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1 ðÒÅ�ÒÉÎÔ1. IntrodutionDuring a long time, the development of relativisti statistial mehan-is was limited by insuÆient understanding of the relativisti lassialand quantum desription of the systems with �nitely many partiles. Atpresent, the lassial relativisti mehanis of N -partile system withthe diret interation is formulated in a onsistent way within vari-ous formalisms and approahes. These formulations are based on thePoinar�e-invariane onditions; the relation of the general expressionsfor interation potentials with the onrete �eld-theoretial model anbe performed either by means of several approximation (e.g., Darwin'sLagrangian in eletrodynamis), or with use of the Fokker-type ationintegrals (see, e.g., [1℄).The di�erent formalisms of the lassial relativisti mehanis aremore or less equivalent, although the Lagrangian formalism has someadvantages in its oneptual simpliity and the diret relations with the�eld-theoretial models [1,2℄. But statistial desription of the interatingpartile system is more transparent in the Hamiltonian formalism. Thetransition from Lagrangian to Hamiltonian desription in the lassialrelativisti dynamis is not simple or diret and demands the use ofvarious approximations. On other side, it is natural to try onstrutingthe Hamiltonian desription of interating partile system starting fromthe Hamiltonian formalism for the "partile plus �eld" system and theneliminating the �eld degrees of freedom. Suh a program had disussedin the illuminating series of papers by Lusanna with oworkers (see [3℄).Here we present simpler approah [4,5℄ whih uses the geometrialforms of dynamis [2℄ to impose the gauge �xing onditions onerningthe hronometrial invariane of ation. In setion 2 we onsider the on-strained Hamiltonian desription of harged partiles with eletromag-neti �elds and the anonial transformation whih isolate nonphysial(gauge) degrees of freedom of the eletromagneti �elds. We also onsiderthe massive salar and vetor interations and obtain the generators oftime evolution and Lorentz transformations on the physial phase spae.The elimination of the �eld degrees of freedom is disussed in setion 3within the linear approximation in the oupling onstant. We obtain theanonial generators of the Poinar�e group for onsidered interations.We demonstrate that the �rst order approximation in �2 agrees withthe well known results of various approahes. An appliation to the al-ulating the relativisti partition funtion of interating partile systemis disussed in setion 4.

ICMP{00{15E 22. Hamiltonian desription ofthe "�eld plus partile" systemAt the beginning we briey outline the main steps of the Hamiltoniandesription of a system of N point partiles with eletromagneti intera-tion [5℄. The partiles are desribed by their world lines in the Minkowskispae-time1 a : � 7! x�a(�). An interation between harges is mediat-ed by an eletromagneti �eld F��(x) = ��A�(x) � ��A�(x) with theeletromagneti potential A�(x); �� � �=�x� . An ation for the systemisS = � NXa=1 Z d�a nmapu2a(�a) + eau�a(�a)A� [xa(�a)℄o � Z d4xF 2; (1)where ma and ea are the mass and the harge of partile a, respe-tively, F 2 � (1=4)F��(x)F ��(x), and u�a(�a) = dx�a(�a)=d�a. The a-tion is manifestly invariant under two types of gauge transformations:reparametrization of the partile world lines�a 7! �(�a); �0 > 0; (2)and ordinary gauge transformation of the eletromagneti potentialA� 7! A� + ���: (3)Moreover, ation (1) is invariant under (global) transformations of thePoinar�e group; this invariane results in the onservation of the sym-metri energy-momentum tensor [6℄:���(x) = NXa=1 Z mau�a(�a)u�a(�a)pu2a(�a) Æ4(x� xa(�a))d�a�F��F �� + ���F 2; (4)���(x) = ���(x); �����(x) = 0: (5)We �x the freedom in the parametrization of partile world linesby means of the hoie of the form of relativisti dynamis, whih is1The Minkowski spae-time IM4 is endowed with a metri k���k =diag(1;�1;�1;�1). The Greek indies �; �; : : : run from 0 to 3; the Roman indiesfrom the middle of alphabet, i; j; k; : : : run from 1 to 3 and both types of indiesare subjet of the summation onvention. The Roman indies from the beginning ofalphabet, a; b, label the partiles and run from 1 to N . The sum over suh indies isindiated expliitly.



3 ðÒÅ�ÒÉÎÔspei�ed by one-parameter family f�t j t 2 IRg of spae-like or isotropihypersurfaes �t = fx 2 IM4 j �(x) = tg foliating the Minkowski spae-time (see [2℄). Beause the hypersurfae equation �(x) = t an be solvedwith respet to x0 in the form:x0 = f(t;x); x = (x1; x2; x3); (6)the funtions xi = xia(t), i = 1; 2; 3, ompletely determine the parametriequations of the partile world lines in a given form of dynamis:x0 = f(t;xa(t)); xi = xia(t): (7)The variable t serves as a ommon evolution parameter of the system.Now we an use the de�nition of the form of dynamis as a gauge�xing ondition and put ation (1) into a single-time form [5℄S = Z dtL (8)with Lagrangian L(t) depending on the funtions xa(t), A�(t;x) andtheir �rst order derivatives with respet to evolution parameter, _xa(t) =dxa(t)=dt and _A�(t;x). The onservation of the energy-momentum ten-sor (4) gives us ten onserved quantities in a given form of dynamis:P� = Z�t ���d�� ; M�� = Z�t (x���� � x����) d��: (9)The single-time Lagrangian L is invariant under gauge transforma-tion (3) and leads to the onstrained Hamiltonian desription. As it hasbeen disussed in [5℄, the struture of the orresponding onstraints de-pend on the form of dynamis. In the following we on�ne ourselves bythe most ommon ase of the instant form of dynamis (x0 = t). TheLagrangian funtion in this form of dynamis is represented by:L = � NXa=1nmap1� _x2a + ea �A0(t;xa) + _xiaAi(t;xa)�o�14 Z (2EiE i + FijF ij)d3x: (10)here Fij = Aj;i �Ai;j and Ei = A0;i � _Ai.In the Hamiltonian formulation of our system we start with anonialvariables xia(t), A�(t;x) and onjugated momenta pai(t), E�(t;x) whihare subjet of the �rst lass onstraints [7℄E0 � 0; � � %� �iEi � 0; (11)
ICMP{00{15E 4where � means "weak equality" in the sense of Dira and %(t;x) =NPa=1 eaÆ3(x � xa(t)) is a harge density. Then we perform the anonialtransformation that disset the �eld phase spae into the physial partdesribed by the gauge invariant variables a� = (Æi� � Æi3��=�3)Ai, E�;� = 1; 2, and unphysial part parametrized by the anonial pairs (Q;�)and (A0; E0).The time evolution of the physial degrees of freedom is generatedby the HamiltonianH = NXa=1pm2a + [pa � eaA?(xa)℄2�12 Z �A?i �A?i �Ei?Ei? + %��1%� d3x; (12)where Ei? = (Æi� � Æi3��=�3)E�; A?i = (Æ�i + �i��1��)a�: (13)Inverse di�erential operators are de�ned by the relations1=�3Æ3(x) = (1=2)Æ(x1)Æ(x2)sgn(x3); ��1Æ3(x) = �1=(4�jxj): (14)Conserved quantities (9) being reexpressed in terms of anonial vari-ables determine the anonial realization of the Poinar�e group. On thephysial subspae the generator P 0 oinide with the Hamiltonian (12),and the generator of the Lorentz transformation is given byMk0 = NXa=1�xkaqm2a + [pa � eaA?(xa)℄2 � tpka�+ Z xk �14F?ij F?ij + 12Ei?Ei? +El?�l��1%� d3x�12 Z xk%��1%d3x� t Z El?�kA?l d3x: (15)where F?ij = A?j;i �A?i;j .It is instrutive to onsider in a similar manner the Hamiltoniandesription of the system of partiles with massive vetor and salar in-terations. So, in the �rst ase we have a system desribed by ation thatdi�ers from (1) by a massive term 12�2A�A� . The instant form Hamilto-nian desription of the system is based on the anonial variables xia(t),A�(t;x) and pai(t), E�(t;x) with a pair of the seond lass onstraintsE0 � 0; �� �2A0 � 0; (16)



5 ðÒÅ�ÒÉÎÔwhih an be exluded by means of the Dira braket. The anonialHamiltonian isH = NXa=1qm2a + [pa � eaA(t;xa)℄2 + Z �14FijFij + 12EiEi�12�2AiAi +A0��� 12�2A0�� d3x: (17)After exlusion of the onstraints (16) one obtains for the boost generatorMk0 = NXa=1nxkapm2a + [pa � eaA(t;xa)℄2 � tpkao+ Z xk �14FijFij + 12EiEi � 12�2AiAi + 12�2�2� d3x�t Z �Ej�kAj � 12�2Ak�� d3x: (18)In the ase of a system of partiles interating by means of the salar�eld '(x) we �nd the standard Hamiltonian desription without on-straints with the HamiltonianH = NXa=1pp2a + [ma � ea'(t;xa)℄2 + 12 Z [�2 + (r')2 + �2'2℄d3x; (19)and the boost generatorMk0 = NXa=1nxkapp2a + [ma � ea'(t;xa)℄2 � tpkao+12 Z xk [�2 + (r')2 + �2'2℄d3x� t Z ��k'd3x: (20)We will see that after elimination of the �eld degrees of freedom all thethree onsidered ases give the anonial generators of a similar stru-ture.3. Elimination of the �eld degrees of freedomNow we are interested in elimination of the physial �eld degrees offreedom. As a result, we shall obtain the desription of our system inthe terms of partile variables only. Suh a reformulation is espeiallye�etive, when the free radiation is not essential.

ICMP{00{15E 6Our proedure of the �eld redution has three steps [8℄. First, wemust �nd a solution of the �eld equations of motion. In the Hamiltonianmehanis the �eld equations are non-linear, so we use an approxima-tion, whih is based on the oupling onstant expansion. In general,the problem of hoie of Green's funtion arises in this approah. Butin the �rst-order (linear) approximation in the oupling onstant theadvaned, retarded, or symmetri solutions oinide. We use here thetime-symmetri Green's funtion G(x2) = G(x20 � x2). It is well known[1℄, that the Green's funtion determines the nonrelativisti potentialu(r): u(r) = Z d�G(�2 � r2): (21)The general solution of the �eld equations is a sum of the soure free�eld Arads (s is the number of the physial �eld omponents), whih sat-is�es the homogeneous equation, and the solution of the inhomogeneousequation As in the terms of anonial partile variables.Seond, we perform a anonial transformation [8℄:As = Arads +As; Es = Esrad + Es; (22)xia = qia + Z ��Arads + 12As� �Es�kai ��Esrad + 12Es� �As�kai � d3x; (23)pai = kai � Z ��Arads + 12As� �Es�qia ��Esrad + 12Es� �A?k�qia � d3x; (24)after that the free �eld terms (Arads ; Esrad) beome the new anonial vari-ables. It is assumed in our problem that the �eld has not its own degreesof freedom, so third step onsists in elimination of the �eld variables bymeans of onstraints Arads � 0; Esrad � 0: (25)We �nd the Dira braket, whih oinides with the partile Poissonbraket fqia; kbjg = ÆabÆij . The anonial generators of the Poinar�e groupfor the onsidered interations in the linear approximation areH =  NXa=1 k0a + 2 NX0a;b=1 eaebf(!ab)u(�ab); (26)P k = NXa=1 kka ; M ij = NXa=1(qiakja � qjakia); (27)Mk0 = NXa=1�qka k0a � tkka�+ 12 NX0a;b=1 eaebqkb f(!ab)u(�ab); (28)



7 ðÒÅ�ÒÉÎÔwhere k0a = pm2a2 + k2a, the prime over sum denotes that a 6= b(a = b terms is exluded by means of mass renormalization); �2ab =q2ab + (kaqab=k0a)2, qab = qa � qb, qab = jqabj, !ab = k�akb�=mamb2,and f(!) = 1 for the salar interation and f(!) = ! for the vetorinteration. It an easy be demonstrated, that the expressions (26){(28)satisfy the ommutation relations of the Poinar�e group in a given ap-proximation with arbitrary funtions u(r) and f(!).Aording to (23), the ovariant partile positions xia are onnetedwith the anonial variables asxia = qia + 12 Z �As �Es�kai � Es �As�kai � d3x: (29)It an be veri�ed diretly that in a given approximation the expression(29) satis�es the world line onditionfxia;Mk0g = xkafxia; Hg � tÆik: (30)The Poisson brakets between partile positions do not vanish,fxia; xjbg = Z ��As�kbj �Es�kai � �Es�kbj �As�kai� d3x; (31)in a full agreement with the famous no-interation theorem [9℄.Let us examine the generators (26), (28) up to �2 approximation.Using the �rst order expansionsu(�ab) = u(qab) + (qabka)22qabm2a2 du(qab)dqab ;f(!ab) = 1 + f 0(0)22 � kama � kbmb�2 (32)and performing the anonial transformation generated by the funtion� = 142 NXa<b eaebu(qab) �qab � kama � kbmb�� ; (33)we obtain the expressionsH = H(0) +H(1); (34)Mk0 = NXa=1(qkama � tkka) + 122 NX0a;b=1 eaebqkb u(qab): (35)
ICMP{00{15E 8where H(0) = NXa=1�ma2 + k2a2ma�+ U (0); (36)U (0) = NXa<b eaebu(qab);H(1) = � NXa=1 k4a8m3a2 � NXa<b eaeb� 122mamb [kakbu(qab)+(kaqab)(kbqab)du(qab)qabdqab �� A22 � kama � kbmb�2 u(qab)) ; (37)and A = f 0(0) � 1. Spei�ally, A = �1 for the salar and A = 0 forthe vetor interations. The latter in the massless ase orresponds tothe Darwin's Lagrangian for eletromagneti interation. Expression (37)agrees with the post-Newtonian Hamiltonians obtained within variousapproahes [1℄.4. Statistial desriptionHaving obtained the Hamiltonian desription of interating partile sys-tem in the term of anonial partile variables we an de�ne the rela-tivisti partition funtion by the usual wayZ = 1N ! Z e��H NYa=1 d3kad3qa(2�)3 (38)as an integral over the phase spae of the partile system. But, aord-ing to (29), we need to de�ne orretly the boundary onditions for theanonial oordinates qia, while the physial variables xia varies into thevolume V . It needs the alulating the Jaobian J = �(qia; kia)=�(xia; kia)by means of the expression (29). Next we an use the various approxi-mations as in the nonrelativisti ase.Here we present only the result of the post-Newtonian approximationfor the partition funtion orresponding to the Hamiltonian (34), (37).In this approximation Jaobian J = 1. Using the general results of paper[10℄, we obtain in our aseZ = Z idQ[1 + R=(�m2)℄; (39)R = 158 N � 3�AQ �Q�� ; Q = V �N Z e��U(0) Ya d3xa; (40)



9 ðÒÅ�ÒÉÎÔwhere ma = m and Z id is the partition funtion of ideal gas.Another way for alulation the partition funtion of the system anbe based on the "�eld plus partile" Hamiltonians disussed in setion2. In paper [4℄ it is disussed the use of Gibbs approah, whih is basedon the Hamiltonian formulation of dynamis of suh a system. Treat-ing the �eld and partile variables on equal level, the Liouville equationfor distribution funtion and the partition funtion have been obtained.If dynamis ontains onstraints, whih have arisen in the system withvetor-type interation, we need orretly reformulate the equations ofstatistial mehanis. It is demonstrated in the paper [4℄ how one writesthe Liouville equation for distribution funtion and the partition fun-tion for the system with onstraints. Taking into aount nonlinear de-pendene of the instant form Hamiltonians (12), (17) and (20) on thephysial �elds, we annot perform integration over �elds without helpof approximation sheme in the lassial partition funtion. But it isdemonstrated in [5℄ that the use of the front form of dynamis (givenby x0 = t + x3) allows us to exlude the eletromagneti �eld variablesfrom the partition funtion exatly.Referenes1. R. P. Gaida, Sov. J. Part. Nul. 13, 179 (1982)2. R. P. Gaida, Yu. B. Kluhkovsky, and V. I. Tretyak, Theor. Math.Phys. 55, 372 (1983); R. P. Gaida, Yu. B. Kluhkovsky, andV. I. Tretyak, In: Constraint's Theory and Relativisti Dynamis(World Sienti� Publ., Singapore, 1987), p. 210{241; A. Duviryak,V. Shpytko, and V. Tretyak, Cond. Matter Phys. 1, 463 (1998)3. H. Crater, L. Lusanna, SISSA e-preprint: hep-th/0001046 (2000);D. Alba, L. Lusanna, Int. J. Mod. Phys. A 13, 2791 (1998)4. A. Duviryak, A. Nazarenko, J. Phys. Stud. (2000) (in Ukrainian)5. A. Nazarenko, V. Tretyak, Cond. Matter Phys. 3, 5 (2000)6. F. Rohrlih, Classial Charged Partiles: Foundations of Their The-ory (Addison{Wesley, New York, 1990); S. Parrott, Relativisti Ele-trodynamis and Di�erential Geometry (Springer, New York, 1987)7. L. Lusanna, Int. J. Mod. Phys. 12, 645 (1997)8. A. Nazarenko, Proeedings of Institute of Mathematis of NAS ofUkraine 30, 343 (2000)9. D. G. Currie, J. F. Jordan, E. C. G. Sudarshan, Rev. Mod. Phys.35, 350 (1963)10. V. Tretyak, Cond. Matter Phys. 1, 553 (1998)
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