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O.V.Patsahan, M.P.Kozlovskii, R.S.MelnykAb initio study of the vapour-liquid ritial point of a symmetrialbinary uid mixture
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1 ðÒÅ�ÒÉÎÔ1. IntrodutionBinary mixtures in ontrast to their onstituent omponents an exhibitthree di�erent types of two-phase equilibria: vapour-liquid, liquid-liquidand gas-gas [1,2℄. The possibility of the realization of these phenomenaand their priority depend both on the external onditions and mirosop-i parameters of a mixture. The study of the inuene of interpartileinterations on the ritial properties of a binary mixture is an interest-ing and atual problem. During the last deade this problem has beenintensively studied by integral equation theories (IETs). The advantagesand limitations of these approahes were reently given by C. Caamoin his extensive review [3℄. Here we briey point out some key featuresof IETs onerning phase equilibrium and ritial properties of lassialuids.The well-known IETs, suh as the mean spherial approximation(MSA), the Perus-Yevik (PY) equation and the hypernetted hain(HNC) equation do not have a solution inside a ertain region. In thease of the MSA, the boundary line of this forbidden region oinideswith a spinodal line [4℄-[6℄. The MSA preditions for the existene ofthe ritial points and the spinodal turn out to be qualitatively orret,although the thermodynami inonsisteny of the theory forbids a quan-titative estimate of the loation of these features. The PY equation andthe HNC equation either do not predit the orret diverging trend of theompressibility when the spinodal is approahed or do not predit anydivergene at all [5℄, [7℄-[8℄, [9℄. The modi�ed hypernetted hain (MHNC)theory is able to predit quite satisfatorily the liquid and the vapourbranhes of the binodal of a simple uid at low enough temperature,but it fails to onverge lose to the ritial point and the position of theritial point is not given diretly by the theory but is to be determinedby extrapolation [10℄-[11℄. Therefore, the IETs, although play an impor-tant role in the understanding of the properties of the liquid state, arenot able to give a orret desription of the uid behaviour lose to theritial point.Of speial interest is the hierarhial referene theory (HRT) on-erned with the study of both universal and nonuniversal properties[12℄-[17℄. In this theory the long-wavelength part of the interation isturning on gradually and the orresponding evolution of thermodynamiquantities and orrelation funtions is expressed by an in�nite hierarhyof exat integro-di�erential equations. A simple losure of the hierar-hy (the Ornstein-Zernike ansatz) yields nonlassial ritial exponentswith the orret saling regime. The HRT was applied to one- and two-
ICMP{00{01E 2omponent uids. The results were found to be in a good agreementwith both numerial simulations and experiments. However, as far asthis method is omputationally intensive, its appliation is limited.On the other hand, the ritial properties of simple uids and binarymixtures have reently been studied using Monte Carlo (MC) simulations[18℄-[24℄. In [24℄ the vapour-liquid ritial temperature was alulated forthe symmetrial mixture of hard spheres interating via the square-wellpotentials. Thus, it is interesting to test a theory using suh a simplebinary uid model.In the present paper we propose a mirosopi approah to the studyof the vapour-liquid ritial point of a symmetrial binary mixture. Thisapproah is based on the method of olletive variables (CV) [25℄. Itsharateristi feature, in omparing with the above-mentioned theories,is that it allows one to determine, on the mirosopi grounds, the ex-pliit form of an e�etive Ginsburg-Landau-Wilson (GLW) Hamiltonianand then to integrate the partition funtion in the neighbourhood of thephase transition point taking into aount the renormalization group(RG) symmetry. This method appears to be suessful in desribing theseond order phase transition of the 3D Ising model [26℄ and the vapour-liquid ritial point of a one-omponent uid [27℄. On the basis of thisapproah both universal and non-universal quantities were obtained.In [28℄ the CV method with a referene system (RS) was general-ized for the ase of a grand anonial ensemble for a multiomponentontinuous system. Using this approah the phase diagram of the sym-metrial mixture was examined within the framework of the Gaussianapproximation [29℄-[31℄.In this paper we determine an expliit form of the e�etive GLWHamiltonian of the symmetrial binary mixture in the viinity of thevapour-liquid ritial point. Then we integrate the funtional of thegrand partition funtion by the use of the layer-by-layer integrationmethod proposed in [26℄ for the 3D Ising model. As a result of this in-tegration one obtains reursion relations for the oeÆients of the GLWHamiltonian. The analysis of these relations yields an equation for T.Here we avoid extensive onsideration of the results pertaining to theIsing model and all the readers' attention to [26℄ where this problemwas studied in detail. The method whih we desribe here yields thesame ritial exponents as in [32℄ (see table 1).The paper is organized as follows. We give a funtional representationof the grand partition funtion of a two-omponent ontinuous systemin setion 2 and appendix A. In setion 3 we onstrut the basi densitymeasure (GLW Hamiltonian) with respet to the CV whih inlude a



3 ðÒÅ�ÒÉÎÔTable 1. Values of the ritial exponents and the ratios of the ritialamplitudes for the 3D Ising model obtained within the framework of theCV method� � �  A+=A� �+=��0.637 0.088 0.319 1.275 0.435 6.967variable orresponding to the order parameter. In this setion we alsopresent the basi ideas of the method of the partition funtion integrationin the viinity of the ritial point. In setion 4 we apply our formalismto alulating the ritial harateristis (temperature and density) ofthe binary square-well symmetrial mixture. The obtained results aredisussed and ompared with the MC simulation data reported reentlyby N.B.Wilding [24℄ and E.de Miquel [23℄.2. Funtional representation of the grand partitionfuntion of a binary mixtureLet us onsider a binary uid mixture onsisting ofNa partiles of speies"a" andNb partiles of speies "b". The system is in volume V at temper-ature T . Let us assume that an interation in the system has a pairwiseadditive harater. The interation potential between  partile at riand Æ partile at rj an be expressed as a sum of two terms:UÆ(jri � rj j) = 	Æ(jri � rj j) + �Æ(jri � rj j); (1)where 	Æ(r) is a potential of a short-range repulsion and �Æ(r) is anattrative part of the potential whih dominates at large distanes.A funtional of the grand partition funtion (GPF) of the binaryhomogeneous system in the CV method with a RS an be representedas a produt of two fators (see Appendix A):� = �0�1; (2)where �0 is the GPF of the RS whih we suppose to be known. �1 is thepart of the GPF whih is written in the CV spae:�1 = Z (d�)(d) exp ���+1 �0 + ���1 0� �2 Xk h ~V (k)�k��k ++ 2~U(k)�kk + ~W (k)k�kio J(�; ): (3)
ICMP{00{01E 4Chemial potentials �+1 = 1p2 (�a1 + �b1) and ��1 = 1p2 (�a1 � �b1) aredetermined from the onditions:dln�1d��+1 = < Na > + < Nb >=< N > (4)dln�1d���1 = < Na > � < Nb > : (5)Funtions ~V (k); ~W (k) and ~U(k) are ombinations of Fourier trans-forms of the initial interation potentials ~�Æ(k):~V (k) = (��12 ) [�aa(k) + �bb(k) + 2�ab(k)℄ ;~U(k) = (��12 ) [�aa(k)� �bb(k)℄ ; (6)~W (k) = (��12 ) [�aa(k) + �bb(k)� 2�ab(k)℄ :J(�; ) = Z (d�)(d!) exp(i2�Xk (!k�k + �kk)++ Xn�1 Xin�0D(in)n (!; �)9=; (7)is a transition Jaobian to the CV �k; k averaged on the RS, variables!k; �k are onjugated to variables �k; k, respetively.D(in)n (!; �) = (�i2�)nn! �12�n=2 Xk1:::knM(in)n (k1;k2; :::;kn)�� �k1 : : : �kin!kin+1 : : : !knÆk1+:::+kn : (8)Index in indiates the number of variables �k in the umulant expan-sion (8). Cumulants M(in)n (k1;k2; :::;kn) are linear ombinations of theinitial umulants M1:::n(k1;k2; :::;kn) (i = a; b) (see Appendix B).In general, the dependene of M1:::n(k1;k2; :::;kn) on wave vetorsk1;k2; :::;kn is ompliated [28℄. Sine we are interested in the ritialproperties, the small-k expansion of the umulants an be onsidered.



5 ðÒÅ�ÒÉÎÔ

Figure 1. Three phase regions of the symmetrial mixture depending onthe mirosopi parameters: (1) gas-gas and vapour-liquid phase tran-sitions (T g�g > T v�l ); (2) vapour-liquid and liquid-liquid phase transi-tions (T v�l > T l�l ); (3) vapour-liquid phase transition only. S2 is thetwo-partile struture fator of the referene systemHereafter we shall replae M1:::n(k1;k2; :::;kn) by their values in thelong-wave limit and we shall disuss this approximation in Se. 4.We onsider a symmetrial binary uid mixture (SBFM), i.e. a sys-tem in whih the two pure omponents "a" and "b" are idential and onlyinterations between the partiles of dissimilar speies di�er. Notwith-standing its simpliity, the SBFM exhibits all the three types of two-phase equilibria whih are observed in real binary uids, namely: vapour-liquid, liquid-liquid and gas-gas equilibria. For the SBFM ~U(k) = 0 in (3)and there are only terms with even indies in in the umulant expansion(8) [30℄.3. The methodAs it was already shown [30℄, the phase diagram of the SBFM onsistsof three ranges (see �gure 1): (1) gas-gas separation and vapour-liquidphase transitions; (2) vapour-liquid and liquid-liquid phase transitions;(3) vapour-liquid phase transition only.The order of priority of the vapour-liquid and separation phase tran-sitions depends on both the external onditions and the mirosopiproperties of the system. There exist two ritial temperature branh-es in suh a system: branh (T v�l ) onneted with the variable �0 andbranh (T sep ) onneted with the variable 0 [30℄. All the thermodynamifuntions of the SBFM are symmetrial with respet to the onentra-tion x=0.5 and have an extremum at this point [1,29℄. The onentration
ICMP{00{01E 6x=0.5 is a ritial one for this model mixture.We onsider a symmetrial uid mixture whose parameters satisfythe following ondition:r > L; L = 1� S2(0)1 + S2(0) :It orresponds to ranges 2 (L < r < 1) and 3 (r > 1) on the phasediagram (see Fig. 1). In this paper we study the vapour-liquid ritialpoint.In the ase of the SBFM the variables �0 and 0 are onneted withthe order parameters for the vapour-liquid and separation phase tran-sitions, respetively [30℄. This fat allows us to separate CV �k and kinto essential and non-essential ones depending on the phase transitiononsidered. Sine we are interested in the vapour-liquid ritial point, wean onsider CV k (and �k) to be non-essential (CV k do not ontain avariable onneted with the order parameter, the oeÆients standing atthe seond power of k (and �k) are negative) and we an integrate overk (and �k) with the Gaussian density measure. In respet to CV �k itis neessary to onstrut the basi density measure taking into aounthigher powers of �k (we shall onsider a �4 model).As a result of integrating in (3)-(8) over variables k (and �k) weobtain for the GPF:� = �0�G Z (d�) exp(��+1 �0 � �2 Xk ~V (k)�k��k) J(�); (9)where �G =Yk 1q1 + � ~W (k)M(2)2 (0)=2 ; (10)J(�) = Z (d!) exp8<:i2�Xk !k�k + 4Xn�1 (�i2�)nn! �12�n=2�� Xk1:::knMn(0)!k1 : : : !knÆk1+:::+kn) ; (11)Mn(0) =M(0)n (0) + �Mn: (12)



7 ðÒÅ�ÒÉÎÔ�Mn are the orretions obtained as the result of integration over vari-ables k:�M1 = M(2)3 (0)12 1< N >Xk ~g(jkj);�M2 = M(2)4 (0)12 1< N >Xk ~g(jkj) ++ (M(2)3 (0))272 1< N >2 Xk ~g(jkj)~g(jk1 � kj);�M3 = M(2)3 (0)M(2)4 (0)48 1< N >2 Xk ~g(jkj)~g(jk1 � kj) ++ (M(2)3 (0))36 1< N >3 Xk ~g(jkj)~g(jk1 + kj)~g(jk2 � kj);�M4 = (M(2)4 (0))296 1< N >2 Xk ~g(jkj)~g(jk1 � kj) ++ (M(2)3 (0)3! )4 1< N >4 Xk ~g(jkj)~g(jk1 + kj) �� ~g(jk2 � kj)~g(jk3 + k1 + kj); (13)where ~g(k) = � � < N > ~W (k)12� ~W (k)M(2)2 (0) + 1 : (14)In �gure 2 the typial behaviour of the potential ~V (k)=j ~V (0)j isshown.Let us further assume that ~V (k) = 0 at jkj > B. Then, integrationin (9) over �k with jkj > B leads to Æ - funtions and the expression for� ontains only the sums over k with jkj � B.We onsider a set of k vetors, jkj � B, as orresponding to the sitesof a reiproal lattie onjugated to a ertain blok lattie frlg with NBblok sites in the periodiity volume V :< NB >= VC3 = V(�=B)3 = (B�)3 < N >6�2� ; (15)� = �6 ��3 is fration density. Therefore, one may onsider quantity B asthe size of the �rst Brillouin zone of this blok lattie.
ICMP{00{01E 8
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9 ðÒÅ�ÒÉÎÔwhere �(1)G = �G exp(�� ~M1 + � ~V �(0)2 ~M21� �M1(0) �M3(0)�M4(0) � �M2(0) �M23(0)2 �M24(0) � �M43(0)8 �M34(0)� ;�� = h� a1; a1 = �M3(0)j �M4(0)j + � ~V �(0) ~M1; h = ��+1 ;~M2(0) = �M2(0)� �M23(0)2 �M4(0) ;~M4(0) = < NB > �M4(0): (17)(d : : :)NB implies that the vetor k takes the < NB > values inside the�rst Brillouin zone: (d�)NB = d�0Yk<B0d�kd�sk;(d!)NB = d!0Yk<B0d!kd!sk:Expression (16) for � orresponds to the Ising model in the external�eld (a1 � ��+1 ) with the only di�erene: umulants ~M2(0), ~M4(0) arefuntions of the fration density �, temperature T and parameters of theattrative interation ~�Æ(k).After integration over !k we obtain the following form for the GPF:� = �0�(1)G hZ( ~M2; ~M4)i<NB> (p2)<NB>�1 �� Z exp[E4(�)℄(d�)NB : (18)Here E4(�) = ���0 � 12 Xk<B d2(k)�k��k � a44! < NB > �� Xk1:::k4<B �k1 : : : �k4Æk1+:::+k4 + : : : ; (19)Z( ~M2; ~M4) = � 12��1=2� 3j ~M4(0)j�1=4 ex2=4U(0; x);
ICMP{00{01E 10d2(k) = a2 + � ~V (k); a2 =s 3j ~M4(0)jK(x);a4 = 3j ~M4(0)jL(x); (20)where K(x) = U(1; x)=U(0; x);L(x) = 3K2(x) + 2xK(x)� 2;x =s 3j ~M4(0)j ~M2(0): (21)U(a; x) is a paraboli ylinder funtion [33℄. Expressions (18)-(21) havethe same forms as similar expressions for a one-omponent system ob-tained in [27℄. This oinidene is ahieved due to the symmetry ofthe model under onsideration. E4(�) is the Ginzburg-Landau-WilsonHamiltonian for the SBFM in the viinity of the vapour-liquid ritialpoint.In order to integrate the GPF (18)-(21) over �k and determine theritial temperature we use the method developed in [26,34℄ for the Isingmodel. The essene of the method onsists in subsequent integrationover the layers of the CV spae, beginning from �k whih orrespondto short-wave utuations. Variations of the oeÆients of E4(�) as theresult of integration over �k in n subsequent layers of CV phase spae aredesribed by the reursion formulae derived in [26℄. For the ase T > Tin the interval [0; B℄ there exist three harateristi regions [26℄. The �rstregion Bm� < k � B orresponds to the strongly orrelated utuations�k, their density measure is non-Gaussian. The proedure based on therenormalization group symmetry is valid here. This is the region of theritial regime (CR). The seond region 0 < k � Bm� is related to theutuation distributed aording to the Gaussian density measure. Thisis the limiting Gaussian regime (LGR).The third region onsists of the point k = 0. The variable �0 isa marosopi one and orresponds to the utuations of the partiledensity in the "external �eld" ��.We integrate (18) aording to the following sheme [26℄. The re-gion (0; B) is divided into the intervals (B1; B); :::; (Bi+1; Bi); :::; whereBn = B=Sn (S is a division parameter). Eah interval orresponds to alayer of subsripts k in the Brillouin zone and eah layer of subsripts k -to a layer in the phase spae �k. Integrating gradually over the layers weget a blok lattie sequene with an appropriately growing blok period



11 ðÒÅ�ÒÉÎÔand with the Hamiltonian orresponding to eah blok. Eah Hamiltoni-an is haraterized by the oeÆients d2; a4; d(1)2 ; a(1)4 ; d(2)2 ; a(2)4 , et.. Forthe sequene of the blok Hamiltonians nd(n)2 ; a(n)4 o the renormalizationgroup symmetry holds and the �xed point is of a saddle type. Beausethe expliit expressions for the initial values of oeÆients d(k) and a4are given (see (19)-(21)), the solutions of the renormalization group typeare funtions of mirosopi parameters, density and temperature.Generally, the division parameter S > 1 an take arbitrary values,but the highest preision of the results is ahieved at some optimal valueS = S� depending on the approximation onsidered. For example, ifwe have a �4 model approximation, the optimal value is S� = 3:4252providing the oeÆient d(n)2 (0) to be equal to zero at the �xed point[26℄-[27℄.The CR takes plae for all the variables �k at the ritial point.Therefore, the ritial temperature an be determined from the solutionof reurrent equations (see Appendix C). Combining (33) with (32) wederive the formulaA(�Ó ~V (0))2 +B(�Ó ~V (0)) +D = 0; (22)where A = 1� f0 �R(0)p'0;B = �a2;D = a4R(0)=p'0:f0; '0 are oordinates of the redued �xed point, R(0) is a universalfuntion of parameter S. The optimal value of S is 3.4252 and the valuesof f0; '0; R(0) orresponding to it are taken from [34℄. From the ondition�� = 0 we obtain the seond equation [27℄:M3(0) = 0; (23)whih allows us to determine the ritial density of the system.4. Results and disussionsIn this setion we present our results for the vapour-liquid ritial point ofsymmetrial mixtures, using the method proposed above. These resultsare ompared with those previously obtained by Monte-Carlo simulations[23,24℄.

ICMP{00{01E 12The system under study is a symmetrial hard sphere square-wellbinary mixture. The interation potential between the partiles is givenby: UÆ(r) = 8<: 1; if r < ���Æ; if � � r < ��0; if r � �� ;where � is a hard sphere diameter, � is a range of the potential, and �Æis a well-depth of the interation between the partiles of types  and Æ.The square-well potential is the simplest model whih inludes thepresene of attrative and repulsive fores. It is widely used to modelan interation of unharged olloidal partiles [37℄-[39℄. Moreover, thismodel is of substantial theoretial importane for the studies of systemswith a varying potential range sine it an represent three limiting ases,namely, a hard sphere uid, a short-range stiky sphere uid, and a long-range van der Waals uid.For a symmetrial mixture �aa = �bb = � 6= �ab. In our formalism aompletely analytial treatment for general � is possible.We split the potential UÆ(r) into short- and long-range parts usingthe Weeks-Chandler-Andersen partition [40℄. As a result, we have:	Æ(r) = � 1; r � �0; r > � ; (24)�Æ(r) = � ��Æ; 0 � r � ��0; r > �� : (25)For the WCA partition �Æ(r) is perfetly smooth in the ore re-gion. As it was shown [41℄, this partition provides the best estimates forthermodynami funtions of the Lennard-Jones uid.In our ase the RS is a one-omponent hard sphere system withthe diameter � (see (24)). In this ase we an use the results forMn(k1; k2; :::; kn) obtained in [27℄. As it was shown [27℄ the distintivefeature of M2(k) is an almost horizontal "shoulder" at small k. More-over, a weak dependene on k at small k is a ommon property of theumulants of the higher order (n = 3; 4). This allows us to replae thefuntionsMn(k1; k2; :::; kn) at ki < B by onstant valuesMn(0; 0; :::; 0).The Fourier transform of funtion (25) has the form:~�Æ(k) = ~�Æ(0) 3(�x)3 [��x os(�x) + sin(�x)℄;where x = k�;



13 ðÒÅ�ÒÉÎÔ~�Æ(0) = ��Æ�3 4�3 �3:Cumulants M(in)n (0; :::; 0) are alulated aording to the formulaegiven in Appendix B. Both the Perus-Yevik (PY) approximation andthe Carnahan-Starling (CS) approximation are used for S2(0).The solutions of equations (22)-(23) are found numerially using aself-onsistent proedure by means of whih the dependenies of the o-eÆients a2 and a4 (as well as umulants Mn(0)) on � are taken intoonsideration.The vapour-liquid ritial temperatures T (T = kBT=�) versus themirosopi parameter r (r = �ab=� is a dissimilar interation strength)are shown for � = 1:5 and � = 2:0 in Fig 3. It is seen that the vapour-liquid ritial temperature of the square-well binary mixture inreasesalmost linearly with inreasing r.In Fig. 4 we demonstrate the dependene of the ritial density �on r for � = 1:5 and � = 2:0. There is a region of r (0:9 < r < 1:1)on this plot where � remains almost onstant and then (r > 1:1) itdereases with inreasing r. Besides, in the region r > 1:1 the values of� for � = 2:0 are higher than the ones for � = 1:5. The urves depitedin Figs. 3-4 are obtained when the PY approximation for S2(0) is used.Figures 5 and 6 demonstrate the results for T and � versus r whenthe both approximations (PY and CS) for S2(0) are used. As it anbe seen, there is no signi�ant disrepany between the results, namely,the CS equation gives slightly higher values for T and � than the PYapproximation.In Fig. 7 the vapour-liquid ritial temperature of the square-wellbinary mixture is plotted as a funtion of the width of the potentialwell � for di�erent r. Fig. 8 shows the � dependene of the oeÆientsa2 = a2(T = T; � = �; r = 1) and a4 = a4(T = T; � = �; r = 1) ofthe e�etive GLW Hamiltonian (19). It is not surprising that for largevalues of � the ritial behaviour of the system beomes mean-�eld like.We also ompare our results with those obtained from MC simu-lations: for � = 1:5 and r=0.72 we have T = 1:055, while the MCsimulations give T = 1:06(1) [24℄, for � = 2:0 and r=1.0 (the ase ofr=1.0 orresponds to a one-omponent system) we obtain T = 2:753 and� = 0:129, while the simulations give T = 2:684(51) and � = 0:123(43)[23℄.
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Figure 3. The vapour-liquid ritial temperature as a funtion of themirosopi parameter r at � = 1:5 (left) and � = 2:0 (right)
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Figure 4. The ritial density as a funtion of the mirosopi parameterr5. ConlusionsIn this paper we propose a method for the study of the vapour-liquidritial point of a symmetrial binary mixture depending on its miro-sopi properties. We apply this method to the hard sphere square-wellbinary mixture. For this model we alulate the ritial temperatureand ritial density versus the mirosopi parameter r measuring thedissimilar interation in the system as well as versus the width of thepotential well. Our results agree well with those obtained by using MCsimulations. We an improve our results in the following ways: 1) takinginto onsideration the region of k with jkj > B (see �gure 2); 2) using ahigher approximation than the �4 one.Having tested the theory by the results of MC simulations for suha simple model we an apply it to more realisti systems, for example,the hard sphere Yukawa mixtures and the Lennard-Jones mixtures. Therelevant results will be given in a subsequent paper.Appendix AA grand partition funtion of a two-omponent uid system in the CVrepresentation with a RS an be written as in [28℄:� = �0�1;
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Figure 5. The vapour-liquid ritial temperatures versus r when the PYapproximation and the CS approximation for S2(0) are usedwhere�0 = 1XNa=0 1XNb=0 bY=a exp ���0NN ! � Z (d�) exp24��2 X;Æ=a;bXi;j  Æ(rij)35is a grand partition funtion of the RS; � = 1k÷T , kB- is the Boltzmanonstant, T is temperature; (d�) = Qa;b d�N , d�N = d~r1 d~r2 : : : d~rNis a volume element of the on�gurational spae of the -th speies; �0is a hemial potential of the -th speies in the RS.The part of the grand partition funtion whih is de�ned in the CVphase spae has the form of a funtional integral:�1 = Z (d�)exp[�X �1�0; � 12� X;Æ=a;bXk �Æ(k)�k;��k;Æ℄J(�a; �b):(26)Here,1) �1 is a part of the hemial potential of the -th speies�1 = � � �0 + 12�Xk �(k);
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Figure 6. The ritial density versus r when the PY approximation andthe CS approximation for S2(0) are usedand is determined from the equation� ln �1���1 = hNi;� is a full hemial potential of the -th speies; �Æ(k) = �V ~�Æ(k) ;< N > is an average number of the -th speies partiles.2)�k; = �k; � i�sk;( = a; b) are olletive variables of the -thspeies, the indies  and s denote the real part and the oeÆient atthe imaginary part of �k;; �k; and �sk; desribe the value of the k-thutuation mode of the number of the -th speies partiles. Eah �k;and �sk; takes all the real values from �1 to +1. (d�) is a volumeelement of the CV phase spae:(d�) =Y d�0;Yk6=00d�k;d�sk; :The prime means that the produt over k is performed in the uppersemi-spae;3) J(�a; �b) is a transition Jaobian to the CV averaged on the RS:J(�a; �b) = Z (d�) bY=a exp24i2�X~k �k;�k;35 exp24Xn�1 (�i2�)nn! �
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Figure 7. The vapour-liquid ritial temperature as a funtion of thewidth of the potential well �X1:::n Xk1:::knM1:::n(k1; : : : ;kn)�k1;1 : : : �kn;n# ;where variables �k; are onjugated to CV �k; . M1:::n(k1; : : : ;kn) isthe n-th umulant onneted with S1:::n(k1; : : : ; kn), the n-partile par-tial struture fator of the RS, by means of the relationM1:::n(k1; : : : ;kn) = npN1 : : : NnS1:::n(k1; : : : ; kn)Æk1+���+kn ;where Æk1+���+kn is a Kroneker symbol.4) ~�Æ(k) is a Fourier transform of the attrative potential �Æ(r).Funtion ~�Æ(k) satis�es the following requirements: ~�Æ(k) is negativefor small values of k and limk!1 ~�Æ(k) = 0.We pass in (26) to CV �k and k (aording to !k and k) by meansof the orthogonal linear transformation:�k = p22 (�k;a + �k;b); k = p22 (�k;a � �k;b);
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Figure 8. CoeÆients a2 and a4 of the e�etive GLW Hamiltonian asfuntions of the width of the potential well �!k = p22 (�k;a + �k;b); �k = p22 (�k;a � �k;b): (27)Now �k and k are onneted with the total density utuation modesand the relative density (or onentration) utuation modes, respe-tively.As a result, for �1 we obtain formulae (3)-(8).Appendix BCumulants M(in)n (0) with n � 4 are expressed in terms of the initialumulants M1:::n(0; :::; 0) (1; :::; n = a; b) as follows [30℄:M(0)1 (0) = Ma(0) +Mb(0) =< N >M(1)1 (0) = Ma(0)�Mb(0) =< Na > � < Nb >M(0)2 (0) = Maa(0) +Mbb(0) + 2Mab(0)M(1)2 (0) = Maa(0)�Mbb(0)M(2)2 (0) = Maa(0) +Mbb(0)� 2Mab(0)M(0)3 (0) = Maaa(0) +Mbbb(0) + 3[Maab(0) +Mabb(0)℄M(1)3 (0) = Maaa(0)�Mbbb(0) +Maab(0)�Mabb(0)
ICMP{00{01E 20M(2)3 (0) = Maaa(0) +Mbbb(0)�Maab(0)�Mabb(0)M(3)3 (0) = Maaa(0)�Mbbb(0)� 3[Maab(0)�Mabb(0)℄M(0)4 (0) = Maaaa(0) +Mbbbb(0) ++ 4[Maaab(0) +Mabbb(0)℄ + 6Maabb(0)M(1)4 (0) = Maaaa(0)�Mbbbb(0) + 2[Maaab(0)�Mabbb(0)℄M(2)4 (0) = Maaaa(0) +Mbbbb(0)� 2Maabb(0)M(3)4 (0) = Maaaa(0)�Mbbbb(0)� 2[Maaab(0)�Mabbb(0)℄M(4)4 (0) = Maaaa(0) +Mbbbb(0)�� 4[Maaab(0) +Mabbb(0)℄ + 6Maabb(0) (28)The same expressions hold at ki 6= 0.The nth umulant M(in)n (0) with in = 0 is onneted with the nthstruture fator of the one-omponent system Sn(0) [30℄:M(0)n (0) =< N > Sn(0):Struture fators Sn(0)(n � 2) an be obtained from S2(0) by meansof a hain of equations for orrelation funtions [36℄. Cumulants within 6= 0 an be expressed in terms ofM(0)n (0) (see formulae (4.8) in [30℄).Appendix CAfter the layer-by-layer integration of the partition funtion (18) oneobtains [26℄:� = �0�(1)G hZ( ~M2; ~M4)i<NB> (p2)<NB>�1Q0Q1 : : :Qn� [Q(Pn)℄Nn+1 Z exp[E(n+1)4 (�)℄(d�)Nn+1 ;E(n+1)4 (�) = ���0 � 12 Xk<Bn+1 d(n+1)2 (k)�k��k � a(n+1)44!Nn+1� Xk1:::k4<Bn+1 �k1 : : : �k4Æk1+:::+k4 + : : : :Here Nn =< NB > S�3n, Bn = BS�n. Qn is a partial partition funtionof the n-th layer: Q1=Nnn = Q(Pn�1)Q(d(n)2 );



21 ðÒÅ�ÒÉÎÔwhere Q(Pn) = Z +1�1 'n(!)d!;'n(!) = exp��(2�)2P (n)2 !2 � (2�)44! P (n)4 !4� ;Q(d(n)2 ) = Z +1�1 fn(�)d�;fn(�) = exp��12d(n)2 (Bn+1; Bn)�2 � 14!a(n)4 �4� ;P (n)2 = hQ(d(n)2 )i�1 Z +1�1 �2fn(�)d�;P (n)4 = S�3�� hQ(d(n)2 )i�1 Z +1�1 �4fn(�)d� + 3(P (n)2 )2� :CoeÆients d(n+1)2 , a(n+1)4 are linked to d(n)2 , a(n)4 by the reursionrelations. The reursion relations have the form [26℄:rn+1 = S2(�q + (rn + q)N(xn));un+1 = S4�dUnE(xn); (29)where the following notations are introdued:rn = d(n)2 (0)S2n; un = a(n)4 S4n;d(n)2 (0) = a(n)2 + � ~V (0);q = �qj� ~V (0)j; �q = 12(1 + S�2);N(xn) = � ynxn�1=2 K(yn)K(xn) ;E(xn) = S2dL(yn)L(xn) ;xn = d(n)2 (Bn+1; Bn)(3=a(n)4 )1=2;yn = S3=2K(xn)(3=L(xn))1=2;d(n)2 (Bn+1; Bn) = d(n)2 (0) + qS�2n:Equations (29) have the �xed-point type partial solution: rn = r�,un = u�. The pair of numbers (rn; un) an be onsidered as oordinates ofa point in a parametri spae. As a result of layer-by-layer integration we
ICMP{00{01E 22obtain a trajetory. For the �4 model there exists a unique temperaturefor whih the trajetory redues to a point(rn; un)! (r�; u�) n!1;r�; u� > 0:The (r�; u�) point is a �xed point of the renormalization group transfor-mation.In the viinity of the ritial point we an use linear approximationsin (29). We obtain:� rn+1 � r�un+1 � u� � = R� rn � r�un � u� � ; (30)where R is a linearized renormalization group transformation matrix. In[26℄ a general solution of (30) was found in the form:rn = r� + 1E(n)1 + 2E(n)2 R;un = u� + 1R1E(n)1 + 2E(n)2 ; (31)where R = R12E2�R11 , R1 = E1�R11R12 , E1 and E2 are the eigenvalues ofthe matrix R; E1 > 1, E2 < 1. 1 and 2 are funtions depending ontemperature, density and interation potential1 = �a2 � �j ~V (0)j � r� + (a4 � u�)R�w�1;2 = h��a2 � �j ~V (0)j � r��R1 + (a4 � u�)iw�1; (32)where w = E1�E2R11�E2 .The solutions (31) are valid in the viinity of the ritial point in-luding the ritial point itself. At the ritial point the solutions rn, unat n!1 tend to the �xed-point valueslimn!1rn = r�; limn!1un = u�:This is possible only if 1 = 0. So, from the equation1(T) = 0; (33)using (32) we an �nd T.
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