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Continuum of ground states and aperiodic structures in a lattice gas on the triangular lattice
with finite-range interactions
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A continuum of ground states is shown to exist in a lattice-gas model with one particle species on a triangular
lattice with finite-range interactions. The structures of the continuum can be divided into three groups: periodic (up
to phason flips along some channels), multiple-twin, and aperiodic. We suppose that there are quasicrystalline
structures among the latter. The growth mechanism for the structures consists in continuous formation and
self-destruction of defects through the propagation of phasonic excitations. Our investigation sheds light on some
fundamental questions in the theory of quasicrystals and infinitely adaptive structures.
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I. INTRODUCTION

The problem of structure or pattern formation is among
the most important and interesting problems in modern
physics. However, in spite of several decades of intensive
studies in this field, many fundamental key questions still
remain unanswered, in particular, the following ones. Why are
quasicrystals—ordered but aperiodic structures with the point
spectrum whose indexing requires a number of vectors that
is finite but greater than dimensionality of the structures—
formed and how do they grow?1,2 What is the mechanism
of infinite adaptivity in some compounds where, “within
certain composition limits, every composition can attain a fully
ordered crystal structure”?3–6 Do ordered structures which are
neither conventional crystals nor quasicrystals (for example
the so-called almost periodic crystals7 and irregularly ordered
structures)8 exist? We hope that our investigation reported
here and subsequent studies will shed some light on all these
problems.

We consider a rather simple lattice-gas model with one
particle species on a triangular lattice with finite-range inter-
actions and we show that this model possesses a continuum
of ground states parameterized with the particle density or
even (if the interaction reaches eighth neighbors) with the
chemical potential. The continuum contains both periodic (up
to phason flips along some channels) and aperiodic structures.
It is quite probable that there are quasicrystals as well as
non-quasicrystalline aperiodic structures among the latter.

So far, there is no general agreement regarding the role
of energy and entropy in the stability of quasicrystals.9–11

Energy stabilization presupposes the existence of perfect
quasicrystalline ground states. If, on the contrary, the role of
entropy is predominant, then quasicrystals can exist only for
sufficiently high temperatures and turn into periodic crystals
as temperature decreases. Our results support the energetic
concept of stabilization for aperiodic structures (including
quasicrystalline ones).

The description of quasicrystalline structures is based on
the mathematical theory of aperiodic tilings. This kind of tiling
was considered as long ago as 1619 by Kepler.12 Nowadays,
an aperiodic tiling was obtained for the first time by Berger in
1964.13 It was constructed with the so-called Wang dominoes.
As to lattice-gas models with aperiodic ground states, they
appeared in 1980s14 (immediately after the discovery of

quasicrystals).15 However, all these models are based on some
aperiodic tilings and contain many particle species (at least
16). We have managed to obtain aperiodic structures in a lattice
model with one particle species only.

Up to now, it is not clear how quasicrystals grow. Math-
ematical matching rules in the theory of tiling lead to the
nonlocality of growth. This fact had suggested that these rules
are not physical because they require long-range interactions
to form perfect quasicrystalline structures. Subsequently, it
has been shown that perfect Penrose tilings can be obtained
using a local growth algorithm which corresponds to short-
range interactions.16,17 The model to be considered in this
paper contains only finite-range interactions while the growth
mechanism for aperiodic and even periodic structures is
nonlocal. This mechanism can be called “phasonic” since it
assumes that the defects, inevitable in the growth process,
destruct themselves due to successive phason flips of particles.

The existence of the ground-state continuum in the model
considered here proves that infinite adaptivity observed in
many compounds3 can occur in systems with finite-range
interactions. This contradicts the Kittel’s suggestion that
infinite adaptivity is due to the long-range interactions.4 Let us
note that some numerical results corroborate with the Kittel’s
suggestion,5 but in Ref. 6 the infinite adaptivity was obtained,
numerically as well, in a system with finite-range interactions.
Our results are all the more significant since they are analytical
and cannot be obtained numerically.

II. CONTINUUM OF GROUND STATES

Thus, let us consider a lattice gas with one particle
species on a triangular lattice. In Ref. 18 we have proved
that, in the five-dimensional parameter space which includes
pairwise interactions of first, second, and third neighbors,
three-particle nearest-neighbor interaction, and the chemical
potential, a four-dimensional polyhedral cone (4-face of a five-
dimensional region) exists where the ground-state structures
of the corresponding lattice-gas model are constructed with
the following set of configurations of the “flower” (a site with

six neighboring sites): , , , and (or ). This
means that each flower in these structures belongs to some
of these four types. In what follows, we have to consider the
interactions up to eighth neighbors. Therefore, instead of the
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FIG. 1. The set of big-flower configurations equivalent to the set

, , , and . Solid circles represent particles and open ones
represent vacancies.

set of flower configurations we will have to use an equivalent
set of configurations of a bigger cluster containing 19 sites
(Fig. 1). We call this cluster “big flower.” For the sake of
convenience, we enumerate the configurations of the big flower
by two indexes, the first of which is the number of the small
flower in the center of the big one.

Each site on the triangular lattice is the center of a big flower.
We refer to the relative number of a big-flower configuration
in a structure as the “fractional content” of this config-
uration in the structure. In addition to the trivial relation
between fractional contents kij of the nine big-flower configu-
rations in the structures generated, some other linear relations
hold. A general method to deduce them is described in Ref. 19.

Let us consider a diamondlike subcluster of the big flower.
This subcluster can occupy two nonequivalent positions in the
big flower: central (position 1) and lateral (position 2). Each big
diamond on the lattice belongs to one big flower in the central
position (c1 = 1) and to two big flowers in lateral positions
(c2 = 2). Let us consider a big-diamond configuration, for
instance, the one shown in Fig. 1, and calculate the numbers
n1,ij and n2,ij of diamonds with this configuration in each
big-flower configuration in the positions 1 and 2, respectively:
n1,32 = 1, n2,11 = 2, n2,22 = 1, n1,23 = 2. All the remaining
numbers nl,ij are equal to zero. Using the general relation

∑
ij

kij n1,ij

c1
=

∑
ij

kij n2,ij

c2
, (1)

we get

k32 = 2k11 + k22 + 2k23

2
. (2)

Having considered other diamond configurations, one obtains
six linear relations (in addition to the trivial one) between
fractional contents kij of nine big-flower configurations in the
structures that they generate:

k32 = 2k11,

2k21 + k22 = 2k11,

k25 + k32 = 2k32,

2k25 + 2k24 = 2k41,

3k31 + k32 + k41 = 2k41,

2k11 + k22 + 2k23 = 2k32,

k11 + k21 + k22 + k23 + k24 + k25 + k31 + k32 + k41 = 1.

(3)

From these relations we have

k11 = 3 − 7k4

13
, k22 = −2k21 + 6 − 14k4

13
, k23 = k21,

k24 = −6 + 27k4

13
, k25 = 6 − 14k4

13
, k31 = −2 + 9k4

13
,

k32 = 6 − 14k4

13
, (4)

where k4 = k41 is the fractional content of the configuration

in the structure.
Since we consider many-particle couplings we set a

distinction of site clusters and particle clusters (i.e., occupied-
site clusters). To avoid confusion, we call the latter “filled
clusters” or briefly “f-clusters.” Consider an f-cluster K and
the corresponding coupling. To calculate the energy density of
a structure, it is necessary to know the density of f-clusters K
in this structure, that is, the number of f-clusters K per site. The
simplest f-cluster is a single particle, and the corresponding
density p0 is the number of particles per site. Instead of the
number of f-clusters K per site, we use the number pK of
f-clusters K per particle. The density of f-clusters K is equal
to p0pK , where

pK = 1

cK p0

∑
aij kij . (5)

Here cK is the number of big flowers on the lattice which
contain a cluster K; aij is the number of f-clusters K in the
corresponding big-flower configuration. The sum runs over all
big-flower configurations depicted in Fig. 1.

Let us find pi (i = 0 − 8) and p�, where p0 is the number
of particles per site (i.e., density of particles or coverage),
pi (i = 1 − 8) provides the number of ith neighbor pairs of
particles per particle (two-particle f-clusters), and p� is the
number of triplets of nearest-neighbor particles per particle
(three-particle f-cluster):

p0 = 1

19
(11k1 + 11k21 + 12k22 + 13k23 + 12k24 + 11k25 + 10k31 + 9k32 + 10k4) = 7 + k4

13
,

p� = 1

12p0
(k22 + 2k23 + 2k24 + k25 + 3k31 + k32 + k4) = 13

3
− 7

3p0
, p1 = 5 − 2

p0
, p2 = −2 + 2

p0
, p3 = 5 − 2

p0
,

p4 = 8 − 2

p0
, p5 = 12 − 6

p0
, p6 = −2 + 2

p0
, p7 = 10 − 4

p0
, p8 = −16 + 10 + k21

p0
. (6)
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FIG. 2. (Color online) Maximal clusters (in red) on the triangular
lattice with the diameter not greater than the distance between seventh
neighbors.

Thus, we see that the densities p0pi (i = 1−7) and
p0p� linearly depend on the particle density p0. For eighth
neighbors, this dependence is no longer linear. It is easy to
prove that for any f-cluster K with the diameter not greater that
the distance between seventh neighbors, the p0 dependence of
p0pK is linear. Such an f-cluster is an f-subcluster at least of
one of the two maximal f-clusters with the diameter equal to the
distance between seventh neighbors (Fig. 2). It is sufficient to
prove that, for each f-subcluster K of those maximal f-clusters,
the following equality holds:

n21 + n23 = 2n22, (7)

where n21, n23, and n22 are the numbers of f-subclusters K
in the big-flower configurations 21, 23, and 22, respectively.
Then pK depends on k4 only (which, in turn, linearly depends
on p0) and does not depend on k21. Analyzing configurations
21, 23, and 22, one can easily see that this equality holds for all
the f-subclusters of the maximal f-clusters depicted in Fig. 2.

Now, let us find the dependence of k21 on p0. Consider all
structures constructed with the set of big-flower configurations
depicted in Fig. 1 (or with the equivalent set of flower

configurations , , , and ) in such a manner that the
big-flower configuration 31 is contained in each structure. One
can show that such structures can be partitioned into domains

FIG. 3. (Color online) Hierarchy of domains with sides equal to
1, 2, 3, 4, . . . zigzags. Occupied sites are depicted as black and red
circles and unoccupied ones are depicted as open dotted circles.

whose hierarchy is depicted in Fig. 3, and only two or three
consecutive members of the hierarchy can be contained in the
same structure. The domains are joined six by six as shown in
Fig. 4. Examples of structures and their domain schemes are
presented in Fig. 5.

The domain, whose side is equal to k zigzags, has 9k

peripheral and (k − 1)(2k − 1) interior occupied sites; the
number of unoccupied sites is equal to 3k(k+1)

2 . Each junction of
six domains contains three sites common for three domains.
Hence, there are 3

2 sites per domain which are common for
three domains. The rest of peripheral sites are common for
two domains. Therefore, the number of occupied sites which
belong to the same domain with the side equal to k, is given
by

2k2 + 3

2
k + 1

4
= (2k + 1)(4k + 1)

4
. (8)

Let the side of the minimal domain in a structure be equal
to k and the fractional content of these domains be equal to
n1. Let us denote the fractional contents of domains whose
sides are equal to k + 1 and k + 2 by n2 and n3, respectively.
Then, a simple calculation yields an expression for the particle
density in the corresponding structure, that is,

p0 = (8k2 + 6k + 1)n1 + (8k2 + 22k + 15)n2 + (8k2 + 38k + 45)n3

(14k2 + 12k + 1)n1 + (14k2 + 40k + 27)n2 + (14k2 + 68k + 81)n3
. (9)

Configurations 21 occur uniquely at the junctions of six domains (see Fig. 4) and there are three of them at every junction.
Hence, the fractional content of these configurations in a structure is given by

k21 = 6

(14k2 + 12k + 1)n1 + (14k2 + 40k + 27)n2 + (14k2 + 68k + 81)n3
. (10)

Let us consider a structure with three types of domains.
Such a structure can be partitioned into wide and narrow
stripes. The narrow stripes are composed with little and middle
domains and the wide stripes are composed with middle and
big domains. This partition into parallel stripes is unique for
a given structure and can be performed in three directions
simultaneously. At the overlap of two narrow stripes, there
are small and middle domains; at the overlap of two wide
stripes there are middle and big domains; and at the overlap of
narrow and wide stripes there are two middle domains. Two
narrow or two big domains cannot occur at the overlap of any
two stripes. If the structure is periodic and its period contains

s narrow and l wide stripes, then a unit cell contains s2 small, l2

big, and s2 + l2 + 4sl middle domains. The fractional contents
of small (n1), middle (n2), and big (n3) domains are given by

n1 = s2

2(s + l)2
, n2 = s2 + 4sl + l2

2(s + l)2
, n3 = l2

2(s + l)2
.

(11)

These relations yield the following ones:

n2 = 1
2 − 2n1 + √

2n1, n3 = 1
2 + n1 − √

2n1. (12)
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FIG. 4. (Color online) Junction of domains. Configurations 21
are shown by green hexagons.

It is obvious that relations (11) and, hence, relations (12) hold
for aperiodic structures and also for the structures with only
two types of domains (n3 = 0).

One can observe and prove that the structures under
consideration are completely determined by the system of

trefoils (or configurations 31). Let us introduce the value r ,
which is the average distance between neighboring trefoils (the
unit of the distance is the triplet of unoccupied sites surrounded
by occupied ones). It can be shown that r is described by the
expression

r = s + 2l + k(s + l)

−s + k(s + l)
= 2 + k − √

2n1

k − √
2n1

. (13)

Now expressions (9) and (10) for p0 and k21 can be rewritten
in a simpler form, that is,

p0 = 1 + 15r2

1 + 27r2
, k21 = 3(r − 1)2

1 + 27r2
. (14)

Using these expressions, we can write k21 and, hence, p8 in
terms of p0. Thus, we have

k21 = 13p0 − 7 − √
3(1 − p0)(9p0 − 5)

2
, (15)

p8 = −19

2
+ 13 − √

3(1 − p0)(9p0 − 5)

2p0
. (16)

These expressions are valid for 5
9 < p0 � 4

7 , that is, for
the structures containing configurations 31. Now we have to
consider the structures without configuration 31. These have
been partially analyzed in Ref. 18 (structures 12). For these
structures p0 = 5

9 , k4 = 2
9 , and k21 varies from 1

9 [structure
12a, Fig. 6(b)] to 2

27 [structure 12b, Fig. 6(c)].
Let I1, I2, I3, and I8 be the first-, second-, third-,

and eighth-neighbor couplings, respectively, and let I� be
the three-body coupling. We do not consider interactions
corresponding to other f-subclusters of maximal f-clusters
because their densities depend on p0 linearly and, therefore,
the corresponding couplings do not shift the degeneracy in the
boundary under consideration. This degeneracy is shifted by
the interaction of eighth neighbors. The energy of structure(s)

(c) (d)

(a) (b)

FIG. 5. Examples of structures generated by the set of configurations depicted in Fig. 1 with (a) three (p0 = 460
823 ) and (b) two (p0 = 34

61 )
types of domains. (c),(d) The schemes of their domain superstructures. Occupied sites are depicted as black and gray circles and unoccupied
ones are depicted as open dotted circles. Small, middle, and big domains are represented by black, white, and gray triangles, respectively.
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FIG. 6. (Color online) (a) Structures 12. In every zigzag, either
upper or lower gray circles in each pair should be solid (but identically
for each pair of the zigzag). (b) Structure 12a with the smallest unit
cell. (c) Structure 12b.

with particle density p0 is given by

E = p0(p1I1 + p2I2 + p3I3 + p8I8 + p�I� − μlg). (17)

Having made use of the expressions (6) for p1, p2, p3, p8, and
p�, we obtain

E = p0

(
5I1 − 2I2 + 5I3 + 13

3
I� − μlg − 19

2
I8

)

−
√

3(1 − p0)(9p0 − 5)

2
I8

−
(

2I1 − 2I2 + 2I3 + 7

3
I� − 13

2
I8

)
. (18)

FIG. 7. (Color online) (a) Dependence of magnetization on the
external field and (b) dependence of the density of particles on the
chemical potential in the region with the continuum of ground states.
The first 20 points which correspond to the structures with two types
of domains are shown. The particle densities for these points are
p0 = 4k2+7k+4

7k2+13k+7
(k = 2,3, . . . is the dimension of the small domain in

zigzags).

The equation for the hyperplane in which the ground state is
the structure(s) with particle density p0 is given by

∂E

∂p0
= 0,

∂2E

∂p2
0

> 0, (19)

or, in the explicit form,

5I1 − 2I2 + 5I3 + 13

3
I� − μlg − 19

2
I8

+ 3(9p0 − 7)

2
√

3(1 − p0)(9p0 − 5)
I8 = 0, I8 > 0. (20)

We should verify, however, whether any of the structures
12 have smaller energies on this hyperplane. Since I8 > 0,
structure 12b has the minimal energy among all the structures
12. This energy is given by

E12b = 5
9

(
7
5I1 + 8

5I2 + 7
5I3 + 32

15I8 + 2
15I� − μlg

)
. (21)
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After having equated energies (18) and (21), and taking into
account Eq. (20), we find that these energies are equal for
p0 = 34

61 . The relevant hyperplane is described by the equation

5I1 − 2I2 + 5I3 + 13

3
I� − 89

3
I8 − μlg = 0. (22)

Hence, for the particle density in the interval from 34
61 to 4

7 , we
have a continuum of ground states; that is, there is a one-to-one
correspondence between the values of particle densities from
this interval and the hyperplanes in the Hamiltonian parameter
space.

We can easily switch to the equivalent spin model with spin
variables σ = ±1, using the transformation of the interaction
parameters that is given by (see Ref. 18)

I1 = 4J1 − 8J�, Ii = 4Ji (i = 2,3,8), I� = 8J�,
(23)

μlg = 2h + 12(J1 + J2 + J3 + J8 − J�), p0 = 1+M

2
,

where M is magnetization per site. For the spin model, Eq. (20)
is substituted with

4J1 − 10J2 + 4J3 + 10

3
J� − h − 25J8

+ 3(9M − 5)√
3(1 − M)(9M − 1)

J8 = 0, (24)

The continuum of ground states exists for the magnetization
in the interval from 7

61 to 1
7 . The dependence of magnetization

on the external field in this interval is shown in Fig. 7(a).
The corresponding dependence of the particle density on the
chemical potential is shown in Fig. 7(b). We suppose that
J8 = 0.01 is small enough not to go out of the region with the
continuum of ground states.

As is clear from Fig. 7, the phase transition from phase 12
to the phase with p0 = 34

61 is a first-order transition and the
transition from the continuum of ground states to the limiting
phase with p0 = 4

7 (Fig. 8) is a continuous one.

FIG. 8. (Color online) The limiting structure of the continuum of
ground states (p0 = 4

7 ). It is constructed with flower configurations

, , and .

III. STRUCTURES OF THE CONTINUUM AND THE
MECHANISM OF THEIR GROWTH

A. Fractional content of small domains in a narrow stripe of a
structure as its determining characteristic

Now, let us analyze the structures in themselves. We call the
scheme of domains of a structure (see Fig. 5) its “1-structure.”
The structure itself will be called “0-structure.” First we
consider the structures with three types of domains. Let c1

be the fractional content of small domains in a narrow stripe
of a structure. It is easy to see that this value is the same for all
narrow stripes in the structure irrespective of their orientations
and that it is equal to

c1 = s

2(s + l)
= k

2
+ 1

1 − r
, 0 < c1 <

1

2
. (25)

The fractional content (relative number) of big domains in a
wide stripe is given by

C1 = 1
2 − c1. (26)

The average distance between trefoils can be expressed in
terms of c1 or C1:

r = 2

k − 2c1
+ 1 = 2

k + 2C1 − 1
+ 1. (27)

The fractional contents of small and big domains are also
related to c1 and C1, respectively,

n1 = 1

2

(
k − 2

r − 1

)2

= 2c2
1,

(28)

n3 = 1

2

(
k − r + 1

r − 1

)2

= 2C2
1 .

The particle density is a function of c1 and k, that is,

p0 = 4(2c1 − k)2 − 15(2c1 − k − 1)

7(2c1 − k)2 − 27(2c1 − k − 1)
. (29)

In order to construct a 1-structure(s) with fixed c1, one
has to start with only one stripe of black and white triangles
(“narrow” or “black” stripe), its density of black triangles being
equal to c1, or with a stripe of white and gray triangles (“wide”
or “gray” stripe), its density of gray triangles being equal
to C1 = 1

2 − c1. However, these stripes cannot be arbitrary.
They should be compatible with the rule for construction of
1-structures (which was already formulated above): At the
overlap of two narrow, two wide, and narrow and wide stripes,
there should be black and white, white and gray, and two white
triangles, respectively. This rule determines the stripe, which
is, for instance, the left neighbor to the constructed one, either
uniquely or in two ways. Some examples of 1-structures are
shown in Fig. 9. If the sides of all black and gray triangles
from two neighboring stripes lie in their midline, then these
two stripes can be reflected with respect to their midline. We
call such a line a “disorder line” or a “phasonic line.” For the
1-structure with the density of black triangles equal to c1 = p

q

(p and q are relative primes), the distance between consecutive
phasonic lines is equal to q triangles if q is even and to 2q

triangles if q is odd. Hence, all structures with rational c1 are
disordered. There occurs ordering along the direction of the
phasonic lines and disorder in other two directions. Therefore,
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FIG. 9. (Color online) 1-structures with (a) c1 = 3
10 , (b) c1 = 1

3 ,
(c) c1 = 1

4 , and (d) c1 = 5
14 . Black, white, and gray triangles represent

small, middle, and big domains, respectively. The vertical red lines
are the phasonic lines (see text). The black heavy lines reflect the
periodicity in the vertical direction. 1-structure (c) is 2-structure of
0-structures with 1-structure (d).

this disorder can be called one-dimensional; it does not lead
to residual entropy. The disorder is due to phason flips that do
not change the energy density of structures. We can single out
the periodic 1-structure with the smallest unit cell from the
infinite number of 1-structures corresponding to a rational c1.
The choice of the unit cell for this 1-structure is not unique.
The uniqueness can be ensured by the following condition:
Two consecutive phasonic lines should contain two parallel
sides of the unit cell while black triangles with their sides on
a vertical phasonic line should lie to its right (see Fig. 10).

In what follows, we write simply “1-structure with c1” using
the expression “1-structure with the density of black triangles
equal to c1.”

B. Transformations of structures

1-structures are connected to one another by some transfor-
mations and thus we may restrict their analysis to a part of 1-
structures only. Let us consider some of these transformations.

FIG. 10. (Color online) The periodic 1-structure with c1 = 1
3 and

the smallest unit cell. Black, white, and gray triangles represent small,
middle, and big domains, respectively.

In a 1-structure with c1, black triangles can be replaced
with gray ones and vice versa. Then we obtain a 1-structure
with c̃1 = 1

2 − c1. The invariant of this transformation is the
1-structure with c1 = 1

4 [Fig. 9(c)]. Therefore, it is sufficient
to consider the 1-structures with 1

4 � c1 � 1
2 , that is, the 1-

structures where the density of gray triangles does not exceed
the density of black ones. In this interval, function p0(k,c1)
decreases. For k = 2, the value p0 varies from 34

61 (c1 = 1
2 ) to

62
111 (c1 = 1

4 ).
Let us consider one more transformation of 1-structures.

As one can see from Fig. 9, the black triangles in 1-structures
with 1

4 � c1 � 1
2 are organized in triangular domains. The

maximum number of different domains is three again: small,
middle, and big ones, exactly as the domains in 0-structures.
The unique 1-structure with only one type of “black” domains
(as well as “gray” ones) is the 1-structure with c1 = 1

4 . We call
these new domains “1-domains” and the scheme thereof is
called “2-structure” (certainly, with respect to the 0-structure).
It is clear that 2-structures are at the same time 1-structures
for corresponding 0-structures. Here is an example: The 1-
structure with c1 = 1

3 [Fig. 9(b)] is a 2-structure for the 0-
structure with c1 = 7

20 [Fig. 11(a)].
The fractional content c2 of small 2-domains in each

narrow stripe of a 2-structure is related to the fractional
content c1 of small 1-domains in each narrow stripe of the
1-structure as given by

c2 = 1 + k1

2
− c1

1 − 2c1
, (30)

where k1 is a side of the small 1-domain. The inverse of this
relation is

c1 = 1

2

(
1 − 1

k1 + 3 − 2c2

)
. (31)
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Using this transformation (in the general case, more than one
time), we can transform each 1-structure with three types of do-
mains into a 1-structure with one or two types of domains only.

In what follows, we refer to a stripe composed of elementary
triangles (black and white or gray and white) as a “row” and
we consider stripes consisting of rows. If, in a 1-structure
with c1 = 1

4 , all one-row black stripes are replaced with two-
row ones, then we obtain a 1-structure with c1 = 1

3 . The 1-
structures with 1

4 < c1 < 1
3 contain both one- and two-row

black stripes. If all one-row black stripes in such a 1-structure
are replaced with two-row ones and vice versa, then we obtain
a 1-structure with

c̃1 = 3 − 8c1

4(2 − 5c1)
. (32)

The invariant of this transformation is a 1-structure with c1 =
3

10 [Fig. 9(a)], where the numbers of one-row and two-row
black stripes are equal.

If m one-row stripes are inserted (in all the three directions)
between each pair of consecutive two-row stripes (there can be
some one-row stripes between them yet) in a 1-structure with
1
4 < c1 < 1

3 , then we obtain a 1-structure with

c1m = m(4c1 − 1) + 2c1

2[2m(4c1 − 1) + 1]
. (33)

Negative m corresponds to the decrease of the number of
one-row stripes between successive pairs of two-row stripes.
The 1-structures with 3

10 � c1 < 1
3 contain pairs of two-row

stripes without one-row stripes between them.
If, in a 1-structure with 1

4 < c1 < 1
3 , m two-row stripes

are inserted (in all three directions) between each pair of
consecutive one-row stripes (there can be some two-row stripes
between them yet), then we obtain a 1-structure with

c1m = 2m(3c1 − 1) − c1

6m(3c1 − 1) − 1
. (34)

Negative m corresponds to the decrease of the number of
two-row stripes between successive pairs of one-row stripes.
The 1-structures with 1

4 � c1 < 5
16 contain pairs of one-row

stripes without two-row stripes between them.
As follows from the above reasoning, 1-structures with

3
10 � c1 < 5

16 contain pairs of one-row stripes with no two-row
stripes between them as well as pairs of two-row stripes with
no one-row stripes between them. It is sufficient to consider
only these 1-structures.

It should be noted that the sides of all the 1-domains in
1-structures can be increased equally (new 1-domains with the
sides equal to 1 can appear in this case). It is easy to prove that
the increase of the sides of all the 1-domains by m (negative
m corresponds to the decrease) leads to the 1-structure with

c1m = m(2c1 − 1) − 2c1

2[m(2c1 − 1) − 1]
. (35)

An example of such 1-structures is shown in Fig. 11.

C. Construction of a black stripe with the use of the Farey tree

How to construct a black stripe compatible with the rule
of structure construction? It is clear that there is an infinite
number of such stripes. Let us consider black stripes parallel

FIG. 11. (Color online) 1-structures with (a) c1 = 7
20 and (b) c1 =

5
13 . Black, white, and gray triangles represent small, middle, and big
domains, respectively. The vertical red lines are the phasonic lines
(see text). The black heavy lines reflect the periodicity in the vertical
direction.

to the phasonic lines. The black stripe which is adjacent to
a phasonic line can be singled out. We have not found any
simple algorithm to construct this stripe. However, it turns out
that each 1-structure contains a black stripe (parallel to the
phasonic lines) which can be constructed with the use of the
Farey tree, that is, a binary tree of rational numbers between
0 and 1. The Farey tree has been used to construct the ground
states of the lattice gas models mostly in one dimension, but
also in two dimensions (see Ref. 20 and references therein).
The left part of the Farey tree is shown in Fig. 12. The tree
extends downward to infinity according to the following rule:
Each pair of adjacent fractions p1

q1
and p2

q2
has the descendant

p1+p2

q1+q2
. Every rational number between 0 and 1 occurs once in

the tree. The stripe with c1 = p

q
has the period of q triangles

if q is an even number and this period is a concatenation
of the periods of two fractions parent for the fraction p

q
in

the Farey tree. If q is odd, then the period is equal to 2q

triangles. One white and one black triangle (marked as “−”
and “+”) are the periods for 0

1 and 1
1 , respectively. If c1 is an

irrational number, then we construct an infinite sequence of
rational numbers which lead to c1 along the branches of the
Farey tree. (One can say that irrational numbers are located

FIG. 12. A part of the Farey tree. All rational numbers from the
interval [0, 1

2 ] appear in this tree only once.
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