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Amnoramisi. Po3pobJieno npouenypy peayKuil KaHOHIYHUX [10JIbOBUX CTY-
[eHiB BLJIBHOCTHU [JIA CHUCTEMH 3aPAIKEHUX YaCTUHOK 3 €eJIeKTPOMar-
HETHUM II0JIEM Y raMijibTOHOBOMY (bopMaJii3Mi 3 B’A3:AMHU Yy HEPLIOMY
MOPANKY 33 KOHCTAHTOI B3A€MOil. JHANIEHO KAHOHIYHY peasli3aliiio
anreopu Ilyankape y TepmiHax 3MiHHUX 9aCTUHOK. 3alMCaHO CITiBBim-
HOINIEHH MiXK KOBapigAHTHUMHU Ta, (Di3uIHUMU 3MIHHUME 9aCcTUHOK. Ta-
KO POBIVIAHYTO CUCTEMY YACTUHOK, fKi B3a€MOJIIOTH Yepe3 CKaJslsApHE
Ta BeKTOpHe MacuBHi nosia. JociimzkeHo nepuie Hab/IMKEeHHA 3a ¢ 2.
OOroBOPIOETHCA 3aCTOCYBAHHSA HO OOYNCJIEHHA CTATUCTUIHOI CyMHU CHUC-

TEeMU B3&€MO,ILiIOLII/IX YaCTHUHOK.

Classical relativistic system of N charges. Hamiltonian descrip-
tion, forms of dynamics, and partition function

A. Duviryak, A. Nazarenko, V. Tretyak

Abstract. The procedure of reducing canonical field degrees of freedom
for a system of charged particles plus field in the constrained Hamiltoni-
an formalism is elaborated up to the first order in the coupling constant
expansion. The canonical realization of the Poincaré algebra in the terms
of particle variables is found. The relation between covariant and phys-
ical particle variables in the Hamiltonian description is written. The
system of particles interacting by means of scalar and vector massive
fields is also considered. The first order approximation in ¢~2 is exam-
ined. An application to the calculating the relativistic partition function
of interacting particle system is discussed.
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1. Introduction

During a long time, the development of relativistic statistical mechan-
ics was limited by insufficient understanding of the relativistic classical
and quantum description of the systems with finitely many particles. At
present, the classical relativistic mechanics of N-particle system with
the direct interaction is formulated in a consistent way within vari-
ous formalisms and approaches. These formulations are based on the
Poincaré-invariance conditions; the relation of the general expressions
for interaction potentials with the concrete field-theoretical model can
be performed either by means of several approximation (e.g., Darwin’s
Lagrangian in electrodynamics), or with use of the Fokker-type action
integrals (see, e.g., [1]).

The different formalisms of the classical relativistic mechanics are
more or less equivalent, although the Lagrangian formalism has some
advantages in its conceptual simplicity and the direct relations with the
field-theoretical models [1,2]. But statistical description of the interacting
particle system is more transparent in the Hamiltonian formalism. The
transition from Lagrangian to Hamiltonian description in the classical
relativistic dynamics is not simple or direct and demands the use of
various approximations. On other side, it is natural to try constructing
the Hamiltonian description of interacting particle system starting from
the Hamiltonian formalism for the ”particle plus field” system and then
eliminating the field degrees of freedom. Such a program had discussed
in the illuminating series of papers by Lusanna with coworkers (see [3]).

Here we present simpler approach [4,5] which uses the geometrical
forms of dynamics [2] to impose the gauge fixing conditions concerning
the chronometrical invariance of action. In section 2 we consider the con-
strained Hamiltonian description of charged particles with electromag-
netic fields and the canonical transformation which isolate nonphysical
(gauge) degrees of freedom of the electromagnetic fields. We also consider
the massive scalar and vector interactions and obtain the generators of
time evolution and Lorentz transformations on the physical phase space.
The elimination of the field degrees of freedom is discussed in section 3
within the linear approximation in the coupling constant. We obtain the
canonical generators of the Poincaré group for considered interactions.
We demonstrate that the first order approximation in ¢~2 agrees with
the well known results of various approaches. An application to the cal-
culating the relativistic partition function of interacting particle system
is discussed in section 4.
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2. Hamiltonian description of
the ”field plus particle” system

At the beginning we briefly outline the main steps of the Hamiltonian
description of a system of N point particles with electromagnetic interac-
tion [5]. The particles are described by their world lines in the Minkowski
space-time! v, : 7 — x#(7). An interaction between charges is mediat-
ed by an electromagnetic field Fj,, (z) = 0,4, (z) — 0, A, (z) with the
electromagnetic potential A, (z); 0, = 0/0x”. An action for the system
is

/dTa MmN/ u2(1,) + equn (7o) Av[2a (74)] /d4:cFZ (1)

where m, and e, are the mass and the charge of particle a, respec-
tively, F? = (1/4)Fxo(z)F*? (z), and u?(r,) = dx*(7,)/dr,. The ac-
tion is manifestly invariant under two types of gauge transformations:
reparametrization of the particle world lines

Ta = O(70), ¢ >0, (2)
and ordinary gauge transformation of the electromagnetic potential
Ay Ay + 9uA. (3)

Moreover, action (1) is invariant under (global) transformations of the
Poincaré group; this invariance results in the conservation of the sym-
metric energy-momentum tensor [6]:

9;“/ Z/ uz 7_( )64( a(Ta))dTa
_FuAFV)\ +T}“VF2; (4)
0 () = 0" (x),  8,6"(x) = 0. (5)

We fix the freedom in the parametrization of particle world lines
by means of the choice of the form of relativistic dynamics, which is

!The Minkowski space-time M4 is endowed with a metric |nu| =
diag(1,—1,—1,—1). The Greek indices p,v,... run from 0 to 3; the Roman indices
from the middle of alphabet, 4,7,k,... run from 1 to 3 and both types of indices
are subject of the summation convention. The Roman indices from the beginning of
alphabet, a, b, label the particles and run from 1 to N. The sum over such indices is
indicated explicitly.
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specified by one-parameter family {X; | ¢t € IR} of space-like or isotropic
hypersurfaces ¥; = {x € M4 | o(x) = t} foliating the Minkowski space-
time (see [2]). Because the hypersurface equation o(z) = ¢ can be solved
with respect to 20 in the form:

;UOZf(t,X), X:($1,$2,$3), (6)

the functions ' = 2% (t), i = 1,2, 3, completely determine the parametric
equations of the particle world lines in a given form of dynamics:

20 = f(t,xa(D), @' =i (8), (7)

The variable ¢ serves as a common evolution parameter of the system.
Now we can use the definition of the form of dynamics as a gauge
fixing condition and put action (1) into a single-time form [5]

S = / dtL (8)

with Lagrangian L(t) depending on the functions x,(t), A*(t,x) and
their first order derivatives with respect to evolution parameter, x,(t) =
dx,(t)/dt and A*(t,x). The conservation of the energy-momentum ten-
sor (4) gives us ten conserved quantities in a given form of dynamics:

Pt = 0" do,, MH = / (x#0"P — 2V 0"F) do. (9)
o o

The single-time Lagrangian L is invariant under gauge transforma-
tion (3) and leads to the constrained Hamiltonian description. As it has
been discussed in [5], the structure of the corresponding constraints de-
pend on the form of dynamics. In the following we confine ourselves by
the most common case of the instant form of dynamics (z° = t). The
Lagrangian function in this form of dynamics is represented by:

N

L= =3 {maJT73 + o [olt.x) + E,4i(tx,)] )

a=1
1 ) g
—Z/(legl +FijF”)d3$. (10)
here Fij = AjJ' — Ai,j and (E‘l = A(]J — Az
In the Hamiltonian formulation of our system we start with canonical
variables z (t), A, (t,x) and conjugated momenta p,;(t), E*(t,x) which
are subject of the first class constraints [7]

E°~0, I'=0—-0;E' ~0, (11)
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where =~ means ”"weak equality” in the sense of Dirac and o(t,x) =

3 ea03(x — x,4(t)) is a charge density. Then we perform the canonical
gr;;nsformation that dissect the field phase space into the physical part
described by the gauge invariant variables a, = (8%, — 6£0,/0s3)Ai, E%;
a = 1,2, and unphysical part parametrized by the canonical pairs (@, ')
and (Ao, EO)

The time evolution of the physical degrees of freedom is generated
by the Hamiltonian

N
H= Z VM2 + [Pa — eaAL(X,))?

—3 [ (FAat - BLEL + o) (12)

where

Bl = (6!, — 010, /03)E®, A = (62 + 0;A710%)ay,. (13)
Inverse differential operators are defined by the relations
1/056% (x) = (1/2)0(e")0(e)sgn(a?), AT16(x) = —1/(dnlx]).  (14)

Conserved quantities (9) being reexpressed in terms of canonical vari-
ables determine the canonical realization of the Poincaré group. On the
physical subspace the generator P° coincide with the Hamiltonian (12),
and the generator of the Lorentz transformation is given by

N
320 =3 Lt ot + o — ol - 0
a=1

1 1o
+ /xk <ZFZ§F$ +5ELEL + EiazA_19> d’z

—% /:ckgAflgd:"x - t/Eﬂ_@kAlLdgx. (15)
where F; = Aj-z - Al{-j.

It is instructive to consider in a similar manner the Hamiltonian
description of the system of particles with massive vector and scalar in-
teractions. So, in the first case we have a system described by action that
differs from (1) by a massive term %p?A” A, . The instant form Hamilto-
nian description of the system is based on the canonical variables z? (t),
A, (t,x) and pqi(t), E*(t,x) with a pair of the second class constraints

E°~0, T —p?4y=0, (16)
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which can be excluded by means of the Dirac bracket. The canonical
Hamiltonian is

N
=Y \/m3 + .
a=1

1 ) 1
—E/LQAZ-A’ + Ap (F — §u2A0>] dx. (17)

1 1 . .
_eaA(t,xa)]2+/ hFijF,-j + S BB

After exclusion of the constraints (16) one obtains for the boost generator

N

M = 3 (o F P — oA ~ 12k}

a=1

1 1 . . 1 . 1 .
+/37k |:ZFUFU + §EZEz — 5/12141'141 + ﬁl—‘z} >z
; 1
—t/ {EfakAj - 5,&4%] . (18)
In the case of a system of particles interacting by means of the scalar

field p(z) we find the standard Hamiltonian description without con-
straints with the Hamiltonian

al 1
H =Y Vol + = cap@xa)P + 5 [I68 + (Ve + 1), (19

a=1
and the boost generator

N

0 =3 {abv/p + Ime —eaplt.x )7 -t}

a=1

1
+5 /a:'“[w2 + (V) + pPp?|dPx — t/wakgad%. (20)

We will see that after elimination of the field degrees of freedom all the
three considered cases give the canonical generators of a similar struc-
ture.

3. Elimination of the field degrees of freedom

Now we are interested in elimination of the physical field degrees of
freedom. As a result, we shall obtain the description of our system in
the terms of particle variables only. Such a reformulation is especially
effective, when the free radiation is not essential.
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Our procedure of the field reduction has three steps [8]. First, we
must find a solution of the field equations of motion. In the Hamiltonian
mechanics the field equations are non-linear, so we use an approxima-
tion, which is based on the coupling constant expansion. In general,
the problem of choice of Green’s function arises in this approach. But
in the first-order (linear) approximation in the coupling constant the
advanced, retarded, or symmetric solutions coincide. We use here the
time-symmetric Green’s function G(2%) = G(a3 — x?). It is well known
[1], that the Green’s function determines the nonrelativistic potential

u(r):
= /dozG(oz2 — 7). (21)

The general solution of the field equations is a sum of the source free
field A9 (s is the number of the physical field components), which sat-
isfies the homogeneous equation, and the solution of the inhomogeneous
equation Ay in the terms of canonical particle variables.

Second, we perform a canonical transformation [8]:

A, =A™ 4 As, ES = E5 +&°, (22)

. . oE* 0As
) rad s 3
T, =(q, +/ KA + = A ) ok (Erad o ) akm} d°z, (23)

s L
Pai = kai _/ |:<Arad + S As > gg@ o ( rad T E > 86"41 :| d’z, (24)

after that the free field terms (A%, E% ,) become the new canonical vari-
ables. It is assumed in our problem that the field has not its own degrees
of freedom, so third step consists in elimination of the field variables by

means of constraints

AR 0, EE4 0. (25)

We find the Dirac bracket, which coincides with the particle Poisson
bracket {¢},, kp; } = dabd;. The canonical generators of the Poincaré group
for the considered interactions in the linear approximation are

N N
c !
H = CZ kg + 5 Z eaebf(wab)u(pab)7 (26)
a=1 a,b=1
N .. N
_ Zkﬁ, M — Z(qak] —qikl), (27)
a=1 a=1

!

N k N
qs 1
o=y <—k2 - tkk> = > caerdh fww)ulpar), (28)
a=1 a,b:l
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where kY = y/m2c? + k2, the prime over sum denotes that a 7é b
( = b terms is excluded by means of mass renormalization); p2, =

@z +( a9ab/k2)?, Aab = Qo — Wb, Gab = |Qab|, Wab = EXkpy/mamec?,
and f(w) = 1 for the scalar interaction and f(w) = w for the vector
interaction. It can easy be demonstrated, that the expressions (26)—(28)
satisfy the commutation relations of the Poincaré group in a given ap-
proximation with arbitrary functions u(r) and f(w).

According to (23), the covariant particle positions x! are connected
with the canonical variables as

i _ i L 08 s 0As] s
wa—qa+2/[¢456kai & O d’z. (29)

It can be verified directly that in a given approximation the expression
(29) satisfies the world line condition

{ol, M} = ali{al H} -t (30)

The Poisson brackets between particle positions do not vanish,

o OA, 05 0E5 DA
i J1 — s _ s 3
{wam} = / (ak,,j Oka; Oy, akm-) &z, (31)

in a full agreement with the famous no-interaction theorem [9].

Let us examine the generators (26), (28) up to ¢~2 approximation.
Using the first order expansions
_ (qabka)2 dU(Qab)
U(pab) B U(qab) * 2qab"nic2 dqab
fl(o) ka kb 2
=1 S b 32
flow) =1+ 5 (-2 (32)

and performing the canonical transformation generated by the function

k, ky
402 Zeaebu qab) |:qab <m_a - m_b>:| ’ (33)

a<b

we obtain the expressions

H=H" + HY, (34)
N 1 N

M* = Z(qﬁma tk’” —2 Z bqbu Gab)- (35)
a=1 a,b=1
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where

0 _ v 2, ki (0)
HO =" (m, 5= )+ U, (36)
a

a=1

N
U(O) = Z eaebu(qab)a

a<b
N

(1) _
HY = Z 8m302 Zeaeb {202 [k kpu(gap)

+(kaqab)(kbqab)du(qab)] - i (ﬁ - ﬁ) U(qab)} , (37)

qabanb 2¢? mg mp

and A = f'(0) — 1. Specifically, A = —1 for the scalar and A = 0 for
the vector interactions. The latter in the massless case corresponds to
the Darwin’s Lagrangian for electromagnetic interaction. Expression (37)
agrees with the post-Newtonian Hamiltonians obtained within various
approaches [1].

4. Statistical description

Having obtained the Hamiltonian description of interacting particle sys-
tem in the term of canonical particle variables we can define the rela-
tivistic partition function by the usual way

— / -BH H d? k d3(]a (38)

as an integral over the phase space of the particle system. But, accord-
ing to (29), we need to define correctly the boundary conditions for the
canonical coordinates ¢, while the physical variables x! varies into the
volume V. It needs the calculating the Jacobian J = 9(q%, k%)/0(x, k)
by means of the expression (29). Next we can use the various approxi-
mations as in the nonrelativistic case.

Here we present only the result of the post-Newtonian approximation
for the partition function corresponding to the Hamiltonian (34), (37).
In this approximation Jacobian J = 1. Using the general results of paper
[10], we obtain in our case

Z = Z'9Q[1 + R/(Bmc?)), (39)

].5 AaQ 7N/v *BU(O) 3
R——N 3PB=—=, =V e d°z,, (40
095 @ H (40)
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where m, = m and Z'¢ is the partition function of ideal gas.

Another way for calculation the partition function of the system can
be based on the "field plus particle” Hamiltonians discussed in section
2. In paper [4] it is discussed the use of Gibbs approach, which is based
on the Hamiltonian formulation of dynamics of such a system. Treat-
ing the field and particle variables on equal level, the Liouville equation
for distribution function and the partition function have been obtained.
If dynamics contains constraints, which have arisen in the system with
vector-type interaction, we need correctly reformulate the equations of
statistical mechanics. It is demonstrated in the paper [4] how one writes
the Liouville equation for distribution function and the partition func-
tion for the system with constraints. Taking into account nonlinear de-
pendence of the instant form Hamiltonians (12), (17) and (20) on the
physical fields, we cannot perform integration over fields without help
of approximation scheme in the classical partition function. But it is
demonstrated in [5] that the use of the front form of dynamics (given
by 29 =t + 2®) allows us to exclude the electromagnetic field variables
from the partition function exactly.
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