by resummation of theresulting asymptoti series. We will onsider two ases of distribution ofthe random anisotropy axis and show that a ferromagneti seond orderphase transition takes plae only when the distribution is non-isotropi.Moreover we will show that the RAM provides one more example ofa disordered model, where the only possible new ritial behaviour isof \random Ising" type, similar to the site{diluted magnets [5℄. Moredetailed results an be found in Refs [19,20℄.2. Isotropi aseIn order to deal with quenhed disorder one way to obtain the e�etiveHamiltonian of a RAM is to make use of the replia trik. Then for agiven on�guration of quenhed random variables ^xR in (1) the partitionfuntion may be written in a form of funtional integral of a Gibbsdistribution depending on ^xR. To perform averaging over on�gurationsone should omplete the model by hoosing ertain distribution of ^xR.We will analyse two ases: when the random vetor ^x points with equalprobability in any diretion of the m-dimensional hyperspae (isotropiase) and when ^x lies along the edges ofm-dimensional hyperube (ubiase). Other distributions may be onsidered as well. For the �rst asethe distribution funtion reads:p(^x) � �Z dm^x��1= �(m=2)2�m=2 : (2)



3 ðÒÅ�ÒÉÎÔFollowing the above desribed program one ends up with the replian! 0 limit of the e�etive Hamiltonian [10℄:Heff = � Z ddR(12h�02j~'j2+j~r~'j2i+u0j~'j4+v0 nX�=1 j~��j4+w0 nX�;�=1 mXi;j=1��i ��j ��i ��j9=; ; (3)here, �02 and u0, v0, w0 are de�ned by D0 and familiar bare ouplingsof an m-vetor model, and ~�� � ~��R is a m-dimensional vetor, j~'j2 =Pn�=1 j~��j2. Bare ouplings u0 > 0, v0 > 0, w0 < 0. Furthermore, valuesof u0 and w0 are related to appropriate umulants of the distributionfuntion (2) and their ratio equals w0=u0 = �m. Note that the symmetryof u0 and v0 terms orresponds to the random site m-vetor model [21℄.However the u0-term has an opposite sign.In order to study long-distane properties of the Hamiltonian (3),we use the �eld-theoretial RG approah [1℄. In this approah the rit-ial point of a system orresponds to a stable �xed point (FP) of theRG transformation. We apply the massive �eld theory renormalizationsheme [22℄ performing renormalization at �xed spae dimension d andzero external momenta. In two loop approximation we get [19℄ expres-sions for the RG funtions in form of asymtoti series in renormalizedouplings u; v; w.As it was mentioned in the introdution the only known RG resultsfor RAM with isotropi distribution of the loal anisotropy axis so far arethose obtained in �rst order in " [10℄. In partiular one gets eight �xedpoints. All FPs with u > 0; v > 0; w < 0 appear to be unstable for " > 0exept of the \polymer" O(n = 0) FP III whih is stable for all m (seeFig. 1). However the presene of a stable FP is not a suÆient onditionfor a 2nd order phase transition. In order to be physially relevant theFP should be aessible from the initial values of ouplings. This is notthe ase for the loation of FPs shown in Fig. 1. Indeed starting fromthe region of physial initial onditions (denoted by the ross in the Fig.1) in the plane of v = 0 one would have to ross the separatrix joiningthe unstable FPs I and VI. This is not possible and so one never reahesthe stable FP III. As far as both FPs I and VI are strongly unstablewith respet to v FP III is not aessible for arbitrary positive v either.Finally one ends up with the onlusion about absene of the 2nd orderphase transition in the model as runaway solutions of the RG equationsshow.
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Figure 1. Fixed points of the RAM with isotropi distribution of a loalanisotropy axis. The only fixed points loated in the otant u > 0; v >0; w < 0 are shown. The �lled box shows the stable �xed point, the rossdenotes typial initial values of ouplings.FP m u� v� w� � �I 8m 0 0 0II 2 0 0.9107 0 0.663 0.0273 0 0.8102 0 0.693 0.0274 0 0.7275 0 0.724 0.027III 8m 1.1857 0 0 0.590 0.023IV 2 -0.0322 0.9454 0 0.668 0.0273 0.1733 0.6460 0 0.659 0.0274 0.2867 0.4851 0 0.653 0.028VI 2 1.4650 0 -1.6278 0.449 -0.028VIII 2 0.7517 0.7072 -0.3984 0.626 0.0313 0.8031 0.5463 -0.3305 0.620 0.0294 0.8349 0.4545 -0.2888 0.617 0.029Table 1. Resummed values of the �xed points and ritial exponents forisotropi ase in two-loop approximation for d = 3.



5 ðÒÅ�ÒÉÎÔThe main question of interest here is whether the above desribed pi-ture of runaway solutions is not an artifat of an "{expansion. To hekthis we used a more re�ned analysis of the FPs and their stability, on-sidering the series for RG funtions diretly at d = 3 [22℄. As it is knownseries of this type are asymptoti at best and a resummation proedurehas to be applied to obtain reliable data on their basis. We made use ofPad�e{Borel resummation tehniques [23℄ �rst writing the RG funtionsas resolvent series [24℄ in one auxiliary variable and then performing re-summation. Numerial values of the FPs are given in the Table 1 [25℄.Resummed two-loop results qualitatively on�rm the piture obtained inthe �rst order in "{expansion: stability of the FPs does not hange afterresummation. This supports the onjeture of Aharony [10℄ about ab-sene of aessible stable FP for the RAM with isotropi distribution ofthe loal anisotropy axis. We display in the table resummed in a similarway values of the orrelation length and pair orrelation funtion ritialexponents � and �: being alulated in unstable FPs they are rather tobe onsidered as e�etive ones.3. Cubi aseLet us now onsider the seond example of anisotropy axis distribution,when the vetor ^xR (1) points only along one of the 2m diretions ofaxes ^ki of a ubi lattie :p(^x) = 12m mXi=1 [Æ(m)(^x� ^ki) + Æ(m)(^x + ^ki)℄: (4)The rationale for suh a hoie is to mimi the situation when an amor-phous magnet still \remembers" initial (ubi) lattie struture. Repeat-ing the proedure desribed in the previous setion one ends up with thefollowing e�etive Hamiltonian (being of interest in the limit n ! 0)[10℄:Heff = � Z ddR(12 h�02j~'j2+j~r~'j2i+u0j~'j4+v0 nX�=1 j~��j4+w0 mXi=1 nX�;�=1��i 2��i 2+y0 mXi=1 nX�=1��i 49=; : (5)Here, the bare ouplings are u0 > 0, v0 > 0, w0 < 0. The y0 term isgenerated when the RG transformation is applied and may be of either
ICMP{00{18E 6sign. The symmetry of w0 terms di�ers in (3) and (5). Furthermore,values of u0 and w0 di�er for Hamiltonians (3) and (5) but their ratioequals �m again.We apply the massive �eld theory renormalization sheme [22℄ andget the RG funtions in two loop approximation [20℄. As well as in theprevious ase we reprodue the �rst-order "-results [10℄. Now one gets14 FPs. However, in �rst order of "{expansion all FPs with u > 0; v >0; w < 0 appear to be unstable for " > 0 exept of the \polymer" O(n =0) FP III whih is stable for all m but not aessible (see Fig. 2). Nowthe aount of the "2 terms qualitatively hanges the piture: indeed, thesystem of equations for the FPs appears to be degenerated at the oneloop level. As known from other ases in two loop order this leads to theappearane of a new FP whih is stable and is expressed by a p" series[21℄. The possibility of suh senario was predited already in Refs [18℄.However it remained unlear whether there exist any other aessiblestable FPs. t tt w u
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Figure 2. Fixed points of the RAM with distribution of a loal anisotropyaxis along hyperube axis for v = 0. The only fixed points loated in theregion u > 0; w < 0 are shown. Filled boxes show the stable �xed points,the ross denotes typial initial values of ouplings.Applying Pad�e{Borel resummation we get 16 FPs. Values of the FPswith u� > 0; v� > 0; w� < 0 are presented in the Table 2 [25℄. The lastFP XV in Table 2 orresponds the stable FP of p"-expansion. It hasoordinates with u� = v� = 0, w� < 0 and y� > 0 and is aessible



7 ðÒÅ�ÒÉÎÔfrom the typial initial values of ouplings (shown by ross in the Fig.2).Applying the resummation proedure we did not �nd any other stableFPs in the region of interest. The e�etive Hamiltonian (5) at u = v = 0in the replia limit n! 0 redues to a produt of m e�etive Hamiltoni-ans of a weakly diluted quenhed random site Ising model. This meansthat for any value of m > 1 the system is haraterized by the same setof ritial exponents as those of a weakly diluted random site quenhedIsing model. We give in the Table 2 values of ritial exponents in theother FPs as well: if the ows from initial values of ouplings pass nearthe these FPs one may observe an e�etive ritial behaviour governedby these ritial exponents.FP m u� v� w� y� � �I 8m 0 0 0 0 1/2 02 0 0.9107 0 0 0.663 0.027II 3 0 0.8102 0 0 0.693 0.0274 0 0.7275 0 0 0.720 0.026III 8m 1.1857 0 0 0 0.590 0.023V 8m 0 0 0 1.0339 0.628 0.026VI 3 0.1733 0.6460 0 0 0.659 0.0274 0.2867 0.4851 0 0 0.653 0.027VII 8m 2.1112 0 -2.1112 0 1/2 02 0 1.5508 0 -1.0339 0.628 0.026VIII 3 0 0.8393 0 -0.0485 0.693 0.0274 0 0.5259 0 0.3624 0.709 0.026IX 3 0.1695 0.7096 0 -0.1022 0.659 0.0274 0.2751 0.4190 0 0.1432 0.653 0.027X 8m 0.6678 0 -0.6678 1.0339 0.628 0.026XV 8m 0 0 -0.4401 1.5933 0.676 0.031Table 2. Resummed values of the FPs and ritial exponents for ubidistribution in two-loop approximation for d = 3.4. ConlusionsIn this paper we applied the �eld theoretial RG approah to analyzeritial behaviour of a model of random anisotropy magnet with isotropiand ubi distributions of a loal anisotropy axis. The origin of a low{temperature phase in this model is not ompletely lear. General ar-
ICMP{00{18E 8guments based on an estimate of the energy for formation of magnetidomains [16℄ lead to the onlusion that for d < 4 a ferromagneti orderis absent [12,17℄. However these arguments do not take into aount en-tropy whih may be important for disordered systems [14℄. Furthermore,these arguments do not apply for anisotropi distributions of the randomaxis [18℄.In the RG analysis absene of a ferromagneti seond order phasetransition orresponds to the lak of a stable FP of the RG transforma-tion. However in the ase of RAM with isotropi distribution of a lo-al anisotropy axis the senario di�ers. Our two loop alulation bringsabout the presene of a O(n = 0) symmetri FP whih is stable forany value of m for both isotropi and ubi distributions of a randomanisotropy axis. However, this FP is not aessible from the initial val-ues of the ouplings. We heked the loation of the FPs up to seondorder in "{expansion and by means of a �xed d = 3 tehnique re�ned byPad�e{Borel resummation.In the ase of isotropi distribution of a random anisotropy axis ouranalysis supports the onjeture of Aharony [10℄ based on linear in "-results about runaway solutions of the RG equations. For the ubi dis-tribution we get two stable FPs. One of them (FP III in Fig. 2) is notaessible as in the isotropi ase. But the disordered Ising-like FP (FPXV in Fig. 2) may be reahed from the initial values of ouplings. Ap-plying the resummation proedure we did not �nd any other stable FPsin the region of interest. This means that RAM with ubi distributionsof a random anisotropy axis is governed by a set of ritial exponents ofa weakly site diluted quenhed Ising model [21,26℄.To onlude we want to attrat attention to ertain similarity inthe ritial behaviour of both random-site [21℄ and random-anisotropy[4℄ quenhed magnets: if at all there appears new ritial behaviour italways is governed by ritial exponents of site-diluted Ising type. Theabove alulations of a \phase diagram" of RAM were based on twoloop expansions improved by a resummation tehnique. One the quali-tative piture beame lear there is no need to go into higher orders of aperturbation theory as far as the ritial exponents of site-diluted Isingmodel are known by now with high auray [26℄.Yu. H. aknowledges helpful disussions with Mykola Shpot. Thiswork has been supported in part by "�Osterreihishe Nationalbank Ju-bil�aumsfonds" through the grant No 7694.
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