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hAbstra
t. The in
uen
e of a lo
al anisotropy of random orientation ona ferromagneti
 phase transition is studied for two 
ases of anisotropyaxis distribution. To this end a model of a random anisotropy magnet isanalysed by means of a �eld theoreti
al renormalization group approa
hin two loop approximation re�ned by ressumation of asymptoti
 series.The one-loop result of Aharony indi
ating the absen
e of a 2nd orderphase transition for isotropi
 distribution of random anisotropy axis atspa
e dimension d < 4 is 
orroborated. For a 
 
ubi
 distribution thea

essible stable �xed point leads to disordered Ising-like 
riti
al expo-nents.ðÏÄÁ¤ÔØÓÑ × Flu
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionModern understanding of universal properties of matter in the vi
in-ity of 
riti
al points to a great extend is due to the appli
ation of therenormalization group (RG) ideas [1℄. Applied in the problems of 
on-densed matter physi
s in the early 70-ies the RG te
hnique proved to bea powerful tool to study 
riti
al phenomena. For example, expressionsfor 
riti
al exponents governing magneti
 phase transition in regular sys-tems are known by now with re
ord a

ura
y both for isotropi
 [2℄ (O(m)symmetri
al) and 
ubi
 [3℄ magnets. The RG approa
h also sheds lighton the in
uen
e of stru
tural disorder on ferromagnetism. In the presentpaper we will apply the �eld theoreti
al RG approa
h to study pe
uliar-ities of magneti
 behaviour in
uen
ed by disorder in a form of randomanisotropy axis [4℄. It is spe
ial pleasure for us to dedi
ate this paperto Prof. Hagen Kleinert on the o

asion of his 60th anniversary. His
ontribution to the �eld is hard to be overestimated.Although an in
uen
e of a weak quen
hed stru
tural disorder onuniversal properties of a ferromagneti
 phase transition is a problem ofintensive study during already several de
ades there remains a number ofunsettled questions. Here, one should dis
riminate between random site,random-�eld and random anisotropy magnets. A weak quen
hed disorderpreserves 2nd order phase transition in three dimensional (d = 3) randomsite magnets [5℄ but 
an destroy this transition in random �eld systems[6℄ for d < 4. The situation for the random-anisotropy magnets is not so
lear.Typi
al examples of random-anisotropy magnets are amorphous rare-earth { transition metal alloys. Some of these systems order magneti
allyand for the des
ription of the ordered stru
ture it has been proposed[4℄ to 
onsider a regular latti
e of magneti
 ions, ea
h of them being asubje
t to a lo
al anisotropy of random orientation. The Hamiltonian ofthis random anisotropy model (RAM) reads [4℄:H = �XR;R0 JR;R0 ~SR~SR0 �D0XR (^xR~SR)2; (1)where ~SR is an m-
omponent ve
tor on a latti
e site R, JR;R0 is anex
hange intera
tion, D0 is an anisotropy strength, and ^xR is an unitve
tor pointing in the lo
al (quen
hed) random dire
tion of an uniaxialanisotropy.The model was investigated by variety of te
hniques in
luding mean{�eld theory [7℄, 
omputer simulations [8℄, 1=m{expansion [9℄, renor-malization group "{expansion [10{12℄. The limiting 
ase of an in�nite
ICMP{00{18E 2anisotropy was subje
t of a detailed study as well [13,14℄. However thenature of low{temperature phase in RAM is not 
ompletely 
lear up tonow, and several low{temperature phases were dis
ussed like ferromag-neti
 ordering [7,8℄, spin{glass phase [8,9℄, and quasi long{range ordering[15℄.The nature of ordering is 
onne
ted with the distribution of the ran-dom variables ^xR in (1). For an isotropi
 distribution arguments similarto those applied by Imry and Ma [16℄ for a random-�eld Ising modelbring about the absen
e of ferromagneti
 order for spa
e dimensionsd < 4 [12,17℄. Whereas anisotropi
 distributions may lead to a ferromag-neti
 order [18℄.Appli
ation of Wilson RG te
hnique to RAM with the isotropi
 distri-bution of a lo
al anisotropy axis suggests [10℄ the possibility of \runaway"solutions of the re
ursion equations. Su
h behaviour was interpreted asa smeared transition. However this result was obtained in �rst order of"{expansion and remains to be 
on�rmed also in higher orders.Here, we will report results obtained by means of the �eld theoreti
alRG te
hnique in two loop approximation re�ned by resummation of theresulting asymptoti
 series. We will 
onsider two 
ases of distribution ofthe random anisotropy axis and show that a ferromagneti
 se
ond orderphase transition takes pla
e only when the distribution is non-isotropi
.Moreover we will show that the RAM provides one more example ofa disordered model, where the only possible new 
riti
al behaviour isof \random Ising" type, similar to the site{diluted magnets [5℄. Moredetailed results 
an be found in Refs [19,20℄.2. Isotropi
 
aseIn order to deal with quen
hed disorder one way to obtain the e�e
tiveHamiltonian of a RAM is to make use of the repli
a tri
k. Then for agiven 
on�guration of quen
hed random variables ^xR in (1) the partitionfun
tion may be written in a form of fun
tional integral of a Gibbsdistribution depending on ^xR. To perform averaging over 
on�gurationsone should 
omplete the model by 
hoosing 
ertain distribution of ^xR.We will analyse two 
ases: when the random ve
tor ^x points with equalprobability in any dire
tion of the m-dimensional hyperspa
e (isotropi

ase) and when ^x lies along the edges ofm-dimensional hyper
ube (
ubi

ase). Other distributions may be 
onsidered as well. For the �rst 
asethe distribution fun
tion reads:p(^x) � �Z dm^x��1= �(m=2)2�m=2 : (2)



3 ðÒÅ�ÒÉÎÔFollowing the above des
ribed program one ends up with the repli
an! 0 limit of the e�e
tive Hamiltonian [10℄:Heff = � Z ddR(12h�02j~'j2+j~r~'j2i+u0j~'j4+v0 nX�=1 j~��j4+w0 nX�;�=1 mXi;j=1��i ��j ��i ��j9=; ; (3)here, �02 and u0, v0, w0 are de�ned by D0 and familiar bare 
ouplingsof an m-ve
tor model, and ~�� � ~��R is a m-dimensional ve
tor, j~'j2 =Pn�=1 j~��j2. Bare 
ouplings u0 > 0, v0 > 0, w0 < 0. Furthermore, valuesof u0 and w0 are related to appropriate 
umulants of the distributionfun
tion (2) and their ratio equals w0=u0 = �m. Note that the symmetryof u0 and v0 terms 
orresponds to the random site m-ve
tor model [21℄.However the u0-term has an opposite sign.In order to study long-distan
e properties of the Hamiltonian (3),we use the �eld-theoreti
al RG approa
h [1℄. In this approa
h the 
rit-i
al point of a system 
orresponds to a stable �xed point (FP) of theRG transformation. We apply the massive �eld theory renormalizations
heme [22℄ performing renormalization at �xed spa
e dimension d andzero external momenta. In two loop approximation we get [19℄ expres-sions for the RG fun
tions in form of asymtoti
 series in renormalized
ouplings u; v; w.As it was mentioned in the introdu
tion the only known RG resultsfor RAM with isotropi
 distribution of the lo
al anisotropy axis so far arethose obtained in �rst order in " [10℄. In parti
ular one gets eight �xedpoints. All FPs with u > 0; v > 0; w < 0 appear to be unstable for " > 0ex
ept of the \polymer" O(n = 0) FP III whi
h is stable for all m (seeFig. 1). However the presen
e of a stable FP is not a suÆ
ient 
onditionfor a 2nd order phase transition. In order to be physi
ally relevant theFP should be a

essible from the initial values of 
ouplings. This is notthe 
ase for the lo
ation of FPs shown in Fig. 1. Indeed starting fromthe region of physi
al initial 
onditions (denoted by the 
ross in the Fig.1) in the plane of v = 0 one would have to 
ross the separatrix joiningthe unstable FPs I and VI. This is not possible and so one never rea
hesthe stable FP III. As far as both FPs I and VI are strongly unstablewith respe
t to v FP III is not a

essible for arbitrary positive v either.Finally one ends up with the 
on
lusion about absen
e of the 2nd orderphase transition in the model as runaway solutions of the RG equationsshow.

ICMP{00{18E 4
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Figure 1. Fixed points of the RAM with isotropi
 distribution of a lo
alanisotropy axis. The only fixed points lo
ated in the o
tant u > 0; v >0; w < 0 are shown. The �lled box shows the stable �xed point, the 
rossdenotes typi
al initial values of 
ouplings.FP m u� v� w� � �I 8m 0 0 0II 2 0 0.9107 0 0.663 0.0273 0 0.8102 0 0.693 0.0274 0 0.7275 0 0.724 0.027III 8m 1.1857 0 0 0.590 0.023IV 2 -0.0322 0.9454 0 0.668 0.0273 0.1733 0.6460 0 0.659 0.0274 0.2867 0.4851 0 0.653 0.028VI 2 1.4650 0 -1.6278 0.449 -0.028VIII 2 0.7517 0.7072 -0.3984 0.626 0.0313 0.8031 0.5463 -0.3305 0.620 0.0294 0.8349 0.4545 -0.2888 0.617 0.029Table 1. Resummed values of the �xed points and 
riti
al exponents forisotropi
 
ase in two-loop approximation for d = 3.



5 ðÒÅ�ÒÉÎÔThe main question of interest here is whether the above des
ribed pi
-ture of runaway solutions is not an artifa
t of an "{expansion. To 
he
kthis we used a more re�ned analysis of the FPs and their stability, 
on-sidering the series for RG fun
tions dire
tly at d = 3 [22℄. As it is knownseries of this type are asymptoti
 at best and a resummation pro
edurehas to be applied to obtain reliable data on their basis. We made use ofPad�e{Borel resummation te
hniques [23℄ �rst writing the RG fun
tionsas resolvent series [24℄ in one auxiliary variable and then performing re-summation. Numeri
al values of the FPs are given in the Table 1 [25℄.Resummed two-loop results qualitatively 
on�rm the pi
ture obtained inthe �rst order in "{expansion: stability of the FPs does not 
hange afterresummation. This supports the 
onje
ture of Aharony [10℄ about ab-sen
e of a

essible stable FP for the RAM with isotropi
 distribution ofthe lo
al anisotropy axis. We display in the table resummed in a similarway values of the 
orrelation length and pair 
orrelation fun
tion 
riti
alexponents � and �: being 
al
ulated in unstable FPs they are rather tobe 
onsidered as e�e
tive ones.3. Cubi
 
aseLet us now 
onsider the se
ond example of anisotropy axis distribution,when the ve
tor ^xR (1) points only along one of the 2m dire
tions ofaxes ^ki of a 
ubi
 latti
e :p(^x) = 12m mXi=1 [Æ(m)(^x� ^ki) + Æ(m)(^x + ^ki)℄: (4)The rationale for su
h a 
hoi
e is to mimi
 the situation when an amor-phous magnet still \remembers" initial (
ubi
) latti
e stru
ture. Repeat-ing the pro
edure des
ribed in the previous se
tion one ends up with thefollowing e�e
tive Hamiltonian (being of interest in the limit n ! 0)[10℄:Heff = � Z ddR(12 h�02j~'j2+j~r~'j2i+u0j~'j4+v0 nX�=1 j~��j4+w0 mXi=1 nX�;�=1��i 2��i 2+y0 mXi=1 nX�=1��i 49=; : (5)Here, the bare 
ouplings are u0 > 0, v0 > 0, w0 < 0. The y0 term isgenerated when the RG transformation is applied and may be of either
ICMP{00{18E 6sign. The symmetry of w0 terms di�ers in (3) and (5). Furthermore,values of u0 and w0 di�er for Hamiltonians (3) and (5) but their ratioequals �m again.We apply the massive �eld theory renormalization s
heme [22℄ andget the RG fun
tions in two loop approximation [20℄. As well as in theprevious 
ase we reprodu
e the �rst-order "-results [10℄. Now one gets14 FPs. However, in �rst order of "{expansion all FPs with u > 0; v >0; w < 0 appear to be unstable for " > 0 ex
ept of the \polymer" O(n =0) FP III whi
h is stable for all m but not a

essible (see Fig. 2). Nowthe a

ount of the "2 terms qualitatively 
hanges the pi
ture: indeed, thesystem of equations for the FPs appears to be degenerated at the oneloop level. As known from other 
ases in two loop order this leads to theappearan
e of a new FP whi
h is stable and is expressed by a p" series[21℄. The possibility of su
h s
enario was predi
ted already in Refs [18℄.However it remained un
lear whether there exist any other a

essiblestable FPs. t tt w u

`ty t tIVXV X III
VII

Figure 2. Fixed points of the RAM with distribution of a lo
al anisotropyaxis along hyper
ube axis for v = 0. The only fixed points lo
ated in theregion u > 0; w < 0 are shown. Filled boxes show the stable �xed points,the 
ross denotes typi
al initial values of 
ouplings.Applying Pad�e{Borel resummation we get 16 FPs. Values of the FPswith u� > 0; v� > 0; w� < 0 are presented in the Table 2 [25℄. The lastFP XV in Table 2 
orresponds the stable FP of p"-expansion. It has
oordinates with u� = v� = 0, w� < 0 and y� > 0 and is a

essible



7 ðÒÅ�ÒÉÎÔfrom the typi
al initial values of 
ouplings (shown by 
ross in the Fig.2).Applying the resummation pro
edure we did not �nd any other stableFPs in the region of interest. The e�e
tive Hamiltonian (5) at u = v = 0in the repli
a limit n! 0 redu
es to a produ
t of m e�e
tive Hamiltoni-ans of a weakly diluted quen
hed random site Ising model. This meansthat for any value of m > 1 the system is 
hara
terized by the same setof 
riti
al exponents as those of a weakly diluted random site quen
hedIsing model. We give in the Table 2 values of 
riti
al exponents in theother FPs as well: if the 
ows from initial values of 
ouplings pass nearthe these FPs one may observe an e�e
tive 
riti
al behaviour governedby these 
riti
al exponents.FP m u� v� w� y� � �I 8m 0 0 0 0 1/2 02 0 0.9107 0 0 0.663 0.027II 3 0 0.8102 0 0 0.693 0.0274 0 0.7275 0 0 0.720 0.026III 8m 1.1857 0 0 0 0.590 0.023V 8m 0 0 0 1.0339 0.628 0.026VI 3 0.1733 0.6460 0 0 0.659 0.0274 0.2867 0.4851 0 0 0.653 0.027VII 8m 2.1112 0 -2.1112 0 1/2 02 0 1.5508 0 -1.0339 0.628 0.026VIII 3 0 0.8393 0 -0.0485 0.693 0.0274 0 0.5259 0 0.3624 0.709 0.026IX 3 0.1695 0.7096 0 -0.1022 0.659 0.0274 0.2751 0.4190 0 0.1432 0.653 0.027X 8m 0.6678 0 -0.6678 1.0339 0.628 0.026XV 8m 0 0 -0.4401 1.5933 0.676 0.031Table 2. Resummed values of the FPs and 
riti
al exponents for 
ubi
distribution in two-loop approximation for d = 3.4. Con
lusionsIn this paper we applied the �eld theoreti
al RG approa
h to analyze
riti
al behaviour of a model of random anisotropy magnet with isotropi
and 
ubi
 distributions of a lo
al anisotropy axis. The origin of a low{temperature phase in this model is not 
ompletely 
lear. General ar-
ICMP{00{18E 8guments based on an estimate of the energy for formation of magneti
domains [16℄ lead to the 
on
lusion that for d < 4 a ferromagneti
 orderis absent [12,17℄. However these arguments do not take into a

ount en-tropy whi
h may be important for disordered systems [14℄. Furthermore,these arguments do not apply for anisotropi
 distributions of the randomaxis [18℄.In the RG analysis absen
e of a ferromagneti
 se
ond order phasetransition 
orresponds to the la
k of a stable FP of the RG transforma-tion. However in the 
ase of RAM with isotropi
 distribution of a lo-
al anisotropy axis the s
enario di�ers. Our two loop 
al
ulation bringsabout the presen
e of a O(n = 0) symmetri
 FP whi
h is stable forany value of m for both isotropi
 and 
ubi
 distributions of a randomanisotropy axis. However, this FP is not a

essible from the initial val-ues of the 
ouplings. We 
he
ked the lo
ation of the FPs up to se
ondorder in "{expansion and by means of a �xed d = 3 te
hnique re�ned byPad�e{Borel resummation.In the 
ase of isotropi
 distribution of a random anisotropy axis ouranalysis supports the 
onje
ture of Aharony [10℄ based on linear in "-results about runaway solutions of the RG equations. For the 
ubi
 dis-tribution we get two stable FPs. One of them (FP III in Fig. 2) is nota

essible as in the isotropi
 
ase. But the disordered Ising-like FP (FPXV in Fig. 2) may be rea
hed from the initial values of 
ouplings. Ap-plying the resummation pro
edure we did not �nd any other stable FPsin the region of interest. This means that RAM with 
ubi
 distributionsof a random anisotropy axis is governed by a set of 
riti
al exponents ofa weakly site diluted quen
hed Ising model [21,26℄.To 
on
lude we want to attra
t attention to 
ertain similarity inthe 
riti
al behaviour of both random-site [21℄ and random-anisotropy[4℄ quen
hed magnets: if at all there appears new 
riti
al behaviour italways is governed by 
riti
al exponents of site-diluted Ising type. Theabove 
al
ulations of a \phase diagram" of RAM were based on twoloop expansions improved by a resummation te
hnique. On
e the quali-tative pi
ture be
ame 
lear there is no need to go into higher orders of aperturbation theory as far as the 
riti
al exponents of site-diluted Isingmodel are known by now with high a

ura
y [26℄.Yu. H. a
knowledges helpful dis
ussions with Mykola Shpot. Thiswork has been supported in part by "�Osterrei
his
he Nationalbank Ju-bil�aumsfonds" through the grant No 7694.
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