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BuBueHH# 3 HepIIUX IMPUHIMAINB KPUTUIHOI TOYKHU piauHa-mapa
OiHApHOI cUMeTPUYHOI (PJIIOLTHOI CyMiImi

O.B.[Tanaran, M.I1.Kosznoschkuii, P.C.MeabHuk

Amnoramisi. 3a1pornoHOBaHO MIKPOCKONIYHMN miaxin 40 onucy HnoBemiH-
Ky GiHapHOi cumerpudHOl (JIOigHOI cyMmiun B OKOJIi KPUTUYHOI TOYKU
pinuna-mapa. ITokazano, mo 3aga4y MOXKHA 3BECTH [0 PO3PAXYHKY CTa-
tuctuanol cymu 3D momeni Isiara B 30BHimmEROMY O 18 GinapHOi
CUMETPUYHOI CyMilTi, JACTUHKYN AKOI B3AEMOMIIOTH 3 MOTEHIIAJI0M TTP-
MOKYTHOI MU MU PO3PAXOBYEM MAPAMETPU KPUTUIHOI TOIKYU AK DYHK-
il MiKpPOCKOIIYHOTO IapamMerpa r, KUl € Mipol0 BiIJTHOCHOI CHUJIU B3ae-
MOl MiK 9acTHHKaMU OJMHAKOBHUX i pi3HmXx copriB. Po3paxynku mpose-
JIeHi 114 IBOX pizHUX 00J1acTeil il MOTeHIia Iy IPUTATAHHA: TPOMIiKHOIL
(A = 1.5) i momipro nanekomnirouoi (A = 2). Pesybraru mobpe y3romky-
IOThCA 3 Pe3yIbTaTaMu, MO0 OTPUMAHI METOIOM MAIIMHHOTO MOOETIOBAH-
HA.

Ab initio study of the vapour-liquid critical point of a symmet-
rical binary fluid mixture

0.V.Patsahan, M.P.Kozlovskii, R.S.Melnyk

Abstract. A microscopic approach to the investigation of the behaviour
of a symmetrical binary fluid mixture in the vicinity of the vapour-liquid
critical point is proposed. It is shown that the problem can be reduced
to the calculation of the partition function of a 3D Ising model in an
external field. For a square-well symmetrical binary mixture we calculate
the parameters of the critical point (critical temperature and critical
density) as functions of the microscopic parameters: the parameter r
measuring the relative strength of interactions between the particles of
dissimilar and similar species and the parameter A measuring the width
of the potential well. The obtained results agree well with the ones of
computer simulations.
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1. Introduction

Binary mixtures in contrast to their constituent components can exhibit
three different types of two-phase equilibria: vapour-liquid, liquid-liquid
and gas-gas [1,2]. The possibility of the realization of these phenomena
and their priority depend both on the external conditions and microscop-
ic parameters of a mixture. The study of the influence of interparticle
interactions on the critical properties of a binary mixture is an interest-
ing and actual problem. During the last decade this problem has been
intensively studied by integral equation theories (IETs). The advantages
and limitations of these approaches were recently given by C. Caccamo
in his extensive review [3]. Here we briefly point out some key features
of IETs concerning phase equilibrium and critical properties of classical
fluids.

The well-known IETs, such as the mean spherical approximation
(MSA), the Percus-Yevick (PY) equation and the hypernetted chain
(HNC) equation do not have a solution inside a certain region. In the
case of the MSA, the boundary line of this forbidden region coincides
with a spinodal line [4]-[6]. The MSA predictions for the existence of
the critical points and the spinodal turn out to be qualitatively correct,
although the thermodynamic inconsistency of the theory forbids a quan-
titative estimate of the location of these features. The PY equation and
the HNC equation either do not predict the correct diverging trend of the
compressibility when the spinodal is approached or do not predict any
divergence at all [5], [7]-[8], [9]. The modified hypernetted chain (MHNC)
theory is able to predict quite satisfactorily the liquid and the vapour
branches of the binodal of a simple fluid at low enough temperature,
but it fails to converge close to the critical point and the position of the
critical point is not given directly by the theory but is to be determined
by extrapolation [10]-[11]. Therefore, the IETSs, although play an impor-
tant role in the understanding of the properties of the liquid state, are
not able to give a correct description of the fluid behaviour close to the
critical point.

Of special interest is the hierarchical reference theory (HRT) con-
cerned with the study of both universal and nonuniversal properties
[12]-[17]. In this theory the long-wavelength part of the interaction is
turning on gradually and the corresponding evolution of thermodynamic
quantities and correlation functions is expressed by an infinite hierarchy
of exact integro-differential equations. A simple closure of the hierar-
chy (the Ornstein-Zernike ansatz) yields nonclassical critical exponents
with the correct scaling regime. The HRT was applied to one- and two-
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component fluids. The results were found to be in a good agreement
with both numerical simulations and experiments. However, as far as
this method is computationally intensive, its application is limited.

On the other hand, the critical properties of simple fluids and binary
mixtures have recently been studied using Monte Carlo (MC) simulations
[18]-[24]. In [24] the vapour-liquid critical temperature was calculated for
the symmetrical mixture of hard spheres interacting via the square-well
potentials. Thus, it is interesting to test a theory using such a simple
binary fluid model.

In the present paper we propose a microscopic approach to the study
of the vapour-liquid critical point of a symmetrical binary mixture. This
approach is based on the method of collective variables (CV) [25]. Its
characteristic feature, in comparing with the above-mentioned theories,
is that it allows one to determine, on the microscopic grounds, the ex-
plicit form of an effective Ginsburg-Landau-Wilson (GLW) Hamiltonian
and then to integrate the partition function in the neighbourhood of the
phase transition point taking into account the renormalization group
(RG) symmetry. This method appears to be successful in describing the
second order phase transition of the 3D Ising model [26] and the vapour-
liquid critical point of a one-component fluid [27]. On the basis of this
approach both universal and non-universal quantities were obtained.

In [28] the CV method with a reference system (RS) was general-
ized for the case of a grand canonical ensemble for a multicomponent
continuous system. Using this approach the phase diagram of the sym-
metrical mixture was examined within the framework of the Gaussian
approximation [29]-[31].

In this paper we determine an explicit form of the effective GLW
Hamiltonian of the symmetrical binary mixture in the vicinity of the
vapour-liquid critical point. Then we integrate the functional of the
grand partition function by the use of the layer-by-layer integration
method proposed in [26] for the 3D Ising model. As a result of this in-
tegration one obtains recursion relations for the coefficients of the GLW
Hamiltonian. The analysis of these relations yields an equation for T..
Here we avoid extensive consideration of the results pertaining to the
Ising model and call the readers’ attention to [26] where this problem
was studied in detail. The method which we describe here yields the
same critical exponents as in [32] (see table 1).

The paper is organized as follows. We give a functional representation
of the grand partition function of a two-component continuous system
in section 2 and appendix A. In section 3 we construct the basic density
measure (GLW Hamiltonian) with respect to the CV which include a
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Table 1. Values of the critical exponents and the ratios of the critical
amplitudes for the 3D Ising model obtained within the framework of the
CV method

v ! Ié; y AT /A r+/r-
0.637 | 0.088 | 0.319 | 1.275 | 0.435 6.967

variable corresponding to the order parameter. In this section we also
present the basic ideas of the method of the partition function integration
in the vicinity of the critical point. In section 4 we apply our formalism
to calculating the critical characteristics (temperature and density) of
the binary square-well symmetrical mixture. The obtained results are
discussed and compared with the MC simulation data reported recently
by N.B.Wilding [24] and E.de Miquel [23].

2. Functional representation of the grand partition
function of a binary mixture

Let us consider a binary fluid mixture consisting of N, particles of species
”a” and Ny particles of species ”b”. The system is in volume V' at temper-
ature T'. Let us assume that an interaction in the system has a pairwise
additive character. The interaction potential between < particle at r;
and 6 particle at r; can be expressed as a sum of two terms:

Uss(Iri = 1)) = Was(fri = 15]) + D5 (Jri — 1), (1)

where ¥, 5(r) is a potential of a short-range repulsion and ®,5(r) is an
attractive part of the potential which dominates at large distances.

A functional of the grand partition function (GPF) of the binary
homogeneous system in the CV method with a RS can be represented
as a product of two factors (see Appendix A):

E051 ’ (2)
where Zg is the GPF of the RS which we suppose to be known. = is the
part of the GPF which is written in the CV space:

[1]

| = /(dp)(dC) exp {Bui po + Buy co— gz [V(k)pkp—k +
k

+ 20 (k)prcx + W(k)ckc,k] } J(p,c). (3)
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Chemical potentials p = %(u‘f + pb) and p; = %(,u‘f — pb) are

determined from the conditions:

dln51
—— = < Ng>+<Ny>=<N > (4)
dBpy ’
din=,

— = < Ng>—<Np>. (5)
dBu; ‘

Functions V' (k), W (k) and U (k) are combinations of Fourier trans-

forms of the initial interaction potentials ®,5(k):

T#) = () awal®) +an(h) + 2aa (b)),
0k) = () [walh) — an(b)], ©
W = O lual®) + au®h) — 200 0).

2

J(p,c) = /(du)(dw) exp {i?ﬂ' Z(wkpk + veek)+

k

+

Z Z D) (w,v) (7)

n>1i, >0

is a transition Jacobian to the CV py,ck averaged on the RS, variables
wk, Yk are conjugated to variables py, ck, respectively.

. —i2m)m (1\™/? .
D™ (w,v) = # <§> Z M (y ks, k) X
n. K.k,
X Vi --- Vk;, Wk;, 41 -- .wkn6k1+___+kn. (8)

Index i, indicates the number of variables vy in the cumulant expan-
sion (8). Cumulants /\/lgf")(kl, ks, ...,k;) are linear combinations of the
initial cumulants M., . -, (k1,ko,...,ky) (7 = a,b) (see Appendix B).
In general, the dependence of M., . ., (ki,ks,....,k,) on wave vectors
ky,ks, ..., k, is complicated [28]. Since we are interested in the critical
properties, the small-k expansion of the cumulants can be considered.
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Figure 1. Three phase regions of the symmetrical mixture depending on
the microscopic parameters: (1) gas-gas and vapour-liquid phase tran-
sitions (T¢~9 > T¥~Y); (2) vapour-liquid and liquid-liquid phase transi-
tions (T¥~! > T!=1); (3) vapour-liquid phase transition only. S, is the
two-particle structure factor of the reference system

Hereafter we shall replace M., . (ki,ks,...,ky) by their values in the
long-wave limit and we shall discuss this approximation in Sec. 4.

We consider a symmetrical binary fluid mixture (SBFM), i.e. a sys-
tem in which the two pure components ”a” and ”b” are identical and only
interactions between the particles of dissimilar species differ. Notwith-
standing its simplicity, the SBFM exhibits all the three types of two-
phase equilibria which are observed in real binary fluids, namely: vapour-
liquid, liquid-liquid and gas-gas equilibria. For the SBFM U (k) = 0 in (3)
and there are only terms with even indices i,, in the cumulant expansion
(8) [30].

3. The method

As it was already shown [30], the phase diagram of the SBFM consists
of three ranges (see figure 1): (1) gas-gas separation and vapour-liquid
phase transitions; (2) vapour-liquid and liquid-liquid phase transitions;
(3) vapour-liquid phase transition only.

The order of priority of the vapour-liquid and separation phase tran-
sitions depends on both the external conditions and the microscopic
properties of the system. There exist two critical temperature branch-
es in such a system: branch (T?~!) connected with the variable py and
branch (T2¢P) connected with the variable g [30]. All the thermodynamic
functions of the SBFM are symmetrical with respect to the concentra-
tion x=0.5 and have an extremum at this point [1,29]. The concentration
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x=0.5 is a critical one for this model mixture.
We consider a symmetrical fluid mixture whose parameters satisfy
the following condition:

_ 1-55(0)

’I“>£, —TSQ(O)

It corresponds to ranges 2 (£ < r < 1) and 3 (r > 1) on the phase
diagram (see Fig. 1). In this paper we study the vapour-liquid critical
point.

In the case of the SBFM the variables py and ¢y are connected with
the order parameters for the vapour-liquid and separation phase tran-
sitions, respectively [30]. This fact allows us to separate CV px and ¢k
into essential and non-essential ones depending on the phase transition
considered. Since we are interested in the vapour-liquid critical point, we
can consider CV ¢ (and vk ) to be non-essential (CV ¢k do not contain a
variable connected with the order parameter, the coefficients standing at
the second power of ¢ (and vy ) are negative) and we can integrate over
ck (and vy ) with the Gaussian density measure. In respect to CV py it
is necessary to construct the basic density measure taking into account
higher powers of px (we shall consider a p* model).

As a result of integrating in (3)-(8) over variables c¢x (and vg) we
obtain for the GPF:

VTS

== =025 [ (dp)ex {Mpo - ZWka'—k} o @
k

where

1
EG = : (10)
¢ 1;[ V1+ B (MP (0)/2

10 = [@ew izwzwkmi(‘;ﬂ(%)mx
k

n>1
X Z /\/ln(O)wk1 . Wk, 6k1+---+kn} , (11)
k.. .k
M, (0) = MO (0) + AM,,. (12)
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AM,, are the corrections obtained as the result of integration over vari-
ables cy:

- MPo 1 ]
AMy = <N>§kjg<|k|),

(2)
amy = PO LS+

12 < N > -
(2) 2
" (M372(0)) < 13 N zk:é(lkl)é(lkl —k|),
(2) (2)
A = = (Oif“ o z ]3 N ggukbgukl k) +
(2) 3
* (MBG(O)) < ]3 =3 ¥§(|k|)§(|k1 +k)g(|ks — k),
_ MP0)2 1 o
AM = 96 < N >2 zk:g(lkl)g(lkl —k|) +
M(2) 0 A 1 ) i
o 33!( )) < N >4 Zk:g(|k|)g(|k1 +k|) x
x (k2 —k|)g(|ks + ki + k), 13)
where
glk) = B<N>W(k) »

WMD) + 1

In figure 2 the typical behaviour of the potential V(k)/|V(0)| is
shown.

Let us further assume that V' (k) = 0 at |k| > B. Then, integration
in (9) over px with |k| > B leads to ¢ - functions and the expression for
= contains only the sums over k with |k| < B.

We consider a set of k vectors, |k| < B, as corresponding to the sites
of a reciprocal lattice conjugated to a certain block lattice {r;} with Ng
block sites in the periodicity volume V':

Vv Vv (Bo)? <N >

N = — = = 1
<Np > c3 (n/B)3 6m2n ’ (15)

n=g po? is fraction density. Therefore, one may consider quantity B as
the size of the first Brillouin zone of this block lattice.
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Figure 2. The behaviour of the Fourier transform V(k)/|V(0)| of the
attractive part of the interaction potential V(r)

The shift
Wk = wi + Ady,
P = pi + My,
where _
_ i M3(0)
o 27 M4(0)7
oy MeOMs(0) | M)
M= M(0) Ma0) T 3AE(0)

</\/ln(0) = /(\4\/%()2), n =1, ...,4), transforms Z into a form containing

terms M, (0), Mx(0) and My4(0) only (the primes on py and wy are
omitted for clarity):

=2 = ZEY /exp {u*po —g > V(k)prp-x

k<B

. (2m)* - (2m)* -
+ 27 Z WPk = M5 (0) Z WkW_k — W|M4(O)|
k<B k<B
X Z Wk Wk Wk Wky 6k1+---+k4 } (dw)NB (dp)NB ) (16)
ki...ks<B
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where
=) = Egexpl pt My + ’W;(O)Mi
_ Mi(O)M3(0)  Ma(0)M3(0)  M;5(0) }
M 4(0) 2M2(0) 8M3(0) J
W= h—an, @ = ﬁig;' LBV ONM, k=B,
- - M2(0
My(0) = My(0) — 2/\434((0)),
M4(0) = < Np>My0). (17)

(d...)N® implies that the vector k takes the < Np > values inside the
first Brillouin zone:

!
(dp)N® = dpo [] dpicdpi,
k<B

(dw)N® = duwy H Idwf(dwls(.
k<B
Expression (16) for = corresponds to the Ising model in the external
field (a; — Bu;") with the only difference: cumulants Mo (0), M4 (0) are
functions of the fraction density 7, temperature T and parameters of the
attractive interaction ®.5(k).
After integration over wx we obtain the following form for the GPF:

~ ~ <NB>
= = 22l [200, 4] T (VBN x
< [ explEapdn) . (18)
Here
* 1 a4
Ey(p) = npo— ) Z dz (k) pxp—x — < Np> x
k<B ' B
X Z Pk - - - pk4(5k1+---+k4 +..0, (19)
ki...ky<B

Z(Ma, My) = <%>1/2 <|Mf(0)|>1/4 e /AU(0, 7),
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where

K(z)=U(1,z)/U(0,x),
L(z) = 3K*(z) + 2z K (z) — 2,

3 -
z=/ |M4(0)|M2(0). (21)

U(a,x) is a parabolic cylinder function [33]. Expressions (18)-(21) have
the same forms as similar expressions for a one-component system ob-
tained in [27]. This coincidence is achieved due to the symmetry of
the model under consideration. Ey(p) is the Ginzburg-Landau-Wilson
Hamiltonian for the SBFM in the vicinity of the vapour-liquid critical
point.

In order to integrate the GPF (18)-(21) over px and determine the
critical temperature we use the method developed in [26,34] for the Ising
model. The essence of the method consists in subsequent integration
over the layers of the CV space, beginning from pyx which correspond
to short-wave fluctuations. Variations of the coefficients of E4(p) as the
result of integration over pg in n subsequent layers of CV phase space are
described by the recursion formulae derived in [26]. For the case T' > T,
in the interval [0, B] there exist three characteristic regions [26]. The first
region B,,. < k < B corresponds to the strongly correlated fluctuations
Pk, their density measure is non-Gaussian. The procedure based on the
renormalization group symmetry is valid here. This is the region of the
critical regime (CR). The second region 0 < k < B,,, is related to the
fluctuation distributed according to the Gaussian density measure. This
is the limiting Gaussian regime (LGR).

The third region consists of the point £ = 0. The variable pg is
a macroscopic one and corresponds to the fluctuations of the particle
density in the ”external field” p*.

We integrate (18) according to the following scheme [26]. The re-
gion (0, B) is divided into the intervals (By, B), ..., (Bit1, B;), ..., where
B, = B/S™ (S is a division parameter). Each interval corresponds to a
layer of subscripts k in the Brillouin zone and each layer of subscripts k -
to a layer in the phase space pk. Integrating gradually over the layers we
get a block lattice sequence with an appropriately growing block period
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and with the Hamiltonian corresponding to each block. Each Hamiltoni-
an is characterized by the coefficients ds, a4; dél),afll); déz),aff), etc.. For

the sequence of the block Hamiltonians {dé") , ai")} the renormalization

group symmetry holds and the fixed point is of a saddle type. Because
the explicit expressions for the initial values of coefficients d(k) and a4
are given (see (19)-(21)), the solutions of the renormalization group type
are functions of microscopic parameters, density and temperature.

Generally, the division parameter S > 1 can take arbitrary values,
but the highest precision of the results is achieved at some optimal value
S = S* depending on the approximation considered. For example, if
we have a ¢* model approximation, the optimal value is S* = 3.4252
providing the coefficient d;") (0) to be equal to zero at the fixed point
[26]-[27].

The CR takes place for all the variables px at the critical point.
Therefore, the critical temperature can be determined from the solution
of recurrent equations (see Appendix C). Combining (33) with (32) we
derive the formula

A(BV(0))* + B(B.V(0)) + D =0, (22)
where

A=1-fo — RO /g,

B = —ay,

D= a4R(0)/\/<p0.
fo, o are coordinates of the reduced fixed point, R(®) is a universal
function of parameter S. The optimal value of S is 3.4252 and the values

of fo,¢0, R corresponding to it are taken from [34]. From the condition
#* = 0 we obtain the second equation [27]:

M;3(0) =0, (23)

which allows us to determine the critical density of the system.

4. Results and discussions

In this section we present our results for the vapour-liquid critical point of
symmetrical mixtures, using the method proposed above. These results
are compared with those previously obtained by Monte-Carlo simulations
[23,24].
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The system under study is a symmetrical hard sphere square-well
binary mixture. The interaction potential between the particles is given
by:

00, if r<o
Uys(r) =9 —€ys, if o<r<io ,
0, if r>Ao

where o is a hard sphere diameter, X is a range of the potential, and €45
is a well-depth of the interaction between the particles of types v and §.

The square-well potential is the simplest model which includes the
presence of attractive and repulsive forces. It is widely used to model
an interaction of uncharged colloidal particles [37]-[39]. Moreover, this
model is of substantial theoretical importance for the studies of systems
with a varying potential range since it can represent three limiting cases,
namely, a hard sphere fluid, a short-range sticky sphere fluid, and a long-
range van der Waals fluid.

For a symmetrical mixture €,, = €y, = € # €4p. In our formalism a
completely analytical treatment for general A is possible.

We split the potential U,s(r) into short- and long-range parts using
the Weeks-Chandler-Andersen partition [40]. As a result, we have:

o, r<o
) ={ 5 150 (24)
—€vs, 0<r<Ao
QW“T)::{ 0. reire (25)

For the WCA partition ®.4(r) is perfectly smooth in the core re-
gion. As it was shown [41], this partition provides the best estimates for
thermodynamic functions of the Lennard-Jones fluid.

In our case the RS is a one-component hard sphere system with
the diameter o (see (24)). In this case we can use the results for
My (k1, ka, ..., ky) obtained in [27]. As it was shown [27] the distinctive
feature of My (k) is an almost horizontal ”shoulder” at small k. More-
over, a weak dependence on k at small £ is a common property of the
cumulants of the higher order (n = 3,4). This allows us to replace the
functions M,,(k1, ko, ..., kn) at k; < B by constant values M,,(0,0, ..., 0).

The Fourier transform of function (25) has the form:

[—Az cos(Ax) + sin(Az)],

where
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‘I)Ws(O) = —GFY(;US?/\S.

Cumulants M%")(O, ...,0) are calculated according to the formulae
given in Appendix B. Both the Percus-Yevick (PY) approximation and
the Carnahan-Starling (CS) approximation are used for S2(0).

The solutions of equations (22)-(23) are found numerically using a
self-consistent procedure by means of which the dependencies of the co-
efficients ap and a4 (as well as cumulants M,,(0)) on . are taken into
consideration.

The vapour-liquid critical temperatures T, (T. = kpT/€) versus the
microscopic parameter r (r = €q/€ is a dissimilar interaction strength)
are shown for A = 1.5 and A\ = 2.0 in Fig 3. It is seen that the vapour-
liquid critical temperature of the square-well binary mixture increases
almost linearly with increasing r.

In Fig. 4 we demonstrate the dependence of the critical density 7.
on r for A = 1.5 and A = 2.0. There is a region of r (0.9 < r < 1.1)
on this plot where 7, remains almost constant and then (r > 1.1) it
decreases with increasing r. Besides, in the region r > 1.1 the values of
N for A = 2.0 are higher than the ones for A = 1.5. The curves depicted
in Figs. 3-4 are obtained when the PY approximation for S2(0) is used.

Figures 5 and 6 demonstrate the results for T, and 7. versus r when
the both approximations (PY and CS) for S»(0) are used. As it can
be seen, there is no significant discrepancy between the results, namely,
the CS equation gives slightly higher values for T, and 7. than the PY
approximation.

In Fig. 7 the vapour-liquid critical temperature of the square-well
binary mixture is plotted as a function of the width of the potential
well A for different r. Fig. 8 shows the A dependence of the coefficients
a$ = ax(T = Te,n = ne,r = 1) and a§ = aa(T = Teyn = ne,r = 1) of
the effective GLW Hamiltonian (19). It is not surprising that for large
values of A the critical behaviour of the system becomes mean-field like.

We also compare our results with those obtained from MC simu-
lations: for A = 1.5 and r=0.72 we have T. = 1.055, while the MC
simulations give T, = 1.06(1) [24], for A = 2.0 and r=1.0 (the case of
r=1.0 corresponds to a one-component system) we obtain 7, = 2.753 and
1. = 0.129, while the simulations give T, = 2.684(51) and 7, = 0.123(43)
[23].

ICMP-00-01E 14

16 T T T T
A=15 g
151 Gaussian approx. e
----- p" model gpprox .
1.4+
o 13F
= _
1.2+
11 )
10 1 1 1 1
0.8 1.0 1.2 1.4
r
45 T T T T T
A=2.0
—— Gaussan approx.
40 | . o* model approx. 7
35 i
o >
[
3.0 g
25" g
1 1 1 1 1
0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 3. The vapour-liquid critical temperature as a function of the
microscopic parameter r at A = 1.5 (left) and A = 2.0 (right)
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Figure 4. The critical density as a function of the microscopic parameter
r

5. Conclusions

In this paper we propose a method for the study of the vapour-liquid
critical point of a symmetrical binary mixture depending on its micro-
scopic properties. We apply this method to the hard sphere square-well
binary mixture. For this model we calculate the critical temperature
and critical density versus the microscopic parameter r measuring the
dissimilar interaction in the system as well as versus the width of the
potential well. Our results agree well with those obtained by using MC
simulations. We can improve our results in the following ways: 1) taking
into consideration the region of k with |k| > B (see figure 2); 2) using a
higher approximation than the p* one.

Having tested the theory by the results of MC simulations for such
a simple model we can apply it to more realistic systems, for example,
the hard sphere Yukawa mixtures and the Lennard-Jones mixtures. The
relevant results will be given in a subsequent paper.

Appendix A

A grand partition function of a two-component fluid system in the CV
representation with a RS can be written as in [28]:

[1]
[1]

0=15
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T
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1274
1270
1.4 1z
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1258
1250
%50
13
(8]
-
1.2 15
- -~ CSapprox.
——PY approx.
11 1 1 1 1 1
0.9 1.0 11 1.2 13 1.4

Figure 5. The vapour-liquid critical temperatures versus r when the PY
approximation and the CS approximation for S,(0) are used

Sy = i i I] exp [ﬁ’;éjv} /(dF)exp —g > halriy)

v,0=a,b i,j

is a grand partition function of the RS; 8 = ,CBLT, kp- is the Boltzman
constant, 7" is temperature; (dI') =[], ,dl'~,, dU'n, = drldry ... dﬁy\,7
is a volume element of the configurational space of the y-th species; pg
is a chemical potential of the «-th species in the RS.

The part of the grand partition function which is defined in the CV
phase space has the form of a functional integral:

g1 = / (dpexplB_ 1l poy — % > D (k)i p1s) T (pas pb)-
o v,0=a,b k
(26)
Here,
1) u is a part of the chemical potential of the y-th species

1
pl = = g+ 55 > s (R),
k
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0.136 T T T T

A=15 b
----- CS agpprox.
0.132 —— PY approx.

0.128
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0.124
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0.9 1.0 11 1.2 13 1.4

Figure 6. The critical density versus r when the PY approximation and
the CS approximation for S;(0) are used

and is determined from the equation

611151

W = (Ny),

i~ is a full chemical potential of the -th species; a~s(k) = %qz@ms(k) ;

< N, > is an average number of the y-th species particles.

2)pxy = P — ipg,(7 = a,b) are collective variables of the y-th
species, the indices ¢ and s denote the real part and the coefficient at
the imaginary part of pk; pi , and py . describe the value of the k-th
fluctuation mode of the number of the y-th species particles. Each pf
and py ., takes all the real values from —oo to +o00. (dp) is a volume
element of the CV phase space:

i
(dp) = [[ dpor [ [ ek dpi --
y kA0

The prime means that the product over k is performed in the upper
semi-space;
3) J(pa, py) is a transition Jacobian to the CV averaged on the RS:

b .
) —i2m)"
J(paapb) = /(dV) I I exp 127 E Vk,~Pk,y | €XP E ux

n!
Yy=a i n>1
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15 2.0 25 3.0 35

Figure 7. The vapour-liquid critical temperature as a function of the
width of the potential well A

E : E : M’Y1~~~'7n(k17"'7kn)yk1771"'any'Yn )

Y1--Yn k1. Ky

where variables v, are conjugated to CV pi . My, .+, (ki,....ky) is
the n-th cumulant connected with S, . . (k1, ..., k»), the n-particle par-
tial structure factor of the RS, by means of the relation

M’n...’yn (k17 .- :kn) = n\/ N’Yl T N’Yn S’h...’yn (kla R kn)6k1+~~~+kn7

where 0, 1...4x, is a Kronecker symbol.

4) ¢.5(k) is a Fourier transform of the attractive potential ¢.s(r).
Function é.5(k) satisfies the following requirements: ¢.5(k) is negative
for small values of k and limy_,ds(k) = 0.

We pass in (26) to CV px and ck (according to wy and k) by means
of the orthogonal linear transformation:

V2

2
Px = 7(/)1"“ + oK), k= 7(pk,a - PK.b),
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a,,a

Figure 8. Coefficients a§ and aj of the effective GLW Hamiltonian as
functions of the width of the potential well A

V2 V2
— (k0 + Vkp), Uk = 7(”}(70, — Vkp)- (27)

Wk = B

Now px and ¢y are connected with the total density fluctuation modes
and the relative density (or concentration) fluctuation modes, respec-
tively.

As a result, for Z; we obtain formulae (3)-(8).

Appendix B

Cumulants Mg")(O) with n < 4 are expressed in terms of the initial
cumulants M., .., (0,...,0) (71,...,7n = a,b) as follows [30]:

MO®0) = Ma(0) + My(0) =< N >

MD0) = Ma(0) = My(0) =< N, > — < N} >
MP(0) = Maa(0) + My (0) + 2M 4 (0)

MPD©O) = Maa(0) - Mbb(O)

MEO0) = Maa(0) + My (0) — 2M45(0)

MP©0) = Maaa(0) + Mosp(0) + 3[Maas(0) + Mars (0)]
MM O0) = Maaa(0) = Muss(0) + Maas(0) — Moy (0)

ICMP-00-01E 20
MP0) = Maaa(0) + Mypp(0) — Maas(0) — M (0)
MP0) = Maaa(0) = My (0) = 3[Maan(0) — Mass(0)]
MELO) (0) = Mauaaa(0) + Mppps(0) +
+ 4 Maaab(0) + Mapss(0)] + 6Maans(0)
Mz(ll)(o) = Maaaa(0) = Mipps(0) + 2[Maaab(0) — Mapps (0)]
Mff) (0) = Maaaa(0) + Mppps(0) — 2M a5 (0)
MP0) = Maaaa(0) = Mysss(0) = 2[Maqab(0) — Mapss(0)]
MP0) = Magaa(0) + Myp (0) -
4 M aaab(0) + Mapps (0)] + 6 M aaps(0) (28)

The same expressions hold at k; # 0.
The nth cumulant MSZ")(O) with i, = 0 is connected with the nth
structure factor of the one-component system S, (0) [30]:

MO(0) =< N > 5,,(0).

Structure factors S, (0)(n > 2) can be obtained from S2(0) by means
of a chain of equations for correlation functions [36]. Cumulants with

in # 0 can be expressed in terms of M (0) (see formulae (4.8) in [30]).

Appendix C

After the layer-by-layer integration of the partition function (18) one
obtains [26]:

<Np>
= 220 [200, 7)) T (VB Q001 -

X [Q(Py) "+ / exp[E{ T (0)](dp) N+,

[1]

o)

ANpy

L1
BP0 = w5 Y & ks — o
k<Bp41

X E Pk "'pk46k1+---+k4 +...
ki..k4s<Bpy1

Here N,, =< Ng > 873", B, = BS™". (,, is a partial partition function
of the n-th layer:

QYN = Q(Pos1)Q(dSY),




21 IIpenpunT

where
—+o0
Q(P,) = / on (@),

n 2m)*
on(w) = exp {—(271')2P2( Jw? — %P; )w4} ,

+00
Q") = / Fu(m)dn,

—
1 ., 1
fn(n) = exp {_Edg )(Bn+1:Bn)772 - $a4(1 )774} s

B = Jo™] [

— 00

P =53 {— [Q(dé"))] - /+Oo 0t fu(n)dn + 3(P2("))2} :

—0oQ

Coefficients dgn"_l), ainﬂ) are linked to dgn), afln) by the recursion
relations. The recursion relations have the form [26]:

Tn+1 = 52(_q + (rn + q)N(wn)),
Uni1 = S*TULE(zy), (29)

where the following notations are introduced:

Tn = dén) (0)5271, Up = ain) S4n,
i (0) = al™ + BV (0

=afTO), 7=31+57),
1/2

_ [ Yn K(yn)

v = (32) ey

T ZdL(yn)

o) =5 iy

2o = dy” (Bpi1, By)(3/af™)'/?,
yn = %2 K (2,)(3/ L(wn))"/?,
dy" (Bus1, By) = d3” (0) + ¢S >".
Equations (29) have the fixed-point type partial solution: r,, = r*,

upn = u*. The pair of numbers (7, u,) can be considered as coordinates of
a point in a parametric space. As a result of layer-by-layer integration we
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obtain a trajectory. For the p* model there exists a unique temperature
for which the trajectory reduces to a point
(rn,un) = (r*,u*) n— oo
r* u” > 0.
The (r*,u*) point is a fixed point of the renormalization group transfor-
mation.

In the vicinity of the critical point we can use linear approximations
n (29). We obtain:

rpt1 —1° _ Tp — 1
(o) =r( i), (30)
where R is a linearized renormalization group transformation matrix. In
[26] a general solution of (30) was found in the form:

=1+ clEfn) + CQEén)R,
U, = u* + ClRlEfn) + CQEén),
(31)

where R = E;ilf{u, R, = E‘llg—lljll7 E; and E, are the eigenvalues of
the matrix R; Ey > 1, E; < 1. ¢; and ¢ are functions depending on

temperature, density and interaction potential
—_ ¥ * * —1
¢ = (a2 —BIV(0)] = + (aa —u )R) w 't
e = [~ (a2 = BIV(O) =) Bu + (@ —u)| w, (32)

where w = ll?i 111%2.
The solutions (31) are valid in the vicinity of the critical point in-
cluding the critical point itself. At the critical point the solutions 7, u,

at n — oo tend to the fixed-point values

limy sootn =17, lim,_soou, = u”.
This is possible only if ¢; = 0. So, from the equation
ci(Te) =0, (33)

using (32) we can find T..
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