
îÁ��ÏÎÁÌØÎÁ ÁËÁÄÅÍ�Ñ ÎÁÕË õËÒÁ§ÎÉ

���������	
� ¶îó�é�õ�æ¶úéëéëïîäåîóï÷áîéèóéó�åí

'
&

$
%

O.V.Patsahan, M.P.Kozlovskii, R.S.MelnykAb initio study of the vapour-liquid 
riti
al point of a symmetri
albinary 
uid mixture
ICMP{00{01E

ìø÷¶÷

õäë: 536.432.1; 536.44.PACS: 05.70.Jk÷É×ÞÅÎÎÑ Ú �ÅÒÛÉÈ �ÒÉÎ�É��× ËÒÉÔÉÞÎÏ§ ÔÏÞËÉ Ò�ÄÉÎÁ-�ÁÒÁÂ�ÎÁÒÎÏ§ ÓÉÍÅÔÒÉÞÎÏ§ ÆÌÀ§ÄÎÏ§ ÓÕÍ�Û�ï.÷.ðÁ�ÁÇÁÎ, í.ð.ëÏÚÌÏ×ÓØËÉÊ, ò.ó.íÅÌØÎÉËáÎÏÔÁ��Ñ. úÁ�ÒÏ�ÏÎÏ×ÁÎÏ Í�ËÒÏÓËÏ��ÞÎÉÊ ��ÄÈ�Ä ÄÏ Ï�ÉÓÕ �Ï×ÅÄ�Î-ËÉ Â�ÎÁÒÎÏ§ ÓÉÍÅÔÒÉÞÎÏ§ ÆÌÀ§ÄÎÏ§ ÓÕÍ�Û� × ÏËÏÌ� ËÒÉÔÉÞÎÏ§ ÔÏÞËÉÒ�ÄÉÎÁ-�ÁÒÁ. ðÏËÁÚÁÎÏ, ÝÏ ÚÁÄÁÞÕ ÍÏÖÎÁ Ú×ÅÓÔÉ ÄÏ ÒÏÚÒÁÈÕÎËÕ ÓÔÁ-ÔÉÓÔÉÞÎÏ§ ÓÕÍÉ 3D ÍÏÄÅÌ� ¶Ú�ÎÇÁ × ÚÏ×Î�ÛÎØÏÍÕ �ÏÌ�. äÌÑ Â�ÎÁÒÎÏ§ÓÉÍÅÔÒÉÞÎÏ§ ÓÕÍ�Û�, ÞÁÓÔÉÎËÉ ÑËÏ§ ×ÚÁ¤ÍÏÄ�ÀÔØ Ú �ÏÔÅÎ��ÁÌÏÍ �ÒÑ-ÍÏËÕÔÎÏ§ ÑÍÉ ÍÉ ÒÏÚÒÁÈÏ×Õ¤Í �ÁÒÁÍÅÔÒÉ ËÒÉÔÉÞÎÏ§ ÔÏÞËÉ ÑË ÆÕÎË-��§ Í�ËÒÏÓËÏ��ÞÎÏÇÏ �ÁÒÁÍÅÔÒÁ r, ÑËÉÊ ¤ Í�ÒÏÀ ×�ÄÎÏÓÎÏ§ ÓÉÌÉ ×ÚÁ¤-ÍÏÄ�§ Í�Ö ÞÁÓÔÉÎËÁÍÉ ÏÄÉÎÁËÏ×ÉÈ � Ò�ÚÎÉÈ ÓÏÒÔ�×. òÏÚÒÁÈÕÎËÉ �ÒÏ×Å-ÄÅÎ� ÄÌÑ Ä×ÏÈ Ò�ÚÎÉÈ ÏÂÌÁÓÔÅÊ Ä�§ �ÏÔÅÎ��ÁÌÕ �ÒÉÔÑÇÁÎÎÑ: �ÒÏÍ�ÖÎÏ§(� = 1:5) � �ÏÍ�ÒÎÏ ÄÁÌÅËÏÄ�ÀÞÏ§ (� = 2). òÅÚÕÌØÔÁÔÉ ÄÏÂÒÅ ÕÚÇÏÄÖÕ-ÀÔØÓÑ Ú ÒÅÚÕÌØÔÁÔÁÍÉ, ÝÏ ÏÔÒÉÍÁÎ� ÍÅÔÏÄÏÍ ÍÁÛÉÎÎÏÇÏ ÍÏÄÅÌÀ×ÁÎ-ÎÑ.Ab initio study of the vapour-liquid 
riti
al point of a symmet-ri
al binary 
uid mixtureO.V.Patsahan, M.P.Kozlovskii, R.S.MelnykAbstra
t. A mi
ros
opi
 approa
h to the investigation of the behaviourof a symmetri
al binary 
uid mixture in the vi
inity of the vapour-liquid
riti
al point is proposed. It is shown that the problem 
an be redu
edto the 
al
ulation of the partition fun
tion of a 3D Ising model in anexternal �eld. For a square-well symmetri
al binary mixture we 
al
ulatethe parameters of the 
riti
al point (
riti
al temperature and 
riti
aldensity) as fun
tions of the mi
ros
opi
 parameters: the parameter rmeasuring the relative strength of intera
tions between the parti
les ofdissimilar and similar spe
ies and the parameter � measuring the widthof the potential well. The obtained results agree well with the ones of
omputer simulations.ðÏÄÁ¤ÔØÓÑ × Journal of Physi
s:Condensed MatterSubmitted to Journal of Physi
s:Condensed Matter
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionBinary mixtures in 
ontrast to their 
onstituent 
omponents 
an exhibitthree di�erent types of two-phase equilibria: vapour-liquid, liquid-liquidand gas-gas [1,2℄. The possibility of the realization of these phenomenaand their priority depend both on the external 
onditions and mi
ros
op-i
 parameters of a mixture. The study of the in
uen
e of interparti
leintera
tions on the 
riti
al properties of a binary mixture is an interest-ing and a
tual problem. During the last de
ade this problem has beenintensively studied by integral equation theories (IETs). The advantagesand limitations of these approa
hes were re
ently given by C. Ca

amoin his extensive review [3℄. Here we brie
y point out some key featuresof IETs 
on
erning phase equilibrium and 
riti
al properties of 
lassi
al
uids.The well-known IETs, su
h as the mean spheri
al approximation(MSA), the Per
us-Yevi
k (PY) equation and the hypernetted 
hain(HNC) equation do not have a solution inside a 
ertain region. In the
ase of the MSA, the boundary line of this forbidden region 
oin
ideswith a spinodal line [4℄-[6℄. The MSA predi
tions for the existen
e ofthe 
riti
al points and the spinodal turn out to be qualitatively 
orre
t,although the thermodynami
 in
onsisten
y of the theory forbids a quan-titative estimate of the lo
ation of these features. The PY equation andthe HNC equation either do not predi
t the 
orre
t diverging trend of the
ompressibility when the spinodal is approa
hed or do not predi
t anydivergen
e at all [5℄, [7℄-[8℄, [9℄. The modi�ed hypernetted 
hain (MHNC)theory is able to predi
t quite satisfa
torily the liquid and the vapourbran
hes of the binodal of a simple 
uid at low enough temperature,but it fails to 
onverge 
lose to the 
riti
al point and the position of the
riti
al point is not given dire
tly by the theory but is to be determinedby extrapolation [10℄-[11℄. Therefore, the IETs, although play an impor-tant role in the understanding of the properties of the liquid state, arenot able to give a 
orre
t des
ription of the 
uid behaviour 
lose to the
riti
al point.Of spe
ial interest is the hierar
hi
al referen
e theory (HRT) 
on-
erned with the study of both universal and nonuniversal properties[12℄-[17℄. In this theory the long-wavelength part of the intera
tion isturning on gradually and the 
orresponding evolution of thermodynami
quantities and 
orrelation fun
tions is expressed by an in�nite hierar
hyof exa
t integro-di�erential equations. A simple 
losure of the hierar-
hy (the Ornstein-Zernike ansatz) yields non
lassi
al 
riti
al exponentswith the 
orre
t s
aling regime. The HRT was applied to one- and two-
ICMP{00{01E 2
omponent 
uids. The results were found to be in a good agreementwith both numeri
al simulations and experiments. However, as far asthis method is 
omputationally intensive, its appli
ation is limited.On the other hand, the 
riti
al properties of simple 
uids and binarymixtures have re
ently been studied using Monte Carlo (MC) simulations[18℄-[24℄. In [24℄ the vapour-liquid 
riti
al temperature was 
al
ulated forthe symmetri
al mixture of hard spheres intera
ting via the square-wellpotentials. Thus, it is interesting to test a theory using su
h a simplebinary 
uid model.In the present paper we propose a mi
ros
opi
 approa
h to the studyof the vapour-liquid 
riti
al point of a symmetri
al binary mixture. Thisapproa
h is based on the method of 
olle
tive variables (CV) [25℄. Its
hara
teristi
 feature, in 
omparing with the above-mentioned theories,is that it allows one to determine, on the mi
ros
opi
 grounds, the ex-pli
it form of an e�e
tive Ginsburg-Landau-Wilson (GLW) Hamiltonianand then to integrate the partition fun
tion in the neighbourhood of thephase transition point taking into a

ount the renormalization group(RG) symmetry. This method appears to be su

essful in des
ribing these
ond order phase transition of the 3D Ising model [26℄ and the vapour-liquid 
riti
al point of a one-
omponent 
uid [27℄. On the basis of thisapproa
h both universal and non-universal quantities were obtained.In [28℄ the CV method with a referen
e system (RS) was general-ized for the 
ase of a grand 
anoni
al ensemble for a multi
omponent
ontinuous system. Using this approa
h the phase diagram of the sym-metri
al mixture was examined within the framework of the Gaussianapproximation [29℄-[31℄.In this paper we determine an expli
it form of the e�e
tive GLWHamiltonian of the symmetri
al binary mixture in the vi
inity of thevapour-liquid 
riti
al point. Then we integrate the fun
tional of thegrand partition fun
tion by the use of the layer-by-layer integrationmethod proposed in [26℄ for the 3D Ising model. As a result of this in-tegration one obtains re
ursion relations for the 
oeÆ
ients of the GLWHamiltonian. The analysis of these relations yields an equation for T
.Here we avoid extensive 
onsideration of the results pertaining to theIsing model and 
all the readers' attention to [26℄ where this problemwas studied in detail. The method whi
h we des
ribe here yields thesame 
riti
al exponents as in [32℄ (see table 1).The paper is organized as follows. We give a fun
tional representationof the grand partition fun
tion of a two-
omponent 
ontinuous systemin se
tion 2 and appendix A. In se
tion 3 we 
onstru
t the basi
 densitymeasure (GLW Hamiltonian) with respe
t to the CV whi
h in
lude a



3 ðÒÅ�ÒÉÎÔTable 1. Values of the 
riti
al exponents and the ratios of the 
riti
alamplitudes for the 3D Ising model obtained within the framework of theCV method� � � 
 A+=A� �+=��0.637 0.088 0.319 1.275 0.435 6.967variable 
orresponding to the order parameter. In this se
tion we alsopresent the basi
 ideas of the method of the partition fun
tion integrationin the vi
inity of the 
riti
al point. In se
tion 4 we apply our formalismto 
al
ulating the 
riti
al 
hara
teristi
s (temperature and density) ofthe binary square-well symmetri
al mixture. The obtained results aredis
ussed and 
ompared with the MC simulation data reported re
entlyby N.B.Wilding [24℄ and E.de Miquel [23℄.2. Fun
tional representation of the grand partitionfun
tion of a binary mixtureLet us 
onsider a binary 
uid mixture 
onsisting ofNa parti
les of spe
ies"a" andNb parti
les of spe
ies "b". The system is in volume V at temper-ature T . Let us assume that an intera
tion in the system has a pairwiseadditive 
hara
ter. The intera
tion potential between 
 parti
le at riand Æ parti
le at rj 
an be expressed as a sum of two terms:U
Æ(jri � rj j) = 	
Æ(jri � rj j) + �
Æ(jri � rj j); (1)where 	
Æ(r) is a potential of a short-range repulsion and �
Æ(r) is anattra
tive part of the potential whi
h dominates at large distan
es.A fun
tional of the grand partition fun
tion (GPF) of the binaryhomogeneous system in the CV method with a RS 
an be representedas a produ
t of two fa
tors (see Appendix A):� = �0�1; (2)where �0 is the GPF of the RS whi
h we suppose to be known. �1 is thepart of the GPF whi
h is written in the CV spa
e:�1 = Z (d�)(d
) exp ���+1 �0 + ���1 
0� �2 Xk h ~V (k)�k��k ++ 2~U(k)�k
k + ~W (k)
k
�kio J(�; 
): (3)
ICMP{00{01E 4Chemi
al potentials �+1 = 1p2 (�a1 + �b1) and ��1 = 1p2 (�a1 � �b1) aredetermined from the 
onditions:dln�1d��+1 = < Na > + < Nb >=< N > (4)dln�1d���1 = < Na > � < Nb > : (5)Fun
tions ~V (k); ~W (k) and ~U(k) are 
ombinations of Fourier trans-forms of the initial intera
tion potentials ~�
Æ(k):~V (k) = (��12 ) [�aa(k) + �bb(k) + 2�ab(k)℄ ;~U(k) = (��12 ) [�aa(k)� �bb(k)℄ ; (6)~W (k) = (��12 ) [�aa(k) + �bb(k)� 2�ab(k)℄ :J(�; 
) = Z (d�)(d!) exp(i2�Xk (!k�k + �k
k)++ Xn�1 Xin�0D(in)n (!; �)9=; (7)is a transition Ja
obian to the CV �k; 
k averaged on the RS, variables!k; �k are 
onjugated to variables �k; 
k, respe
tively.D(in)n (!; �) = (�i2�)nn! �12�n=2 Xk1:::knM(in)n (k1;k2; :::;kn)�� �k1 : : : �kin!kin+1 : : : !knÆk1+:::+kn : (8)Index in indi
ates the number of variables �k in the 
umulant expan-sion (8). Cumulants M(in)n (k1;k2; :::;kn) are linear 
ombinations of theinitial 
umulants M
1:::
n(k1;k2; :::;kn) (
i = a; b) (see Appendix B).In general, the dependen
e of M
1:::
n(k1;k2; :::;kn) on wave ve
torsk1;k2; :::;kn is 
ompli
ated [28℄. Sin
e we are interested in the 
riti
alproperties, the small-k expansion of the 
umulants 
an be 
onsidered.



5 ðÒÅ�ÒÉÎÔ

Figure 1. Three phase regions of the symmetri
al mixture depending onthe mi
ros
opi
 parameters: (1) gas-gas and vapour-liquid phase tran-sitions (T g�g
 > T v�l
 ); (2) vapour-liquid and liquid-liquid phase transi-tions (T v�l
 > T l�l
 ); (3) vapour-liquid phase transition only. S2 is thetwo-parti
le stru
ture fa
tor of the referen
e systemHereafter we shall repla
e M
1:::
n(k1;k2; :::;kn) by their values in thelong-wave limit and we shall dis
uss this approximation in Se
. 4.We 
onsider a symmetri
al binary 
uid mixture (SBFM), i.e. a sys-tem in whi
h the two pure 
omponents "a" and "b" are identi
al and onlyintera
tions between the parti
les of dissimilar spe
ies di�er. Notwith-standing its simpli
ity, the SBFM exhibits all the three types of two-phase equilibria whi
h are observed in real binary 
uids, namely: vapour-liquid, liquid-liquid and gas-gas equilibria. For the SBFM ~U(k) = 0 in (3)and there are only terms with even indi
es in in the 
umulant expansion(8) [30℄.3. The methodAs it was already shown [30℄, the phase diagram of the SBFM 
onsistsof three ranges (see �gure 1): (1) gas-gas separation and vapour-liquidphase transitions; (2) vapour-liquid and liquid-liquid phase transitions;(3) vapour-liquid phase transition only.The order of priority of the vapour-liquid and separation phase tran-sitions depends on both the external 
onditions and the mi
ros
opi
properties of the system. There exist two 
riti
al temperature bran
h-es in su
h a system: bran
h (T v�l
 ) 
onne
ted with the variable �0 andbran
h (T sep
 ) 
onne
ted with the variable 
0 [30℄. All the thermodynami
fun
tions of the SBFM are symmetri
al with respe
t to the 
on
entra-tion x=0.5 and have an extremum at this point [1,29℄. The 
on
entration
ICMP{00{01E 6x=0.5 is a 
riti
al one for this model mixture.We 
onsider a symmetri
al 
uid mixture whose parameters satisfythe following 
ondition:r > L; L = 1� S2(0)1 + S2(0) :It 
orresponds to ranges 2 (L < r < 1) and 3 (r > 1) on the phasediagram (see Fig. 1). In this paper we study the vapour-liquid 
riti
alpoint.In the 
ase of the SBFM the variables �0 and 
0 are 
onne
ted withthe order parameters for the vapour-liquid and separation phase tran-sitions, respe
tively [30℄. This fa
t allows us to separate CV �k and 
kinto essential and non-essential ones depending on the phase transition
onsidered. Sin
e we are interested in the vapour-liquid 
riti
al point, we
an 
onsider CV 
k (and �k) to be non-essential (CV 
k do not 
ontain avariable 
onne
ted with the order parameter, the 
oeÆ
ients standing atthe se
ond power of 
k (and �k) are negative) and we 
an integrate over
k (and �k) with the Gaussian density measure. In respe
t to CV �k itis ne
essary to 
onstru
t the basi
 density measure taking into a

ounthigher powers of �k (we shall 
onsider a �4 model).As a result of integrating in (3)-(8) over variables 
k (and �k) weobtain for the GPF:� = �0�
G Z (d�) exp(��+1 �0 � �2 Xk ~V (k)�k��k) J(�); (9)where �
G =Yk 1q1 + � ~W (k)M(2)2 (0)=2 ; (10)J(�) = Z (d!) exp8<:i2�Xk !k�k + 4Xn�1 (�i2�)nn! �12�n=2�� Xk1:::knMn(0)!k1 : : : !knÆk1+:::+kn) ; (11)Mn(0) =M(0)n (0) + �Mn: (12)



7 ðÒÅ�ÒÉÎÔ�Mn are the 
orre
tions obtained as the result of integration over vari-ables 
k:�M1 = M(2)3 (0)12 1< N >Xk ~g(jkj);�M2 = M(2)4 (0)12 1< N >Xk ~g(jkj) ++ (M(2)3 (0))272 1< N >2 Xk ~g(jkj)~g(jk1 � kj);�M3 = M(2)3 (0)M(2)4 (0)48 1< N >2 Xk ~g(jkj)~g(jk1 � kj) ++ (M(2)3 (0))36 1< N >3 Xk ~g(jkj)~g(jk1 + kj)~g(jk2 � kj);�M4 = (M(2)4 (0))296 1< N >2 Xk ~g(jkj)~g(jk1 � kj) ++ (M(2)3 (0)3! )4 1< N >4 Xk ~g(jkj)~g(jk1 + kj) �� ~g(jk2 � kj)~g(jk3 + k1 + kj); (13)where ~g(k) = � � < N > ~W (k)12� ~W (k)M(2)2 (0) + 1 : (14)In �gure 2 the typi
al behaviour of the potential ~V (k)=j ~V (0)j isshown.Let us further assume that ~V (k) = 0 at jkj > B. Then, integrationin (9) over �k with jkj > B leads to Æ - fun
tions and the expression for� 
ontains only the sums over k with jkj � B.We 
onsider a set of k ve
tors, jkj � B, as 
orresponding to the sitesof a re
ipro
al latti
e 
onjugated to a 
ertain blo
k latti
e frlg with NBblo
k sites in the periodi
ity volume V :< NB >= VC3 = V(�=B)3 = (B�)3 < N >6�2� ; (15)� = �6 ��3 is fra
tion density. Therefore, one may 
onsider quantity B asthe size of the �rst Brillouin zone of this blo
k latti
e.
ICMP{00{01E 8

0 5 10 15
-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

B

V
(k

)/
|V

(0
)|

kσFigure 2. The behaviour of the Fourier transform ~V (k)=j ~V (0)j of theattra
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larity):� = �0�(1)G Z exp(���0 � �2 Xk<B ~V (k)�k��k+ i2�Xk<B !k�k � (2�)22 ~M2(0)Xk<B !k!�k � (2�)44! < NB > j ~M4(0)j� Xk1:::k4<B !k1!k2!k3!k4Æk1+:::+k4) (d!)NB (d�)NB ; (16)



9 ðÒÅ�ÒÉÎÔwhere �(1)G = �
G exp(�� ~M1 + � ~V �(0)2 ~M21� �M1(0) �M3(0)�M4(0) � �M2(0) �M23(0)2 �M24(0) � �M43(0)8 �M34(0)� ;�� = h� a1; a1 = �M3(0)j �M4(0)j + � ~V �(0) ~M1; h = ��+1 ;~M2(0) = �M2(0)� �M23(0)2 �M4(0) ;~M4(0) = < NB > �M4(0): (17)(d : : :)NB implies that the ve
tor k takes the < NB > values inside the�rst Brillouin zone: (d�)NB = d�0Yk<B0d�
kd�sk;(d!)NB = d!0Yk<B0d!
kd!sk:Expression (16) for � 
orresponds to the Ising model in the external�eld (a1 � ��+1 ) with the only di�eren
e: 
umulants ~M2(0), ~M4(0) arefun
tions of the fra
tion density �, temperature T and parameters of theattra
tive intera
tion ~�
Æ(k).After integration over !k we obtain the following form for the GPF:� = �0�(1)G hZ( ~M2; ~M4)i<NB> (p2)<NB>�1 �� Z exp[E4(�)℄(d�)NB : (18)Here E4(�) = ���0 � 12 Xk<B d2(k)�k��k � a44! < NB > �� Xk1:::k4<B �k1 : : : �k4Æk1+:::+k4 + : : : ; (19)Z( ~M2; ~M4) = � 12��1=2� 3j ~M4(0)j�1=4 ex2=4U(0; x);
ICMP{00{01E 10d2(k) = a2 + � ~V (k); a2 =s 3j ~M4(0)jK(x);a4 = 3j ~M4(0)jL(x); (20)where K(x) = U(1; x)=U(0; x);L(x) = 3K2(x) + 2xK(x)� 2;x =s 3j ~M4(0)j ~M2(0): (21)U(a; x) is a paraboli
 
ylinder fun
tion [33℄. Expressions (18)-(21) havethe same forms as similar expressions for a one-
omponent system ob-tained in [27℄. This 
oin
iden
e is a
hieved due to the symmetry ofthe model under 
onsideration. E4(�) is the Ginzburg-Landau-WilsonHamiltonian for the SBFM in the vi
inity of the vapour-liquid 
riti
alpoint.In order to integrate the GPF (18)-(21) over �k and determine the
riti
al temperature we use the method developed in [26,34℄ for the Isingmodel. The essen
e of the method 
onsists in subsequent integrationover the layers of the CV spa
e, beginning from �k whi
h 
orrespondto short-wave 
u
tuations. Variations of the 
oeÆ
ients of E4(�) as theresult of integration over �k in n subsequent layers of CV phase spa
e aredes
ribed by the re
ursion formulae derived in [26℄. For the 
ase T > T
in the interval [0; B℄ there exist three 
hara
teristi
 regions [26℄. The �rstregion Bm� < k � B 
orresponds to the strongly 
orrelated 
u
tuations�k, their density measure is non-Gaussian. The pro
edure based on therenormalization group symmetry is valid here. This is the region of the
riti
al regime (CR). The se
ond region 0 < k � Bm� is related to the
u
tuation distributed a

ording to the Gaussian density measure. Thisis the limiting Gaussian regime (LGR).The third region 
onsists of the point k = 0. The variable �0 isa ma
ros
opi
 one and 
orresponds to the 
u
tuations of the parti
ledensity in the "external �eld" ��.We integrate (18) a

ording to the following s
heme [26℄. The re-gion (0; B) is divided into the intervals (B1; B); :::; (Bi+1; Bi); :::; whereBn = B=Sn (S is a division parameter). Ea
h interval 
orresponds to alayer of subs
ripts k in the Brillouin zone and ea
h layer of subs
ripts k -to a layer in the phase spa
e �k. Integrating gradually over the layers weget a blo
k latti
e sequen
e with an appropriately growing blo
k period



11 ðÒÅ�ÒÉÎÔand with the Hamiltonian 
orresponding to ea
h blo
k. Ea
h Hamiltoni-an is 
hara
terized by the 
oeÆ
ients d2; a4; d(1)2 ; a(1)4 ; d(2)2 ; a(2)4 , et
.. Forthe sequen
e of the blo
k Hamiltonians nd(n)2 ; a(n)4 o the renormalizationgroup symmetry holds and the �xed point is of a saddle type. Be
ausethe expli
it expressions for the initial values of 
oeÆ
ients d(k) and a4are given (see (19)-(21)), the solutions of the renormalization group typeare fun
tions of mi
ros
opi
 parameters, density and temperature.Generally, the division parameter S > 1 
an take arbitrary values,but the highest pre
ision of the results is a
hieved at some optimal valueS = S� depending on the approximation 
onsidered. For example, ifwe have a �4 model approximation, the optimal value is S� = 3:4252providing the 
oeÆ
ient d(n)2 (0) to be equal to zero at the �xed point[26℄-[27℄.The CR takes pla
e for all the variables �k at the 
riti
al point.Therefore, the 
riti
al temperature 
an be determined from the solutionof re
urrent equations (see Appendix C). Combining (33) with (32) wederive the formulaA(�Ó ~V (0))2 +B(�Ó ~V (0)) +D = 0; (22)where A = 1� f0 �R(0)p'0;B = �a2;D = a4R(0)=p'0:f0; '0 are 
oordinates of the redu
ed �xed point, R(0) is a universalfun
tion of parameter S. The optimal value of S is 3.4252 and the valuesof f0; '0; R(0) 
orresponding to it are taken from [34℄. From the 
ondition�� = 0 we obtain the se
ond equation [27℄:M3(0) = 0; (23)whi
h allows us to determine the 
riti
al density of the system.4. Results and dis
ussionsIn this se
tion we present our results for the vapour-liquid 
riti
al point ofsymmetri
al mixtures, using the method proposed above. These resultsare 
ompared with those previously obtained by Monte-Carlo simulations[23,24℄.

ICMP{00{01E 12The system under study is a symmetri
al hard sphere square-wellbinary mixture. The intera
tion potential between the parti
les is givenby: U
Æ(r) = 8<: 1; if r < ���
Æ; if � � r < ��0; if r � �� ;where � is a hard sphere diameter, � is a range of the potential, and �
Æis a well-depth of the intera
tion between the parti
les of types 
 and Æ.The square-well potential is the simplest model whi
h in
ludes thepresen
e of attra
tive and repulsive for
es. It is widely used to modelan intera
tion of un
harged 
olloidal parti
les [37℄-[39℄. Moreover, thismodel is of substantial theoreti
al importan
e for the studies of systemswith a varying potential range sin
e it 
an represent three limiting 
ases,namely, a hard sphere 
uid, a short-range sti
ky sphere 
uid, and a long-range van der Waals 
uid.For a symmetri
al mixture �aa = �bb = � 6= �ab. In our formalism a
ompletely analyti
al treatment for general � is possible.We split the potential U
Æ(r) into short- and long-range parts usingthe Weeks-Chandler-Andersen partition [40℄. As a result, we have:	
Æ(r) = � 1; r � �0; r > � ; (24)�
Æ(r) = � ��
Æ; 0 � r � ��0; r > �� : (25)For the WCA partition �
Æ(r) is perfe
tly smooth in the 
ore re-gion. As it was shown [41℄, this partition provides the best estimates forthermodynami
 fun
tions of the Lennard-Jones 
uid.In our 
ase the RS is a one-
omponent hard sphere system withthe diameter � (see (24)). In this 
ase we 
an use the results forMn(k1; k2; :::; kn) obtained in [27℄. As it was shown [27℄ the distin
tivefeature of M2(k) is an almost horizontal "shoulder" at small k. More-over, a weak dependen
e on k at small k is a 
ommon property of the
umulants of the higher order (n = 3; 4). This allows us to repla
e thefun
tionsMn(k1; k2; :::; kn) at ki < B by 
onstant valuesMn(0; 0; :::; 0).The Fourier transform of fun
tion (25) has the form:~�
Æ(k) = ~�
Æ(0) 3(�x)3 [��x 
os(�x) + sin(�x)℄;where x = k�;
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Æ(0) = ��
Æ�3 4�3 �3:Cumulants M(in)n (0; :::; 0) are 
al
ulated a

ording to the formulaegiven in Appendix B. Both the Per
us-Yevi
k (PY) approximation andthe Carnahan-Starling (CS) approximation are used for S2(0).The solutions of equations (22)-(23) are found numeri
ally using aself-
onsistent pro
edure by means of whi
h the dependen
ies of the 
o-eÆ
ients a2 and a4 (as well as 
umulants Mn(0)) on �
 are taken into
onsideration.The vapour-liquid 
riti
al temperatures T
 (T
 = kBT=�) versus themi
ros
opi
 parameter r (r = �ab=� is a dissimilar intera
tion strength)are shown for � = 1:5 and � = 2:0 in Fig 3. It is seen that the vapour-liquid 
riti
al temperature of the square-well binary mixture in
reasesalmost linearly with in
reasing r.In Fig. 4 we demonstrate the dependen
e of the 
riti
al density �
on r for � = 1:5 and � = 2:0. There is a region of r (0:9 < r < 1:1)on this plot where �
 remains almost 
onstant and then (r > 1:1) itde
reases with in
reasing r. Besides, in the region r > 1:1 the values of�
 for � = 2:0 are higher than the ones for � = 1:5. The 
urves depi
tedin Figs. 3-4 are obtained when the PY approximation for S2(0) is used.Figures 5 and 6 demonstrate the results for T
 and �
 versus r whenthe both approximations (PY and CS) for S2(0) are used. As it 
anbe seen, there is no signi�
ant dis
repan
y between the results, namely,the CS equation gives slightly higher values for T
 and �
 than the PYapproximation.In Fig. 7 the vapour-liquid 
riti
al temperature of the square-wellbinary mixture is plotted as a fun
tion of the width of the potentialwell � for di�erent r. Fig. 8 shows the � dependen
e of the 
oeÆ
ientsa
2 = a2(T = T
; � = �
; r = 1) and a
4 = a4(T = T
; � = �
; r = 1) ofthe e�e
tive GLW Hamiltonian (19). It is not surprising that for largevalues of � the 
riti
al behaviour of the system be
omes mean-�eld like.We also 
ompare our results with those obtained from MC simu-lations: for � = 1:5 and r=0.72 we have T
 = 1:055, while the MCsimulations give T
 = 1:06(1) [24℄, for � = 2:0 and r=1.0 (the 
ase ofr=1.0 
orresponds to a one-
omponent system) we obtain T
 = 2:753 and�
 = 0:129, while the simulations give T
 = 2:684(51) and �
 = 0:123(43)[23℄.
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Figure 3. The vapour-liquid 
riti
al temperature as a fun
tion of themi
ros
opi
 parameter r at � = 1:5 (left) and � = 2:0 (right)
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Figure 4. The 
riti
al density as a fun
tion of the mi
ros
opi
 parameterr5. Con
lusionsIn this paper we propose a method for the study of the vapour-liquid
riti
al point of a symmetri
al binary mixture depending on its mi
ro-s
opi
 properties. We apply this method to the hard sphere square-wellbinary mixture. For this model we 
al
ulate the 
riti
al temperatureand 
riti
al density versus the mi
ros
opi
 parameter r measuring thedissimilar intera
tion in the system as well as versus the width of thepotential well. Our results agree well with those obtained by using MCsimulations. We 
an improve our results in the following ways: 1) takinginto 
onsideration the region of k with jkj > B (see �gure 2); 2) using ahigher approximation than the �4 one.Having tested the theory by the results of MC simulations for su
ha simple model we 
an apply it to more realisti
 systems, for example,the hard sphere Yukawa mixtures and the Lennard-Jones mixtures. Therelevant results will be given in a subsequent paper.Appendix AA grand partition fun
tion of a two-
omponent 
uid system in the CVrepresentation with a RS 
an be written as in [28℄:� = �0�1;

ICMP{00{01E 16
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Figure 5. The vapour-liquid 
riti
al temperatures versus r when the PYapproximation and the CS approximation for S2(0) are usedwhere�0 = 1XNa=0 1XNb=0 bY
=a exp ���
0N
N
 ! � Z (d�) exp24��2 X
;Æ=a;bXi;j  
Æ(rij)35is a grand partition fun
tion of the RS; � = 1k÷T , kB- is the Boltzman
onstant, T is temperature; (d�) = Qa;b d�N
 , d�N
 = d~r
1 d~r
2 : : : d~r
N
is a volume element of the 
on�gurational spa
e of the 
-th spe
ies; �
0is a 
hemi
al potential of the 
-th spe
ies in the RS.The part of the grand partition fun
tion whi
h is de�ned in the CVphase spa
e has the form of a fun
tional integral:�1 = Z (d�)exp[�X
 �
1�0;
 � 12� X
;Æ=a;bXk �
Æ(k)�k;
��k;Æ℄J(�a; �b):(26)Here,1) �
1 is a part of the 
hemi
al potential of the 
-th spe
ies�
1 = �
 � �
0 + 12�Xk �

(k);



17 ðÒÅ�ÒÉÎÔ

0.9 1.0 1.1 1.2 1.3 1.4

0.120

0.124

0.128

0.132

0.136

      λ=1.5
 CS approx.
 PY approx.

r

η ηηη
c

 

 

Figure 6. The 
riti
al density versus r when the PY approximation andthe CS approximation for S2(0) are usedand is determined from the equation� ln �1���
1 = hN
i;�
 is a full 
hemi
al potential of the 
-th spe
ies; �
Æ(k) = �V ~�
Æ(k) ;< N
 > is an average number of the 
-th spe
ies parti
les.2)�k;
 = �
k;
 � i�sk;
(
 = a; b) are 
olle
tive variables of the 
-thspe
ies, the indi
es 
 and s denote the real part and the 
oeÆ
ient atthe imaginary part of �k;
; �
k;
 and �sk;
 des
ribe the value of the k-th
u
tuation mode of the number of the 
-th spe
ies parti
les. Ea
h �
k;
and �sk;
 takes all the real values from �1 to +1. (d�) is a volumeelement of the CV phase spa
e:(d�) =Y
 d�0;
Yk6=00d�
k;
d�sk;
 :The prime means that the produ
t over k is performed in the uppersemi-spa
e;3) J(�a; �b) is a transition Ja
obian to the CV averaged on the RS:J(�a; �b) = Z (d�) bY
=a exp24i2�X~k �k;
�k;
35 exp24Xn�1 (�i2�)nn! �
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Figure 7. The vapour-liquid 
riti
al temperature as a fun
tion of thewidth of the potential well �X
1:::
n Xk1:::knM
1:::
n(k1; : : : ;kn)�k1;
1 : : : �kn;
n# ;where variables �k;
 are 
onjugated to CV �k;
 . M
1:::
n(k1; : : : ;kn) isthe n-th 
umulant 
onne
ted with S
1:::
n(k1; : : : ; kn), the n-parti
le par-tial stru
ture fa
tor of the RS, by means of the relationM
1:::
n(k1; : : : ;kn) = npN
1 : : : N
nS
1:::
n(k1; : : : ; kn)Æk1+���+kn ;where Æk1+���+kn is a Krone
ker symbol.4) ~�
Æ(k) is a Fourier transform of the attra
tive potential �
Æ(r).Fun
tion ~�
Æ(k) satis�es the following requirements: ~�
Æ(k) is negativefor small values of k and limk!1 ~�
Æ(k) = 0.We pass in (26) to CV �k and 
k (a

ording to !k and 
k) by meansof the orthogonal linear transformation:�k = p22 (�k;a + �k;b); 
k = p22 (�k;a � �k;b);
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Figure 8. CoeÆ
ients a
2 and a
4 of the e�e
tive GLW Hamiltonian asfun
tions of the width of the potential well �!k = p22 (�k;a + �k;b); �k = p22 (�k;a � �k;b): (27)Now �k and 
k are 
onne
ted with the total density 
u
tuation modesand the relative density (or 
on
entration) 
u
tuation modes, respe
-tively.As a result, for �1 we obtain formulae (3)-(8).Appendix BCumulants M(in)n (0) with n � 4 are expressed in terms of the initial
umulants M
1:::
n(0; :::; 0) (
1; :::; 
n = a; b) as follows [30℄:M(0)1 (0) = Ma(0) +Mb(0) =< N >M(1)1 (0) = Ma(0)�Mb(0) =< Na > � < Nb >M(0)2 (0) = Maa(0) +Mbb(0) + 2Mab(0)M(1)2 (0) = Maa(0)�Mbb(0)M(2)2 (0) = Maa(0) +Mbb(0)� 2Mab(0)M(0)3 (0) = Maaa(0) +Mbbb(0) + 3[Maab(0) +Mabb(0)℄M(1)3 (0) = Maaa(0)�Mbbb(0) +Maab(0)�Mabb(0)
ICMP{00{01E 20M(2)3 (0) = Maaa(0) +Mbbb(0)�Maab(0)�Mabb(0)M(3)3 (0) = Maaa(0)�Mbbb(0)� 3[Maab(0)�Mabb(0)℄M(0)4 (0) = Maaaa(0) +Mbbbb(0) ++ 4[Maaab(0) +Mabbb(0)℄ + 6Maabb(0)M(1)4 (0) = Maaaa(0)�Mbbbb(0) + 2[Maaab(0)�Mabbb(0)℄M(2)4 (0) = Maaaa(0) +Mbbbb(0)� 2Maabb(0)M(3)4 (0) = Maaaa(0)�Mbbbb(0)� 2[Maaab(0)�Mabbb(0)℄M(4)4 (0) = Maaaa(0) +Mbbbb(0)�� 4[Maaab(0) +Mabbb(0)℄ + 6Maabb(0) (28)The same expressions hold at ki 6= 0.The nth 
umulant M(in)n (0) with in = 0 is 
onne
ted with the nthstru
ture fa
tor of the one-
omponent system Sn(0) [30℄:M(0)n (0) =< N > Sn(0):Stru
ture fa
tors Sn(0)(n � 2) 
an be obtained from S2(0) by meansof a 
hain of equations for 
orrelation fun
tions [36℄. Cumulants within 6= 0 
an be expressed in terms ofM(0)n (0) (see formulae (4.8) in [30℄).Appendix CAfter the layer-by-layer integration of the partition fun
tion (18) oneobtains [26℄:� = �0�(1)G hZ( ~M2; ~M4)i<NB> (p2)<NB>�1Q0Q1 : : :Qn� [Q(Pn)℄Nn+1 Z exp[E(n+1)4 (�)℄(d�)Nn+1 ;E(n+1)4 (�) = ���0 � 12 Xk<Bn+1 d(n+1)2 (k)�k��k � a(n+1)44!Nn+1� Xk1:::k4<Bn+1 �k1 : : : �k4Æk1+:::+k4 + : : : :Here Nn =< NB > S�3n, Bn = BS�n. Qn is a partial partition fun
tionof the n-th layer: Q1=Nnn = Q(Pn�1)Q(d(n)2 );



21 ðÒÅ�ÒÉÎÔwhere Q(Pn) = Z +1�1 'n(!)d!;'n(!) = exp��(2�)2P (n)2 !2 � (2�)44! P (n)4 !4� ;Q(d(n)2 ) = Z +1�1 fn(�)d�;fn(�) = exp��12d(n)2 (Bn+1; Bn)�2 � 14!a(n)4 �4� ;P (n)2 = hQ(d(n)2 )i�1 Z +1�1 �2fn(�)d�;P (n)4 = S�3�� hQ(d(n)2 )i�1 Z +1�1 �4fn(�)d� + 3(P (n)2 )2� :CoeÆ
ients d(n+1)2 , a(n+1)4 are linked to d(n)2 , a(n)4 by the re
ursionrelations. The re
ursion relations have the form [26℄:rn+1 = S2(�q + (rn + q)N(xn));un+1 = S4�dUnE(xn); (29)where the following notations are introdu
ed:rn = d(n)2 (0)S2n; un = a(n)4 S4n;d(n)2 (0) = a(n)2 + � ~V (0);q = �qj� ~V (0)j; �q = 12(1 + S�2);N(xn) = � ynxn�1=2 K(yn)K(xn) ;E(xn) = S2dL(yn)L(xn) ;xn = d(n)2 (Bn+1; Bn)(3=a(n)4 )1=2;yn = S3=2K(xn)(3=L(xn))1=2;d(n)2 (Bn+1; Bn) = d(n)2 (0) + qS�2n:Equations (29) have the �xed-point type partial solution: rn = r�,un = u�. The pair of numbers (rn; un) 
an be 
onsidered as 
oordinates ofa point in a parametri
 spa
e. As a result of layer-by-layer integration we
ICMP{00{01E 22obtain a traje
tory. For the �4 model there exists a unique temperaturefor whi
h the traje
tory redu
es to a point(rn; un)! (r�; u�) n!1;r�; u� > 0:The (r�; u�) point is a �xed point of the renormalization group transfor-mation.In the vi
inity of the 
riti
al point we 
an use linear approximationsin (29). We obtain:� rn+1 � r�un+1 � u� � = R� rn � r�un � u� � ; (30)where R is a linearized renormalization group transformation matrix. In[26℄ a general solution of (30) was found in the form:rn = r� + 
1E(n)1 + 
2E(n)2 R;un = u� + 
1R1E(n)1 + 
2E(n)2 ; (31)where R = R12E2�R11 , R1 = E1�R11R12 , E1 and E2 are the eigenvalues ofthe matrix R; E1 > 1, E2 < 1. 
1 and 
2 are fun
tions depending ontemperature, density and intera
tion potential
1 = �a2 � �j ~V (0)j � r� + (a4 � u�)R�w�1;
2 = h��a2 � �j ~V (0)j � r��R1 + (a4 � u�)iw�1; (32)where w = E1�E2R11�E2 .The solutions (31) are valid in the vi
inity of the 
riti
al point in-
luding the 
riti
al point itself. At the 
riti
al point the solutions rn, unat n!1 tend to the �xed-point valueslimn!1rn = r�; limn!1un = u�:This is possible only if 
1 = 0. So, from the equation
1(T
) = 0; (33)using (32) we 
an �nd T
.
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