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Awnoranis. JocminKy€erhCs BIIUB JIOKAJIBHOI aHI30TPOITI BUMAIKOBOL
opienrarii Ha depomaruiTamit ha3z0BuUil nepexin Q1A ABOX BUMAIKIB PO3-
MOJITY OcCeii anizoTpormii. 3 i€l METO 33 HOMOMOIOI METOLY Teope-
THUKO-II0JIbOBOI pEHOPMAaJIi3aliiftHOl rPYIIK IPOBEIEHO aHAJII3 MOAEJIi Mar-
HETUKA 3 BUIIAJKOBOIO aHI30TPOITEI0 B IBONETEBOMY HADMKEHHI yTOY-
HEHOMY IIePecyMOBYBaHHAM acuMnrorudHux paAmis. [ligrBepmxeno ox-
HOTETJIeBUIA pe3yabTaT ArapoHi, sKuil BKa3y€e Ha BiICYTHICTH (PA30BOr0O
repexony APYToro Pomy AJIA i30TPOITHOTO PO3MOIiLIY OCi BUMIAIKOBOI aH-
isoTpomii mpu BuMipHOCTI mpocTtopy d < 4. s KyOI9HOrO pO3HOIiITY
JIOCHAYXKHA CTiiKa TOYKA MPUBOAUTH 10 KPUTUYHUX IIOKA3HUKIB PO3BEIe-
Horo I3umra.

Phase transition in the random anisotropy model
Maxym Dudka, Reinhard Folk, Yurij Holovatch

Abstract. The influence of a local anisotropy of random orientation on
a ferromagnetic phase transition is studied for two cases of anisotropy
axis distribution. To this end a model of a random anisotropy magnet is
analysed by means of a field theoretical renormalization group approach
in two loop approximation refined by ressumation of asymptotic series.
The one-loop result of Aharony indicating the absence of a 2nd order
phase transition for isotropic distribution of random anisotropy axis at
space dimension d < 4 is corroborated. For a ¢ cubic distribution the
accessible stable fixed point leads to disordered Ising-like critical expo-
nents.
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1. Introduction

Modern understanding of universal properties of matter in the vicin-
ity of critical points to a great extend is due to the application of the
renormalization group (RG) ideas [1]. Applied in the problems of con-
densed matter physics in the early 70-ies the RG technique proved to be
a powerful tool to study critical phenomena. For example, expressions
for critical exponents governing magnetic phase transition in regular sys-
tems are known by now with record accuracy both for isotropic [2] (O(m)
symmetrical) and cubic [3] magnets. The RG approach also sheds light
on the influence of structural disorder on ferromagnetism. In the present
paper we will apply the field theoretical RG approach to study peculiar-
ities of magnetic behaviour influenced by disorder in a form of random
anisotropy axis [4]. It is special pleasure for us to dedicate this paper
to Prof. Hagen Kleinert on the occasion of his 60th anniversary. His
contribution to the field is hard to be overestimated.

Although an influence of a weak quenched structural disorder on
universal properties of a ferromagnetic phase transition is a problem of
intensive study during already several decades there remains a number of
unsettled questions. Here, one should discriminate between random site,
random-field and random anisotropy magnets. A weak quenched disorder
preserves 2nd order phase transition in three dimensional (d = 3) random
site magnets [5] but can destroy this transition in random field systems
[6] for d < 4. The situation for the random-anisotropy magnets is not so
clear.

Typical examples of random-anisotropy magnets are amorphous rare-
earth — transition metal alloys. Some of these systems order magnetically
and for the description of the ordered structure it has been proposed
[4] to consider a regular lattice of magnetic ions, each of them being a
subject to a local anisotropy of random orientation. The Hamiltonian of
this random anisotropy model (RAM) reads [4]:

H=-> JrrSeSw — Do) (érSr)% (1)
R.R/ R

where gR is an m-component vector on a lattice site R, Jr g’ is an
exchange interaction, Dy is an anisotropy strength, and Zgr is an unit
vector pointing in the local (quenched) random direction of an uniaxial
anisotropy.

The model was investigated by variety of techniques including mean—
field theory [7], computer simulations [8], 1/m—expansion [9], renor-
malization group e-expansion [10-12]. The limiting case of an infinite
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anisotropy was subject of a detailed study as well [13,14]. However the
nature of low—temperature phase in RAM is not completely clear up to
now, and several low—temperature phases were discussed like ferromag-
netic ordering [7,8], spin—glass phase [8,9], and quasi long-range ordering
[15].

The nature of ordering is connected with the distribution of the ran-
dom variables Zgr in (1). For an isotropic distribution arguments similar
to those applied by Imry and Ma [16] for a random-field Ising model
bring about the absence of ferromagnetic order for space dimensions
d < 4 [12,17]. Whereas anisotropic distributions may lead to a ferromag-
netic order [18].

Application of Wilson RG technique to RAM with the isotropic distri-
bution of a local anisotropy axis suggests [10] the possibility of “runaway”
solutions of the recursion equations. Such behaviour was interpreted as
a smeared transition. However this result was obtained in first order of
e—expansion and remains to be confirmed also in higher orders.

Here, we will report results obtained by means of the field theoretical
RG technique in two loop approximation refined by resummation of the
resulting asymptotic series. We will consider two cases of distribution of
the random anisotropy axis and show that a ferromagnetic second order
phase transition takes place only when the distribution is non-isotropic.
Moreover we will show that the RAM provides one more example of
a disordered model, where the only possible new critical behaviour is
of “random Ising” type, similar to the site—diluted magnets [5]. More
detailed results can be found in Refs [19,20].

2. Isotropic case

In order to deal with quenched disorder one way to obtain the effective
Hamiltonian of a RAM is to make use of the replica trick. Then for a
given configuration of quenched random variables Zg in (1) the partition
function may be written in a form of functional integral of a Gibbs
distribution depending on Zgr. To perform averaging over configurations
one should complete the model by choosing certain distribution of Zg.
We will analyse two cases: when the random vector & points with equal
probability in any direction of the m-dimensional hyperspace (isotropic
case) and when Z lies along the edges of m-dimensional hypercube (cubic
case). Other distributions may be considered as well. For the first case
the distribution function reads:

p(@) = </ dmaz»> o % 2)
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Following the above described program one ends up with the replica
n — 0 limit of the effective Hamiltonian [10]:

1 e . LI
Hepp = —/ddR{§[H02|<P|Z+|VSD|Z +uo| | +vo Y |61+
a=1
n m
wo Y DT (3)
a,f=11,j=1

here, po? and ug, vy, wy are defined by Dy and familiar bare couplings
of an m-vector model, and (Za = (Eﬁ is a m-dimensional vector, |3|> =
> |62 |2. Bare couplings ug > 0, v > 0, wy < 0. Furthermore, values
of ug and wq are related to appropriate cumulants of the distribution
function (2) and their ratio equals wg /ug = —m. Note that the symmetry
of ug and vy terms corresponds to the random site m-vector model [21].
However the ug-term has an opposite sign.

In order to study long-distance properties of the Hamiltonian (3),
we use the field-theoretical RG approach [1]. In this approach the crit-
ical point of a system corresponds to a stable fixed point (FP) of the
RG transformation. We apply the massive field theory renormalization
scheme [22] performing renormalization at fixed space dimension d and
zero external momenta. In two loop approximation we get [19] expres-
sions for the RG functions in form of asymtotic series in renormalized
couplings u, v, w.

As it was mentioned in the introduction the only known RG results
for RAM with isotropic distribution of the local anisotropy axis so far are
those obtained in first order in ¢ [10]. In particular one gets eight fixed
points. All FPs with u > 0,v > 0,w < 0 appear to be unstable for € > 0
except of the “polymer” O(n = 0) FP III which is stable for all m (see
Fig. 1). However the presence of a stable FP is not a sufficient condition
for a 2nd order phase transition. In order to be physically relevant the
FP should be accessible from the initial values of couplings. This is not
the case for the location of FPs shown in Fig. 1. Indeed starting from
the region of physical initial conditions (denoted by the cross in the Fig.
1) in the plane of v = 0 one would have to cross the separatrix joining
the unstable FPs I and VI. This is not possible and so one never reaches
the stable FP III. As far as both FPs I and VI are strongly unstable
with respect to v FP III is not accessible for arbitrary positive v either.
Finally one ends up with the conclusion about absence of the 2nd order
phase transition in the model as runaway solutions of the RG equations
show.
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Figure 1. Fixed points of the RAM with isotropic distribution of a local
anisotropy axis. The only fixed points located in the octant v > 0,v >
0,w < 0 are shown. The filled box shows the stable fixed point, the cross
denotes typical initial values of couplings.

FP m u* v* w* v n
I vm 0 0 0
II 2 0 0.9107 0 0.663 | 0.027
3 0 0.8102 0 0.693 | 0.027
4 0 0.7275 0 0.724 | 0.027
1 | Vm | 1.1857 0 0 0.590 | 0.023
v 2 ] -0.0322 | 0.9454 0 0.668 | 0.027
3 | 0.1733 | 0.6460 0 0.659 | 0.027
4 | 0.2867 | 0.4851 0 0.653 | 0.028
VI 2 1.4650 0 -1.6278 | 0.449 | -0.028
VIIT | 2 0.7517 | 0.7072 | -0.3984 | 0.626 | 0.031
3 | 0.8031 | 0.5463 | -0.3305 | 0.620 | 0.029
4 | 0.8349 | 0.4545 | -0.2888 | 0.617 | 0.029

Table 1. Resummed values of the fixed points and critical exponents for
isotropic case in two-loop approximation for d = 3.
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The main question of interest here is whether the above described pic-
ture of runaway solutions is not an artifact of an e—expansion. To check
this we used a more refined analysis of the FPs and their stability, con-
sidering the series for RG functions directly at d = 3 [22]. As it is known
series of this type are asymptotic at best and a resummation procedure
has to be applied to obtain reliable data on their basis. We made use of
Padé-Borel resummation techniques [23] first writing the RG functions
as resolvent series [24] in one auxiliary variable and then performing re-
summation. Numerical values of the FPs are given in the Table 1 [25].
Resummed two-loop results qualitatively confirm the picture obtained in
the first order in e—expansion: stability of the FPs does not change after
resummation. This supports the conjecture of Aharony [10] about ab-
sence of accessible stable FP for the RAM with isotropic distribution of
the local anisotropy axis. We display in the table resummed in a similar
way values of the correlation length and pair correlation function critical
exponents v and n: being calculated in unstable FPs they are rather to
be considered as effective ones.

3. Cubic case

Let us now consider the second example of anisotropy axis distribution,
when the vector Zr (1) points only along one of the 2m directions of
axes k; of a cubic lattice :
. -
p(@) = 5= > [0" (& — ki) + 6™ (& + k). (4)

i=1

The rationale for such a choice is to mimic the situation when an amor-
phous magnet still “remembers” initial (cubic) lattice structure. Repeat-
ing the procedure described in the previous section one ends up with the
following effective Hamiltonian (being of interest in the limit n — 0)
[10]:

1 I B "o
Heps = —/ddR{§ [,u02|<p|2+|V<p|Z] +u0|<p|4+v02|¢ |*+
a=1

wo D ST % Y S et 5)

i=1 a,f=1 i=1 a=1

Here, the bare couplings are ug > 0, vo > 0, wo < 0. The yo term is
generated when the RG transformation is applied and may be of either
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sign. The symmetry of wg terms differs in (3) and (5). Furthermore,
values of ug and wop differ for Hamiltonians (3) and (5) but their ratio
equals —m again.

We apply the massive field theory renormalization scheme [22] and
get the RG functions in two loop approximation [20]. As well as in the
previous case we reproduce the first-order e-results [10]. Now one gets
14 FPs. However, in first order of e—expansion all FPs with « > 0,v >
0, w < 0 appear to be unstable for ¢ > 0 except of the “polymer” O(n =
0) FP III which is stable for all m but not accessible (see Fig. 2). Now
the account of the 2 terms qualitatively changes the picture: indeed, the
system of equations for the FPs appears to be degenerated at the one
loop level. As known from other cases in two loop order this leads to the
appearance of a new FP which is stable and is expressed by a /¢ series
[21]. The possibility of such scenario was predicted already in Refs [18].
However it remained unclear whether there exist any other accessible
stable FPs.

I ! U

Figure 2. Fixed points of the RAM with distribution of a local anisotropy
axis along hypercube axis for v = 0. The only fixed points located in the
region u > 0, w < 0 are shown. Filled boxes show the stable fixed points,
the cross denotes typical initial values of couplings.

Applying Padé-Borel resummation we get 16 FPs. Values of the FPs
with u* > 0,v* > 0,w* < 0 are presented in the Table 2 [25]. The last
FP XV in Table 2 corresponds the stable FP of \/e-expansion. It has
coordinates with v* = v* = 0, w* < 0 and y* > 0 and is accessible
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from the typical initial values of couplings (shown by cross in the Fig.2).
Applying the resummation procedure we did not find any other stable
FPs in the region of interest. The effective Hamiltonian (5) at u = v =0
in the replica limit n — 0 reduces to a product of m effective Hamiltoni-
ans of a weakly diluted quenched random site Ising model. This means
that for any value of m > 1 the system is characterized by the same set
of critical exponents as those of a weakly diluted random site quenched
Ising model. We give in the Table 2 values of critical exponents in the
other FPs as well: if the flows from initial values of couplings pass near
the these FPs one may observe an effective critical behaviour governed
by these critical exponents.

* *

*
*

FP m U v w Y v n

I vm 0 0 0 0 1/2 0
2 0 0.9107 0 0 0.663 | 0.027
1I 3 0 0.8102 0 0 0.693 | 0.027
4 0 0.7275 0 0 0.720 | 0.026
III | Vm | 1.1857 0 0 0 0.590 | 0.023
V | Vm 0 0 0 1.0339 | 0.628 | 0.026
VI 3 | 0.1733 | 0.6460 0 0 0.659 | 0.027
4 | 0.2867 | 0.4851 0 0 0.653 | 0.027

VII | Vm | 2.1112 0 -2.1112 0 1/2 0
2 0 1.5508 0 -1.0339 | 0.628 | 0.026
VIII | 3 0 0.8393 0 -0.0485 | 0.693 | 0.027
4 0 0.5259 0 0.3624 | 0.709 | 0.026
IX 3 | 0.1695 | 0.7096 0 -0.1022 | 0.659 | 0.027
4 10.2751 | 0.4190 0 0.1432 | 0.653 | 0.027
X | Vm | 0.6678 0 -0.6678 | 1.0339 | 0.628 | 0.026
XV | Vm 0 0 -0.4401 | 1.5933 | 0.676 | 0.031

Table 2. Resummed values of the FPs and critical exponents for cubic
distribution in two-loop approximation for d = 3.

4. Conclusions

In this paper we applied the field theoretical RG approach to analyze
critical behaviour of a model of random anisotropy magnet with isotropic
and cubic distributions of a local anisotropy axis. The origin of a low—
temperature phase in this model is not completely clear. General ar-
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guments based on an estimate of the energy for formation of magnetic
domains [16] lead to the conclusion that for d < 4 a ferromagnetic order
is absent [12,17]. However these arguments do not take into account en-
tropy which may be important for disordered systems [14]. Furthermore,
these arguments do not apply for anisotropic distributions of the random
axis [18].

In the RG analysis absence of a ferromagnetic second order phase
transition corresponds to the lack of a stable FP of the RG transforma-
tion. However in the case of RAM with isotropic distribution of a lo-
cal anisotropy axis the scenario differs. Our two loop calculation brings
about the presence of a O(n = 0) symmetric FP which is stable for
any value of m for both isotropic and cubic distributions of a random
anisotropy axis. However, this FP is not accessible from the initial val-
ues of the couplings. We checked the location of the FPs up to second
order in e—expansion and by means of a fixed d = 3 technique refined by
Padé-Borel resummation.

In the case of isotropic distribution of a random anisotropy axis our
analysis supports the conjecture of Aharony [10] based on linear in e-
results about runaway solutions of the RG equations. For the cubic dis-
tribution we get two stable FPs. One of them (FP III in Fig. 2) is not
accessible as in the isotropic case. But the disordered Ising-like FP (FP
XV in Fig. 2) may be reached from the initial values of couplings. Ap-
plying the resummation procedure we did not find any other stable FPs
in the region of interest. This means that RAM with cubic distributions
of a random anisotropy axis is governed by a set of critical exponents of
a weakly site diluted quenched Ising model [21,26].

To conclude we want to attract attention to certain similarity in
the critical behaviour of both random-site [21] and random-anisotropy
[4] quenched magnets: if at all there appears new critical behaviour it
always is governed by critical exponents of site-diluted Ising type. The
above calculations of a “phase diagram” of RAM were based on two
loop expansions improved by a resummation technique. Once the quali-
tative picture became clear there is no need to go into higher orders of a
perturbation theory as far as the critical exponents of site-diluted Ising
model are known by now with high accuracy [26].

Yu. H. acknowledges helpful discussions with Mykola Shpot. This
work has been supported in part by ”Osterreichische Nationalbank Ju-
bildumsfonds” through the grant No 7694.
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