
PHYSICAL REVIEW E 84, 061102 (2011)

Ground states of the lattice-gas model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with three-particle interaction:

Ground states at boundaries of full-dimensional regions
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We analyze the ground states at boundaries of four-dimensional (full-dimensional) ground-state regions of
the lattice-gas model on the infinite plane triangular lattice with nearest- and next-nearest-neighbor pairwise
interactions and with additional interaction between three particles at the vertices of a nearest-neighbor triangle.
In such a way we determine the ground states at fixed density of particles (coverage) and make the comparison to
experiments possible. A surprisingly rich variety of structures is found: ordered periodic, ordered-but-aperiodic,
disordered with various degree of disorder, and multiple-twin structures. The first-order and continuous phase
transitions are identified. The degree of disorder for disordered ground states is analyzed. One of the most
interesting results is the discovery of an infinite sequence of ground states at a boundary between two phases.
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I. INTRODUCTION

It is needless to say that lattice-gas models or equivalent
spin models are widely used in different areas of physics. It
is reasonable that the first step in the investigation of these
models should be the determination of their ground states.
These can be determined exactly if the model is not too
complicated. There are numerous methods for determination
of the ground states of lattice-gas models [1,2]. However,
most of them have got two important shortcomings: (1) they
permit to find only full-dimensional ground states, that is,
the ground states in full-dimensional regions of the space of
Hamiltonian parameters including the chemical potential (or
the external field for the equivalent spin Hamiltonian); (2) they
do not enable one to find disordered and ordered-but-aperiodic
ground states (see, for instance, Ref. [2]). We developed a
method that makes it possible to find all ground states at every
point of the Hamiltonian parameter space.

Using this method, we solved the ground-state problem for
the lattice-gas model on the triangular lattice with nearest-
and next-nearest-neighbor pairwise interactions and with in-
teraction between three particles at the vertices of the nearest-
neighbor triangle. A complete solution was given in Ref. [3],
though we constructed and analyzed only full-dimensional
ground-state structures therein. Here we determine the ground
states at the boundaries of full-dimensional regions. For the
model that we consider, a full-dimensional region is a four-
dimensional polyhedral cone. It has three types of boundaries:
three (hyperfaces), two (faces), and one (edges) dimensional.
We analyze the ground-state structures at all three-dimensional
boundaries with the exception of two mutually symmetric ones
where the sets of ground-state structures are so unconventional
and complicated that they should be considered in a separate
paper (anticipating things, we would like to report that we
discovered continua of ground-state structures among which
there are quasicrystalline ones). Only partial analysis of the
ground states at these boundaries is provided in the present
paper.

The investigation of the ground states in hyperfaces is
important for two reasons: first, it enables us to identify the

first-order phase transitions driven by the chemical potential
(or the external field for the spin model); second, it makes it
possible to find the ground states at a fixed density of particles
(coverage) and, hence, to link the theory with experiments.

Carrying out this analysis, we revealed a surprisingly rich
variety of ground-state structures in hyperfaces; some of them
are quite nontrivial. For instance, we found multiple-twin
structures. We also found an infinite sequence of ground-state
structures (very few examples of such sequences are known
[4,5]) and proved that they cannot create an infinite sequence
of full-dimensional ground states (so-called zero-temperature
(top) devil’s step [6]) at any additional interaction. Some inter-
esting examples of ground-state structures at two-dimensional
boundaries are also shown in the paper.

At the most boundaries, the ground-state structures turn out
to be disordered. We analyzed the disorder at each boundary
and showed that at many of them the entropy density is
nonzero.

To increase the usability of our results, we constructed
the ground-state phase diagrams where the first-order phase
transitions are indicated.

The paper is organized as follows. In Sec. II, devoted to
the summary of the results obtained in the previous paper, we
present the solution of the ground-state problem in the form of
a set of the so-called “basic rays” and the corresponding sets of
configurations of the seven-site cluster in the form of flower;
the full-dimensional ground-state structures are also presented
in this section. In Sec. III, the basic rays and ground-state
flower configurations are determined for the hyperfaces of
the full-dimensional regions. Section IV is devoted to the
analysis of the ground-state structures in the hyperfaces and
transitions between full-dimensional phases. In Sec. V, some
examples of the ground-state structures in two-dimensional
faces of full-dimensional regions are presented. In Sec. VI, we
analyze the degree of disorder and the existence of residual
entropy for disordered ground states. In Sec. VII, we provide
the ground-state phase diagrams and describe how to find
ground-state structure at fixed interactions and density of
particles. In Sec. VIII some conclusions are drawn.
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TABLE I. Basic rays and basic sets of flower configurations for the spin model on the triangular lattice with nearest- and next-nearest-
neighbor pairwise interactions and with three-spin nearest-neighbor interaction.

Basic ray Basic set Basic ray Basic set
ri (h, J1, J2, J�) of flower configurations Ri r−

i (h, J1, J2, J�) of flower configurations R−
i

r1 (0,0,−1,0)
r2 (0,0,1,0)

r3 (6,0,1,0) r−
3 (−6,0,1,0)

r4 (0,0,1,3) r−
4 (0,0,1,−3)

r5 (6,−2,0,3) r−
5 (−6,−2,0,−3)

r6 (2,−2,2,3) r−
6 (−2,−2,2,−3)

r7 (6,−4,2,3) r−
7 (−6,−4,2,−3)

r8 (−2,−1,1,0) r−
8 (2,−1,1,0)

r9 (4,1,1,0) r−
9 (−4,1,1,0)

r10 (−6,2,0,1) r−
10 (6,2,0,−1)

r11 (6,4,2,3) r−
11 (−6,4,2,−3)

r12 (−2,2,2,3) r−
12 (2,2,2,−3)

r13 (−10,14,8,15) a r−
13 (10,14,8,−15) b

a
, , and enter in structures with the neighborhoods shown in Fig. 1.

bSymmetric condition.

II. SOLUTION OF THE GROUND-STATE PROBLEM AND
FULL-DIMENSIONAL STRUCTURES

For the sake of convenience, we provide in this section the
essential results of Ref. [3]. Thus, we consider the lattice-gas
model with the Hamiltonian

Hlg = I1

∑

NN

cicj + I2

∑

NNN

cicj + I�
∑

�
cicj ck − μlg

∑

i

ci ,

(1)

where ci are the lattice-gas occupation variables (ci = 1 if
the ith site is occupied by a particle and ci = 0 otherwise);
I1, I2 are the nearest- and next-nearest-neighbor couplings,
respectively; I� is the three-particle interaction; and μlg

denotes the chemical potential of particles. NN , NNN , and
� denote the summation over the nearest neighbors, the
next-nearest neighbors, and the nearest-neighbor triangles,
respectively.

In view of the symmetry, it is more practical to consider the
equivalent spin Hamiltonian

HI = J1

∑

NN

σiσj + J2

∑

NNN

σiσj + J�
∑

�
σiσjσk − h

∑

i

σi,

(2)

with the coupling constants and external field

J1 = I1 + I�
4

, J2 = I2

4
, J� = I�

8
,

(3)
h = μlg

2
− 6(J1 + J2 − J�),

where σi = 2ci − 1 = ±1 are spin variables. The spin Hamil-
tonian is invariant with respect to the inversion of all spins
σ = −1 ↔ σ = +1 with simultaneous change of signs of J�
and h; therefore, it suffices to consider only the J� � 0 case.

In the space of the Hamiltonian parameters, including the
chemical potential (or the external field for the spin model),
the region that corresponds to a ground-state structure of a
lattice-gas (or spin) model is a convex polyhedral cone with
the vertex at the origin of coordinates. Due to the convexity,
the ground-state problem can be considered to be solved if
all edges of full-dimensional polyhedral cones and all ground-
state structures in these edges are determined. We called such
edges “basic rays” and proved that model (2) has 24 basic rays.
They are enumerated in Table I.

We also proved that every ground-state structure without
defects in these rays, except two mutually symmetric rays
r13 and r−

13, can be constructed with a set of configurations
of the seven-site cluster in the form of flower in such a
manner that every flower in the structure should have one
of the configurations belonging to the set, without any other
restriction. Such a set is called “basic set” and we say that
all ground-state structures in a ray are generated by the
corresponding basic set of flower configurations. All basic sets
of flower configurations are enumerated in Table I. In this table
and thereafter, open circles represent vacancies, solid circles
(except for light gray ones) represent particles, and light gray
circles are undefined. For rays r13 and r−

13 the ground-state
structures are constructed almost in the same way but an
additional restriction should be taken into account: Flowers

, , and enter in structures with the neighborhoods
shown in Fig. 1. Table I can be considered as a complete
solution of the ground-state problem. It remains to construct
global structures with local flower configurations. In many
cases this is not very easy.

In Ref. [3] we found the full-dimensional regions (or more
exactly, their basic rays) and the corresponding ground-state
structures, which we called “full-dimensional structures.” We
denoted them as in Ref. [2]. The structure with the bar over
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FIG. 1. (Color online) Neighborhoods for three flower configu-
rations in ray r13.

its number is symmetric to the structure numbered without bar
with respect to the particle-vacancy symmetry.

The structures with numbers without bars are depicted
in Fig. 2, where the generating flower configurations are
indicated, and, in the caption, the sets of basic rays are pre-
sented. Two of these structures (9 and 12) are disordered. For
structures 11 and 12 an additional condition should be taken
into account when constructing them with flowers: Configur-

ations and are forbidden for structures 11 and 12,
respectively.

In this paper we also use the notations of structures proposed
by Kaburagi and Kanamori [7]: S(p0; p1,p2,p3,...; p�), where
p0 is the number of particles per site, pi (i = 1,2,3,...)
provides the number of pairs of particles (per particle) that
are ith neighbors, and p� is the number of triplets of particles
(per particle) that are nearest neighbors.

Now we can proceed to the construction of three-
dimensional ground-state structures, that is, ground-state
structures in the three-dimensional boundaries (3-faces or
simply hyperfaces) of the full-dimensional regions.

III. BASIC RAYS AND GROUND-STATE FLOWER
CONFIGURATIONS FOR HYPERFACES

OF FULL-DIMENSIONAL REGIONS

Knowing the sets of basic rays for full-dimensional regions,
one can easily find all hyperfaces. Two full-dimensional
regions are neighboring (i.e., they have a common hyperface)
if the intersection of their sets of basic vectors (rays) contains
at least one triplet of linearly independent vectors. The
basic vectors of this intersection generate the boundary;
that is, the radius vector of every point of the boundary
is a linear combination with non-negative coefficients (the
so-called conical combination) of the vectors belonging to the
intersection. The ground states at the boundary between these
regions are generated by the flower configurations belonging
to the intersection of all basic sets of flower configurations cor-
responding to the basic vectors which generate this boundary.

The sets of basic vectors (rays) generating hyperfaces
of full-dimensional regions and the corresponding sets of

FIG. 2. (Color online) Full-dimensional structures (sets of
basic rays are given): 1, {r1,r3,r5,r7,r−

4 ,r−
5 ,r−

6 ,r−
7 ,r−

8 ,r−
10}; 2,

{r3,r4,r5,r6,r7,r9,r11,r−
10}; 3, {r1,r4,r5,r10,r11,r−

10}; 4a, {r2,r3,

r9,r−
4 ,r−

6 ,r−
8 ,r−

10,r
−
12}; 4b, {r2,r3,r6,r7,r9,r−

8 }; 5, {r2,r6,r7,r8,

r−
6 ,r−

7 ,r−
8 }; 6, {r2,r9,r10,r11,r12,r13,r−

9 ,r−
10,r

−
11,r

−
12,r

−
13}; 9, {r2,r4,r6,

r9,r11,r12}; 10, {r4,r10,r12,r13}; 11, {r4,r10,r11,r13}; and 12, {r4,r11,

r12,r13}. Unit cells (for ordered structures) and generating flower
configurations are indicated. Structures 9 and 12 are disordered.

flower configurations generating the ground states in these
hyperfaces are presented in Table II. The minimal energy
configurations incompatible with other configurations of the
set and with themselves (i.e., with their copies) are separated by
the symbol |. In the first column of Table II the full-dimensional
regions for which the hyperface is the common boundary are
indicated. In the last column the conditions for existence of
the boundary in the plane (h,J2) are presented. The content of
the fourth column of Table II is explained hereinafter.

Let us notice that only some of the hyperfaces are shown in
Table II. All other hyperfaces can be obtained from the given
ones by substituting every region and every flower configura-
tion for the symmetric region and flower configuration. Basic
ray ri (3 � i � 13) should be replaced by basic ray r−

i and
vice versa. The total number of hyperfaces is equal to 60.
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TABLE II. Basic rays and flower configurations for hyperfaces of the full-dimensional ground-state regions of the spin model on the
triangular lattice with nearest- and next-nearest-neighbor pairwise interactions and with three-spin nearest-neighbor interaction. For continuous
transitions dimensionality of disorder is indicated in parentheses.

Basic rays Flower configurations Transition Conditions for existence
Regions of the hyperface for ground states in the hyperface between phases in the plane (h,J2)

1, 1̄ r1,r5,r7,r−
7 ,r−

5 Jump 3
2 J1 < J� < − 3

2 J1

1, 2 r5,r7,r3,r−
10 Cont. (2) −J� < 3

4 J1, −J� < 1
2 J1

1̄, 2 r4,r6,r7,r5 | Jump 0 < − 3
4 J1 < J�

1, 3 r1,r5,r−
10 | Jump −J� < 3

2 J1, −J� < 1
2 J1

1̄, 3 r4,r5,r1,r10 Jump −J� < − 1
2 J1, −J� < 3

2 J1

1̄, 4a r4,r6,r8,r−
3 ,r10 Cont. (1) J1 < 0, −J� < 0

1, 4b r3,r7,r−
8 Cont. (2) 0 < J� < − 3

4 J1

1̄, 5 r7,r6,r8,r−
7 Cont. (1) 0 < J� < − 3

2 J1

2, 3 r5,r4,r11,r−
10 Jump −J� < 1

2 J1, −J� < 3
2 J1

2̄, 4a r10,r−
3 ,r−

9 Two jumps 0 < J� < 1
2 J1

2, 4b r3,r7,r6,r9 Jump −J� < 0, −J� < 3
4 J1

2, 6 r9,r11,r−
10 Cont. (2) 1

2 J1 < J� < 3
4 J1

2, 9 r4,r6,r9,r11 | Jump + cont. (2) −J� < 0, −J� < 3
2 J1

3, 3̄ r1,r10,r−
10 Jump − 1

2 J1 < J� < 1
2 J1

3, 6 r10,r11,r−
10 Cont. (1) − 1

2 J1 < J� < 3
4 J1

3, 11 r4,r10,r11 Jump 0 < 1
2 J1 < J�

4a, 4b r3,r9,r2,r−
8 Jump J� = 0

4a, 5 r2,r6,r8 | Cont. (1) 0 < J� < − 3
2 J1

4a, 6 r2,r12,r10,r−
9 | Cont. (1) 0 < J� < − 3

2 J1

4a, 9 r4,r6,r2,r12 Cont. (2) −J� < 3
2 J1, −J� < − 3

2 J1

4a, 10 r4,r10,r12 Cont. (1) + twins 0 < 1
2 J1 < J�

4b, 5 r2,r6,r7,r−
8 Jump + twins 0 < J� < − 3

2 J1

4b, 9 r2,r6,r9 | Cont. (2) −J� < 0, −J� < 3
2 J1

6, 9 r2,r9,r11,r12 Cont. (1) 0 < J� < 3
2 J1

6, 10 r10,r12,r13
a Jump 1

2 J1 < J� < 3
2 J1

6, 11 r10,r11,r13
a Jump 1

2 J1 < J� < 15
14 J1

6, 12 r11,r12,r13
a Jump 3

4 J1 < J� < 3
2 J1

9, 12 r4,r11,r12 Special case 0 < 3
4 J1 < J�

10, 11 r4,r10,r13
a Cont. (1) 0 < 3

4 J1 < J�
10, 12 r4,r12,r13

a Jump 0 < 15
14 J1 < J�

11, 12 r4,r11,r13
a Cascade of jumps 0 < 3

4 J1 < J�
a

, , and enter in structures with the neighborhoods shown in Fig. 1.

Basic rays for every hyperface are enumerated in such an
order that every pair of neighboring rays (the first one and
the last one are also neighboring) generates a two-dimensional
face of the three-dimensional hyperface. The maximal number
of faces is five: for the hyperface between regions 1 and 4a

(1̄ and 4a) as well as between regions 1 and 1̄. In what follows,
instead of “hyperface between regions A and B” we write
“hyperface (A, B).”

IV. GROUND-STATE STRUCTURES IN THE HYPERFACES
AND TRANSITIONS BETWEEN FULL-

DIMENSIONAL PHASES

A. Jump and continuous transition between
two neighboring phases

Our method makes it possible to analyze phase transitions
at zero temperature. This is based on the following statement:

If with the flower configurations of a set corresponding to the
boundary between two neighboring full-dimensional regions
it is possible to construct only two structures (one of which is a
ground-state structure on one side of the boundary and another
on the other side), then between these full-dimensional phases
there is a first-order phase transition driven by the chemical
potential (or the external field for the spin model) or the
phase separation in the case of fixed density of particles.
The following is an example. With flowers , , , and

, which are the ground-state flower configurations at the
boundary between regions 3 and 11, one can construct only
two structures without defects: structures 3 and 11. Any other
ground state at this boundary represents a phase separation
between structures 3 and 11 and contains an infinitesimal
quantity of flowers with nonminimal energy. Hence, there
is a first-order phase transition between phases 3 and 11. In
Table II such transitions are indicated by the word “Jump.”
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FIG. 3. A mixture of phases 1̄ and 5.

If with the flower configurations of a set corresponding
to the boundary between two neighboring full-dimensional
regions one can construct an infinite number of structures with
the density of particles (or the magnetization per site) which
can take each value between densities of particles for two
neighboring phases, then the phase transition from one of these
phases to another is continuous. The transition between phases
1̄ and 5 is a typical example of such a transition. The ground
states between these regions are generated by three flower
configurations: , , and . These ground states represent
a mixture of structures 1̄ and 5 in arbitrary ratios (Fig. 3).
Such simple mixtures of two structures take place for many
hyperfaces, for instance, between regions 1̄ and 4a, 4a and 6, 6
and 9, etc. In these hyperfaces the disorder is one dimensional.
This means that there is an order in one direction, for instance,
in horizontal direction (see Fig. 3), and a disorder in the other
one. Hence, in these hyperfaces there is no residual entropy
(per site).

However, intermediate structures between two phases are
not always a simple mixture of the leftmost and rightmost
limiting structures. In Fig. 4(a) an intermediate structure
between phases 3 and 6 is shown. The ground-state structures
at this boundary are generated by the following set of flower
configurations: , , , , and . These structures
represent a hybrid of structures 3 and 6, rather than their
simple mixture. Notice that the subset containing only three
flower configurations, , , and , generates the ordered
structure shown in Fig. 4(b). Another example of a hybrid
structure is shown in Fig. 5. It is a hybrid of structures 10
and 11, which is a ground-state structure at the boundary
between the corresponding regions. In Table II continuous
phase transitions are indicated by the abbreviation “Cont.”

FIG. 4. (Color online) (a) A hybrid of phases 3 and 6. (b) Ordered
structure at the boundary between regions 3 and 6, generated by the
set of flower configurations , , and .

FIG. 5. A hybrid disordered structure at the boundary between
regions 10 and 11.

The cases described above do not exhaust all of the diversity
of possible types of ground-state structures in hyperfaces of
full-dimensional regions. In what follows we consider some
of these types.

B. Two jumps between regions 2̄ and 4a

Not quite a typical situation occurs at the boundary between
phases 2̄ and 4a. The following flower configurations have
the minimal energy at this boundary: , , , , and

. In addition to structures 2̄ and 4a these configurations
generate the structure S( 7

25 ; 3
7 ,0; 0) (Fig. 6). Hence, there are

two first-order phase transitions between phases 2̄ and 4a.
The intermediate structure is all that remains from the infinite
sequence of structures at the boundary between these two
phases in J� = 0 case (see. Ref. [4]).

C. Jump and continuous transition between regions 2 and 9

An interesting set of structures occurs in the hyperface
(2, 9). These structures contain only four flower configurations:

, , , and . However, in addition to structures 2 and 9,
one can construct with these configurations an infinite number
of structures and among them the structure S( 12

19 ; 7
4 , 3

2 ; 1
2 )

(Fig. 7), which is the closest to the structure S( 3
4 ; 2,2; 2

3 )
(structure 2). The rest of structures are mixtures of the first
structure with structure 9 [Figs. 8(a) and 8(b)]. Therefore,
there are two phase transitions between phases 2 and 9: (1) the
jump from phase 2 into the intermediate phase S( 12

19 ; 7
4 , 3

2 ; 1
2 )

and (2) the continuous transition from this phase to phase 9.
The ground-state disorder in the hyperface (2, 9) is

two-dimensional since in some ground-state structures in

FIG. 6. (Color online) Structure S( 7
25 ; 3

7 ,0; 0) in the hyperface (2̄,
4a).

061102-5



YU. I. DUBLENYCH PHYSICAL REVIEW E 84, 061102 (2011)

FIG. 7. (Color online) Structure S( 12
19 ; 7

4 , 3
2 ; 1

2 ) in the hyperface
(2, 9).

this hyperface one can make local changes which do not
lead to the appearance of other flower configurations. It is
seen from Fig. 8(b) where “waterwheels” in the middle of
regular hexagons can be orientated clockwise as well as
counterclockwise. Hence, there is a macroscopic degeneracy
and therefore a residual entropy per site in the hyperface (2, 9).

D. Ordered multiple-twin structures

Let us consider the ground-state structures in the hyperface
(4a, 10). They are generated by the following flower config-
urations: , , , , and . With these flowers one
can construct not only the infinite number of structures which
are a hybrid of structures 4a and 10 [Fig. 9(a)] but also other
two structures depicted in Figs. 9(b) and 9(c). These ordered
structures do not have global translational symmetry, though
they are not quasicrystals. These are ordered multiple-twin
structures. As one can see, they do not need a defect (a flower
configuration with nonminimal energy) for their formation.

An ordered structure without global translational symmetry
also occurs in the hyperface (5, 4b). It is generated by the set
of flower configurations , , , , and , if one
starts with configuration . This structure is composed of

two domains of structure 4b in such a manner that the domain
wall has zero energy of formation (Fig. 10). An infinite number
of multiple-twin structures occur in the hyperface (9, 12). We
will analyze them in another paper.

E. Infinite sequence of structures in the hyperface (11, 12)

An extraordinary set of ground-state structures occurs in the
hyperface (11, 12). They are constructed with flowers , ,

, , and in such a way that two larger configurations

and do not appear. This additional condition
for the set of flowers is equivalent to the condition that
flowers and should have the neighborhoods depicted in
Fig. 1.

If flower is removed from this set, then the remaining
flowers generate structures 12. Hence, let us start with
configuration . It is easy to see that we obtain an infinite
sequence Tn (n = 0,1,2,...) of structures. Member zero of this
sequence is structure 11. The two following structures are
depicted in Figs. 11(a) and 11(b). The unit cell of structure Tn

has dimension
√

16 + 27n2 × √
16 + 27n2. Structures Tn are

degenerated: They all, except for the zero one and the limiting
one, occur only at the boundary between regions 11 and 12,
where they have the same energy. Can this degeneracy be
removed by some pairwise interactions? We have calculated
for structures Tn the number of ith-neighbor pairs per particle
up to i = 10:

p0 = 15n2 + 9

27n2 + 16
, p� = 2n2

15n2 + 9
, p1 = 21n2 + 12

15n2 + 9
,

p2 = 24n2 + 18

15n2 + 9
, p3 = 21n2 + 12

15n2 + 9
, p4 = 66n2 + 36

15n2 + 9
,

p5 = 18n2 + 12

15n2 + 9
, p6 = 24n2 + 12

15n2 + 9
, (4)

(a) (b)

FIG. 8. (Color online) Mixtures of structures in the hyperface (2, 9). (a) Strip mixture of structures S( 12
19 ; 7

4 , 3
2 ; 1

2 ) and 9; (b) zigzag mixture
of these structures. The “waterwheel” in each hexagon can be orientated clockwise as well as counterclockwise.
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(a)

(b) (c)

FIG. 9. (Color online) Ground-state structures in the hyperface (4a, 10). (a) A hybrid disordered structure; (b),(c) two six-domain structures.

p7 = 42n2 + 24

15n2 + 9
, p8 = 33n2 − 3n + 27

15n2 + 9
,

p9 = 42n2 + 3n + 36

15n2 + 9
, p10 = 48n2 + 6n + 24

15n2 + 9
.

Pairwise interactions up to seventh neighbors remove
neither the degeneracy at the boundary between phases 11
and 12 nor the degeneracy of structures 12. The reason is that
a term proportional to n does not enter the expressions for the
number of ith-neighbor pairs per particle. Really, if, for some
sequence of structures, pi(n) and p�(n) have the form

p0(n) = a0n
2 + b0

cn2 + d
, pi(n) = ain

2 + bi

a0n2 + b0
,

(5)

p�(n) = a�n2 + b�
a0n2 + b0

(n = 0 − ∞),

FIG. 10. Two-domain structure in the hyperface (5, 4b).

then, in the line E0 = E∞, where E0 and E∞ are energies per
site for zero and limiting structures, respectively, all structures
of the sequence have the same energy. This is easy to show
using the expression for the energy per site of a structure
S(p0; p1,p2,p3,...; p�):

E =
∑

i

p0piIi + p0p�I� − p0μlg, i = 1,2, . . . . (6)

The expression for p8 contains a term proportional to n.
Therefore, the interaction between eighth neighbors removes
the degeneracy. However, it is not difficult to show that even
this interaction does not generate a zero-temperature devil’s
step, that is, a sequence of full-dimensional ground-states.
A question arises: Does an interaction (pairwise or many
particle) exist which, lifting the degeneracy at the boundary
between regions 11 and 12, can lead to the appearance of
a zero-temperature devil’s step? Let us prove that such an
interaction does not exist.

F. Conditions for existence of a zero-temperature devil’s step

Let us consider an infinite sequence of structures on a
two-dimensional lattice. These structures are characterized
by the number of particles per site p0(n) and the numbers
of some clusters of particles per particle pi(n) (a cluster
can represent, for instance, a pair of particles, a triplet
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of nearest-neighbor particles, etc.). Since the lattice is two-dimensional, these values have the form

p0(n) = a0n
2 + b0n + c0

rn2 + sn + t
, pi(n) = ain

2 + bin + ci

a0n2 + b0n + c0
. (7)

The equation of the boundary between phases m and m + 1 is

E(m) = E(m + 1) (8)

or

μlg =
∑

i[p0(m + 1)pi(m + 1) − p0(m)pi(m)]Ii

p0(m + 1) − p0(m)
. (9)

Here Ii are interaction parameters. The interactions can be pairwise as well as many-particle. Substituting expressions (7) for
p0(m) and pi(m) into Eq. (9), we get

μlg =
∑

i{(−ais + bir)m2 + [−ai(s + 2t) + (bi + 2ci)r]m − (ai + bi)t + ci(r + s)}Ii

{(−a0s + b0r)m2 + [−a0(s + 2t) + (b0 + 2c0)r]m − (a0 + b0)t + c0(r + s)} . (10)

Let us analyze this expression. If the condition

−a0s + b0r �= 0 (11)

is satisfied, then the limit limm→∞ μlg is finite; therefore, the
devil’s step (an infinite sequence of ground states) can exist
and the equation of its boundary is

μlg =
∑

i(−ais + bir)Ii

−a0s + b0r
. (12)

If

−a0s + b0r = 0,
∑

i

(−ais + bir)Ii �= 0, (13)

then, at m → ∞, the expression for μlg diverges and, hence,
an infinite sequence of phases cannot exist. If the conditions

−a0s + b0r = 0,
∑

i

(−ais + bir)Ii = 0, −a0t + c0r �= 0

(14)

are satisfied, then the infinite sequence of structures occurs
only in the hyperface between the zero phase and the

limiting phase of the sequence. The equation of this boundary
reads

μlg =
∑

i(cir − ait)Ii

c0r − a0t
. (15)

All structures of the sequence, including the zero one and the
limiting one, have the same energy at this boundary.

These general considerations lead to the conclusion that
structures Tn cannot create the zero-temperature devil’s step
at any additional interactions, since the −a0s + b0r �= 0
condition is not satisfied for this sequence of structures.
However, in our model, these structures have equal energy
at the boundary between phases 11 and 12 (zero and limiting
structures of sequence Tn). One can check that condition (11) is
fulfilled for all devil’s steps known at present (see Refs. [5,6]).

G. Ground-state structures in the hyperface (9,12)
(partial analysis)

Ground-state structures in the hyperface (9,12) are gener-
ated by flower configurations , , , , and . The

(a) (b)

FIG. 11. (Color online) Structures (a) T1 and (b) T2 in the hyperface (11, 12). Colored sites facilitate understanding the principle of
construction for structures Tn.
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set of these structures is so sophisticated, unconventional, and
interesting that we will discuss it in a separate paper. Here we
present only partial analysis of these ground states.

All ground-state structures in the hyperface (9,12) can
be divided into three groups: (1) structures which contain
configuration but do not contain configuration , (2)
structures which contain configuration but do not contain
configuration , and (3) structures which contain both
configurations and . Our aim is to show that the third-
neighbor pairwise interaction (small enough) lifts partially the
degeneracy in hyperfaces (9,12) separating all three groups
of structures. For this purpose we use the relations derived in
Ref. [8] and in such a way we demonstrate that they are really
useful.

Let the fractional contents of configurations , , ,
, and in a structure that they generate be k1, k2, k3, k4, and

k5, respectively. Along with the notation S(p0; p1,p2,p3,p�)
of a structure we use the notation [k1,k2,k3,k4,k5] (as in Ref.
[3]). The values ki are not independent; they are connected by
the following linear relations [8]:

2k1 − k2 + k4 = 0,

2k1 − 3k2 + 3k3 + 2k4 + 2k5 = 0, (16)

k1 + k2 + k3 + k4 + k5 = 1,

which can be rewritten in the form

13k1 = 3 − 7k4 − k5,

13k2 = 6 − k4 − 2k5, (17)

13k3 = 4 − 5k4 − 10k5.

Hence, the characteristics of a structure (within the frame-
work of the cluster considered) can be expressed in
terms of only two of the five values ki , for instance, k4

and k5:

p0 = 1

7
(3k1 + 4k2 + 4k3 + 4k4 + 5k5) = 7 + k4 + 2k5

13
,

p1 = 1

4p0
(2k1 + 3k2 + 3k3 + 4k4 + 6k5)

= 9 + 5k4 + 10k5

13p0
= 5 − 2

p0
,

p2 = 1

2p0
(2k2 + 3k3 + k4 + 2k5)

= 12 − 2k4 − 4k5

13p0
= −2 + 2

p0
,

p� = 1

3p0
(k4 + 2k5) = 13

3
− 7

3p0
. (18)

As one can see, the values p1, p2, and p� depend on particle
density p0 only; therefore, the energy of every structure from
the set of structures under consideration is a function of p0

(interactions and chemical potential being fixed). However,
the number of third neighbors per particle p3 depends not only
on p0:

p3 = 1

p0
(k1 + k2 + k4 + 2k5) = 9 + 5k4 + 23k5

13p0

= 23

2
− 11 + k4

2p0
= 5 + k5 − 2

p0
. (19)

Just for this reason the third-neighbor pairwise interaction
(small enough) partially lifts the degeneracy in hyperfaces
(9,12).

Let us express ki (i = 1 − 4) in terms of p0 and k5:

k1 = 4 − 7p0 + k5, k2 = 1 − p0,
(20)

k3 = 3 − 5p0, k4 = −7 + 13p0 − 2k5.

The first of these equalities yields that at p0 > 4
7 the value

k5 should be greater than zero; hence, the corresponding
structures contain configuration .

If the third-neighbor interaction (small enough) is repulsive
(I3 > 0), then k5 should be as small as possible. For 5

9 � p0 <
4
7 the minimal value of k5 is zero; p3 = 12 − 2

p0
and the energy

density is

E = p0
(
5I1 − 2I2 + 5I3 + 13

3 I� − μlg

)

− 2I1 + 2I2 − 2I3 − 7
3I�. (21)

Hence, in the hyperface

5I1 − 2I2 + 5I3 + 13
3 I� − μlg = 0 (22)

the ground-state structures are generated by configuration ,
, , and . For 4

7 < p0 � 3
5 the minimal value of k5 is

k5 = 7p0 − 4 (k1 = 0); p3 = 12 − 6
p0

and the energy density
is

E = p0
(
5I1 − 2I2 + 12I3 + 13

3 I� − μlg

)

− 2I1 + 2I2 − 6I3 − 7
3I�; (23)

therefore, in the hyperface

5I1 − 2I2 + 12I3 + 13
3 I� − μlg = 0 (24)

the ground-state structures are generated by configurations ,
, , and .
If p0 = 4

7 , then it follows from Eqs. (16)

k1 = k5, k2 = 3
7 , k3 = 1

7 , k4 = 3
7 − 2k5. (25)

If I3 > 0, then k5 = k1 = 0 and the ground-state structure is
generated by configurations , , and . This structure

FIG. 12. (Color online) Structure S( 4
7 ; 3

2 , 3
2 , 3

2 ; 1
4 )([0, 3

7 , 1
7 , 3

7 ,0]) in
the hyperface (9, 12). This structure becomes full dimensional if the
third-neighbor interaction is included into the Hamiltonian.

061102-9



YU. I. DUBLENYCH PHYSICAL REVIEW E 84, 061102 (2011)

FIG. 13. (Color online) Examples of (a),(b) infinite and (c) closed chains created by occupied sites of configurations (in red) in structures
at the boundary of phases 9 and 12.

is depicted in Fig. 12. It is full dimensional if I3 �= 0 and is
realized between hyperfaces (22) and (24).

Hence, the repulsive third-neighbor interaction separates
the first two groups of ground-state structures in the hy-
perface (9,12) without eliminating any of these structures.
The structure with p0 = 4

7 becomes full dimensional in the
five-dimensional space (I1,I2,I3,I�,μlg).

We showed that the first and second groups represent
continua of structures among which there are quasicrystalline
ones but the analysis of these continua is so difficult and
interesting that we will provide it in a separate paper.
We hope that it will shed new light on two long-standing
problems: infinitely adaptive structures and the formation of
quasicrystals.

As to the third group of structures in the hyper-
face (9,12), they are difficult to construct and we inves-
tigated them only partially. Let us note that in structures
generated by configurations , , , , and , the
occupied sites of configurations create chains which are
either infinite [Figs. 13(a) and 13(b)] or closed [Fig. 13(c)].
We suppose (we did not manage to prove it) that, in the
third group, only structures containing the simplest infinite
and closed chains created by occupied sites of configurations

are possible (see Figs. 14 and 15). If this is true, then only
the structure depicted in Fig. 14 “survives” at the boundary
between phases 9 and 12 if additional interaction I3 < 0 is
included into the Hamiltonian.

FIG. 14. (Color online) Structure S( 4
7 ; 3

2 , 3
2 , 13

8 ; 1
4 ) ([ 1

14 , 3
7 , 1

7 ,
2
7 , 1

14 ]) in the hyperface (9, 12).

V. SOME EXAMPLES OF STRUCTURES IN 2-FACES OF
FULL-DIMENSIONAL REGIONS

We have investigated ground states of model (1) in full-
dimensional regions and in the hyperfaces of these regions,
except for the hyperface (9, 12), where the ground-state
structures were investigated only partially. To provide the
full description of the ground states of the model, one also
needs to describe ground states in the faces and edges (2-faces
and 1-faces) of the full-dimensional regions although they
are not so important for practical use as ground states at the
hyperfaces. The faces of the full-dimensional regions and the
corresponding sets of flower configurations which generate all
ground-state structures in these faces are presented in Table III.
Faces are denoted by pairs of basic vectors which generate
them. For each face the full-dimensional regions bounded by
this face are indicated. It should be noticed that only 33 faces
from total 64 ones are enumerated in Table III. The remaining
faces are symmetrical to the given ones.

It is much more difficult to describe the ground-state
structures in the faces than in the hyperfaces because the
degeneracy in the faces is greater. Therefore, we provide only
some examples but not the full description.

In each face, there exist from three to five full-dimensional
phases as well as structures which are mixtures or hybrids of
two or more full-dimensional structures. However, some new
structures can also appear. A striking example of a face where
new immiscible structures appear is the face bounded by rays
r3 and r9, where J� = 0. (We denote it by {r3,r9}). In this
face an infinite sequence of structures exists. We studied this
sequence in Ref. [4].

There are also faces where two full-dimensional structures
intermix but do not mix with a third full-dimensional structure.
Face {r10,r12} is an example of such a situation. In this face,
structure 6 mixes with structure 4a but does not mix with
structure 10. Structures 10 and 4a create a set of hybrid
structures depicted in Fig. 9(a). In this face, there are also
two ordered multiple-twin structures described above. They
do not mix with any other structure. Hence, in face {r10,r12}
there are only those ground-state structures which are also in
the hyperfaces bounded by this face.

Face {r10,r11} is an example of a face where all three
full-dimensional structures, 3, 6, and 11, create a hybrid
structure. In this face structure 11 mixes neither with structure
3 nor with structure 6. It mixes only with the structure depicted
in Fig. 4(b), which is a hybrid of structures 3 and 6. This
is easy to prove, showing that in face {r10,r11}, in addition
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TABLE III. Ground states in two-dimensional faces of full-dimensional regions for the spin model on the triangular lattice with nearest-
and next-nearest-neighbor pairwise interactions and with three-spin nearest-neighbor interaction.

Ground-state Full-dimensional Coordinates Conditions for existence
Face flowers for the face Disorder structures in the plane (h,J2) in the plane (h,J2)

{r1,r5} | 0 1, 1̄, 3 J� = − 3
2 J1, h = −3J1 J1 < 0, J2 < 0

{r1,r−
10} 0 1, 3, 3̄ J� = − 1

2 J1, h = 1
3 J1 −J1 < 0, J2 < 0

{r2,r6} 2 4a, 4b, 5, 9 J� = − 3
2 J1, h = −J1 −J2 < J1 < 0

|
{r2,r−

8 } 1 4a, 4b, 5 J� = 0, h = −2J1 −J2 < J1 < 0
|

{r2,r9} 2 4a, 4b, 6, 9 J� = 0, h = 4J1 0 < J1 < J2

|
{r2,r12} 2 6, 9, 4a J� = 3

2 J1, h = −J1 0 < J1 < J2

|
{r3,r7} 2 1, 2, 4b J� = − 3

4 J1, J1 < 0, J1 < −2J2

2h − 3J1 − 12J2 = 0
{r3,r−

8 } 2 1, 4a, 4b J� = 0, h − 4J1 − 6J2 = 0 −J2 < J1 < 0
{r3,r9} 0 2, 4a, 4b J� = 0, h + 2J1 − 6J2 = 0 0 < J1 < J2

{r3,r−
10} 2 1, 2, 4a J� = − 1

2 J1, −J1 < 0, −J2 < 0
h − 3J1 − 6J2 = 0

{r4,r5} 0 1̄, 2, 3 (−3J1,
1
2 J1 + 1

3 J�) 0 < − 3
2 J1 < J�

|
{r4,r6} 2 1̄, 2, 4a, 9 (−J1,− 1

2 J1 + 1
3 J�) 0 < − 3

2 J1 < J�
|

{r4,r10} 2 1̄, 3, 4a, 10, 11 (−3J1,− 1
6 J1 + 1

3 J�) 0 < 1
2 J1 < J�

{r4,r11} 2 2, 3, 9, 11, 12 ( 3
2 J1,

1
4 J1 + 1

3 J�) 0 < 3
4 J1 < J�

{r4,r12} 2 4a, 9, 10, 12 (−J1,
1
2 J1 + 1

3 J�) 0 < 3
2 J1 < J�

{r4,r13} a 2 10, 11, 12 (− 5
7 J1,

3
14 J1 + 1

3 J�) 0 < 15
14 J1 < J�

{r5,r7} 2 1, 1̄, 2 (2J�,−J1 − 2
3 J�) − 3

4 J1 < J� < − 3
2 J1

|
{r5,r−

10} 2 1, 2, 3 (6J1 + 6J�,0) −J� < 1
2 J1,

| −J� < 3
2 J1

{r6,r7} 1 1̄, 2, 4b, 5 (−2J1 − 2
3 J�, 2

3 J�) − 3
4 J1 < J� < − 3

2 J1

{r6,r8} 1 1̄, 4a, 5 (2J1 + 2J�,−J1) 0 < J� < − 3
2 J1

|
{r6,r9} 2 2, 4b, 9 (4J1 + 10

3 J�,J1 + 4
3 J�) −J� < 3

2 J1, −J� < 0
|

{r7,r−
7 } 1 1, 1̄, 5 (2J�,− 1

2 J1) 3
4 J1 < J� < − 3

4 J1

{r7,r−
8 } 2 1, 4b, 5 (−2J1 − 2

3 J�,−J1 − 2
3 J�) 0 < J� < − 3

4 J1

{r−
9 ,r10} 2 2̄, 4a, 6 (−4J1 + 2J�,J1 − 2J�) 0 < J� < 1

2 J1

|
{r9,r11} 2 2, 6, 9 (4J1 − 10

3 J�,J1 − 2
3 J�) 0 < J� < 3

4 J1

{r10,r−
10} 2 3, 3̄, 6 (−6J�,0) − 1

2 J1 < J� < 1
2 J1

{r10,r11} 1 3, 6, 11 (−12J1 + 18J�,−J1 + 2J�) 1
2 J1 < J� < 3

4 J1

{r−
10,r11} 2 2, 3, 6 ( 12

5 J1 − 6
5 J�, 1

5 J1 + 2
5 J�) − 1

2 J1 < J� < 3
4 J1

{r10,r12} 1 6, 4a, 10 (−4J1 + 2J�,− 1
2 J1 + J�) 1

2 J1 < J� < 3
2 J1

|
{r10,r13} a 1 6, 10, 11 (−5J1 + 4J�,− 1

2 J1 + J�) 1
2 J1 < J� < 15

14 J1

{r11,r12} 1 6, 9, 12 (4J1 − 10
3 J�, 2

3 J�) 3
4 J1 < J� < 3

2 J1

{r11,r13} a 0 6, 11, 12 ( 20
3 J1 − 62

9 J�, 1
3 J1 + 2

9 J�) 3
4 J1 < J� < 15

14 J1

{r12,r13} a 0 6, 10, 12 (− 2
3 J�,− 1

2 J1 + J�) 15
14 J1 < J� < 3

2 J1

a
, , and enter in structures with the neighborhoods shown in Fig. 1.
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(a) (b)

FIG. 15. (Color online) Structure (a) S( 13
22 ; 21

13 , 18
13 ; 5

13 )([ 3
154 , 9

22 , 1
22 , 57

22 , 12
77 ]) and (b) S( 73

124 ; 117
73 , 102

73 ; 27
73 ) ([ 3

124 , 51
124 , 7

124 , 45
124 , 9

62 ]) in the hyperface
(9, 12). Structure (a) is partially disordered, since the strips (bounded by horizontal lines) can be shifted relative to each other in the horizontal
direction.

to structures 3 and 6 and also their mixtures [Fig. 4(a)],
only the structures constructed with the blocks depicted in
Fig. 12(a) are possible. There is one-dimensional disorder in
this face. A hybrid of structures 3, 6, and 11 is shown in
Fig. 16(b).

The ground states in face {r4,r10} are interesting as
well. They are generated with the following set of flower
configurations: , , , , , , and . These
flowers create a tiling of the lattice by hexagons of arbitrary
dimensions (Fig. 17). The empty phase can be considered as
the infinite hexagon. It is easy to see that the disorder in this
face is two dimensional since some finite areas can be altered
without altering their neighborhoods and within the framework
of the given set of flower configurations. Hence, in this face,
the entropy per site is nonzero.

Let us make some more examples. In face {r2,r−
8 } the

ground states are full-dimensional structures 4a, 4b, and 5,
as well as mixtures of structures 4a and 5. Structure 4b mixes
neither with structure 4a nor with structure 5. The disorder in
this face is one dimensional.

In face {r6,r7} the ground states are full-dimensional
structures 1̄, 2, 4b, and 5, mixtures of structures 1̄ and 5 and
a two-domain structure. Structures 2 and 4b do not mix with
each other and with other structures in this face. The disorder
is one dimensional.

In face {r12,r13} the ground states are full-dimensional
structures 6, 10, and 12 which do not intermix.

VI. DIMENSIONALITY OF DISORDER AND
RESIDUAL ENTROPY

We already analyzed the dimensionality of disorder and
the residual entropy when considering the ground states in the
hyperfaces and faces, but this issue is worth being considered
in full detail.

The following general statements are obvious. The disorder
in an i-face cannot be greater than the disorder in a k-face
which bounds this i-face (i > k); the disorder in a k-face can
not be less than the disorder in an i-face which is bounded by
this k-face (i > k).

If, in a ground-state structure in an i-face, some local
changes can be made in such a manner that the new structure
would also be a ground-state one, then, in the i-face, there is
a full-dimensional disorder and, hence, a residual entropy per
site.

In all basic rays, except r1, the disorder is two dimensional.
In ray r1 there is no disorder at all; only full-dimensional
structures 1, 1̄, 3, and 3̄, which do not intermix, are the
ground-states there. Certainly, in all faces and hyperfaces
bounded by basic ray r1, there is no disorder all the more.

(a) (b)

FIG. 16. (a) Blocks which generate the structures
in face {r10,r11} (except for the mixture of phase 3
and 6). (b) A disordered structure in face {r10,r11}.
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FIG. 17. Hexagonal tiling of the plane in the ground-state
structures in face {r4,r10}.

It is rather easy to prove the existence of two-dimensional
disorder in the basic rays. It suffices to find a ground-state
structure in which local changes can be made in such a manner
that it remains a ground-state structure. It is difficult to find
such a structure only for ray r13. In this ray the disorder is the
same as in face {r4,r13} since configuration enters only in
structure 6, which does not mix with other structures in the ray.
A ground-state structure in face {r4,r13} is shown in Fig. 18.
In this structure every “windmill” can change the orientation
independently of other “windmills” and the structure remains
a ground-state one. Hence, in this face the disorder is two
dimensional.

Residual entropy (two-dimensional disorder) also exists in
many hyperfaces (see Table III). These are the hyperfaces
(1, 2), (1, 4b), (2, 6), (2, 9), (4a, 9), and (4b, 9). The structure
that proves the existence of two-dimensional disorder in the
hyperface (4b, 9) is shown in Fig. 19. One site from each pair
of next-nearest-neighbor gray sites should be filled and another
should be open.

FIG. 18. (Color online) Ground-state structure which proves that
there is a residual entropy per site in face {r4,r13}. The orientation of
every “windmill” is arbitrary.

FIG. 19. The proof that in the hyperface (4b, 9) a residual entropy
exists. One site from each pair of next-nearest-neighbor gray sites
should be filled and another open.

Figure 19 makes it possible to calculate a lower bound
for the residual entropy in the hyperface (4b, 9). As one can
see, every 33rd site is completely “free”; that is, it can be
occupied or vacant, hence, the residual entropy is greater than
1

33 ln 2 ≈ 0.021. (This value is not exact, since, in the hyperface
(4b, 9), there are also other structures in addition to those
depicted in Fig. 19 and their contribution in the entropy is
not zero). In such a simple way one can estimate the residual
entropy on every hyperface, face, and ray where the disorder
is two dimensional. However, exact calculation of the residual
entropy is a very difficult problem and we do not discuss it here.

Ground states in the most part of hyperfaces are gen-
erated only with these configurations which generate full-
dimensional structures in regions bounded by these hyperfaces.
However, for some hyperfaces there are additional config-
urations which even change the dimensionality of disorder
and the order of phase transition. For instance, if it were not
configuration in the hyperface (1, 2) or configuration in
the hyperface (3, 6), then the transition between corresponding
phases would be of the first order. Additional configuration

leads to two-dimensional disorder in the hyperface (1,
2) and additional configuration creates one-dimensional
disorder in the hyperface (3, 6). A similar situation occurs in
the hyperplane (2, 6) where there is two-dimensional disorder:
If it were not configuration (configuration cannot
be realized in this set without configuration ), then the
transition between these phases would be of the first order.

As one can see from the previous analysis, the existence
of a disorder does not ensure the nonzero entropy density;
the dimensionality of the disorder should be equal to the
dimensionality of the lattice. In view of this fact, the definition
of the irregularly ordered ground states given in Ref. [9] (“we
define irregularly ordered ground states as those which have no
δ peaks in their Fourier transform and whose entropy density
is zero”) is not quite correct.

VII. GROUND-STATE PHASE DIAGRAMS

A. Construction of the ground-state phase diagrams
in the plane (h,J2)

Knowing the faces and hyperfaces of the full-dimensional
regions, it is easy to construct two-dimensional ground-state
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FIG. 20. (Color online) Ground-state phase diagrams in the plane (h,J2) for the spin model on the triangular lattice with pairwise interactions
of nearest and next-nearest neighbors and with three-spin interaction of nearest neighbors. J1 < 0. Red lines correspond to the first-order phase
transitions; the green dash-dotted line corresponds to a jump together with a continuous transition.

phase diagrams in any plane, for instance, in the plane (h,J2).
To do so one should find the intersections of 2-faces with the
hyperplanes J1 = const and J� = const.

Let us write, for instance, the equation of the 2-face which
is bounded by rays ri and rj :

q1ri + q2rj = r, (26)

where q1 and q2 are arbitrary non-negative numbers and r =
(h,J1,J2,J�)T is the column vector of the spin Hamiltonian
parameters.

We can first determine q1 and q2 and then h and J2:

q1 = rj4J1 − rj2J�
ri2rj4 − rj2ri4

, q2 = − ri4J1 − ri2J�
ri2rj4 − rj2ri4

, (27)

h = (ri1rj4 − rj1ri4)J1 − (ri1rj2 − rj1ri2)J�
ri2rj4 − rj2ri4

,

(28)
J2 = (ri3rj4 − rj3ri4)J1 − (ri2rj3 − rj2ri3)J�

ri2rj4 − rj2ri4
.

It is the sought-for point in the plane (h,J2). The conditions
for its existence are

q1 > 0, q2 > 0. (29)

Let us consider a face for which the denominator ri2rj4 −
rj2ri4 is equal to zero (first ten faces in Table II), for
instance, face {r1,r5}. The set of equations (26) reads, in this
case,

6q2 = h, − 2q2 = J1, − q1 = J2, 3q2 = J�, (30)

whence we have

q1 = −J2, q2 = 1
6h = − 1

2J1 = 1
3J�. (31)

We obtained ray h = −3J1,J2 < 0 lying in the plane (h,J2)
if J� = − 3

2J1 (J1 < 0) or parallel to this plane otherwise.
One can say that this ray intersects the plane (h,J2) in the
point that is infinitely distant in the negative direction of axis
J2. The same holds true for symmetric face {r1,r−

5 } as well
as for the pair of faces {r1,r−

10} and {r1,r10}. All these four
infinitely distant points can be considered either separately
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FIG. 21. (Color online) Ground-state phase diagrams in the plane (h,J2) for the spin model on the triangular lattice with pairwise interactions
of nearest and next-nearest neighbors and with three-spin interaction of nearest neighbors. J1 > 0. Red lines correspond to the first-order phase
transitions, the green dash-dotted line corresponds to a jump together with a continuous transition, and the blue dotted line corresponds to a
cascade of first-order phase transitions.
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FIG. 22. (Color online) Ground-state phase diagrams in the plane
(h,J2) for the spin model on the triangular lattice with pairwise
interactions of nearest and next-nearest neighbors and with three-spin
interaction of nearest neighbors. J1 = 0. Red lines correspond to the
first-order phase transitions; the green dash-dotted line corresponds
to a jump together with a continuous transition.

with their sets of flower configurations or as a unique point
with the set which is the union of all four sets of flower
configurations.

Considering all ten initial faces in Table II and ten
symmetric faces, we obtain four “infinite” points in the plane
(h,J2): in negative direction of axis J2, in positive direction of
this axis, in direction h

J2
= 6 (h > 0), and in direction h

J2
= −6

(h < 0). These points correspond to the basic vectors r1, r2,
r3, and r−

3 , which are parallel to the plane (h,J2) (J1 = const,
J� = const).

Now we can show the way of determining the intersection
of a hyperface by the hyperplanes J1 = const and J� = const
and the conditions for its existence. We should obtain a ray
or a segment. Let us consider, for instance, the hyperplane
bounded by the triplet of rays r4, r10, and r11. This hyperface
is the boundary between regions 3 and 11. The equation of the
hyperface reads

q1r4 + q2r10 + q3r11 = r, (32)

where q1, q2, and q3 are arbitrary non-negative numbers. From
this set of equations we obtain

5h = −6J1 + 54J2 − 18J�,

5q1 = −J1 − J2 + 2J�,
(33)

10q2 = 3J1 − 12J2 + 4J�,

10q3 = J1 + 6J2 − 2J�.

Conditions of non-negativity of coefficients q1, q2, and q3

leads to the following set of inequalities:

J1 + J2 − 2J� < 0,

−3J1 + 12J2 − 4J� < 0, (34)

−J1 − 6J2 + 2J� < 0.

This set together with equation 5h + 6J1 − 54J2 + 18J� = 0
define the hyperface. The set of inequalities has solutions if
the following conditions hold true:

−J1 < 0, J1 − 2J� < 0. (35)

These are conditions for the existence of a boundary between
regions 3 and 11 in the plane (h,J2). The similar conditions
are presented in Table III.

Now we can construct ground-state phase diagrams in the
plane (h,J2) for the spin model on the triangular lattice with
pairwise interactions of nearest and next-nearest neighbors
and with three-spin interaction of nearest neighbors. They are
shown in Figs. 20–22. There are nine different diagrams. They
are not symmetric with respect to the inversion of the external
field h (as it is in the J� = 0 case [4]). The boundaries
between phases where there are first-order phase transitions
are marked in red.

B. How to find ground-state structure at fixed interactions
and density of particles

We considered ground states of spin Hamiltonian (2) with
the external field or of equivalent lattice-gas Hamiltonian (1)
with the chemical potential. Now we are able to determine
the ground states of model (1) in the case of fixed density of
particles.

Let the density of particles p0 (the number of particles per
site) and the interaction parameters I1, I2, and I� be fixed.
What are the ground states of such a system? The following
statement provides the answer to this question: If for fixed p0,
I1, I2, and I� there exists such a value of the chemical potential
μlg of model (1) that corresponding ground-state structures
without defects have the density of particles equal to p0, then
these structures are the sought-for ground-state structures.
If model (1) does not possess such ground-state structures
without defects, then the ground state of the system is phase
separated. It contains domains of the structures which have
the densities of particles closest to p0 in such a proportion that
the average density is equal to p0. A phase-separated ground
state contains flower configurations (included in domain walls)
with nonminimal energy but their quantity is infinitesimal
with respect to the quantity of flower configurations with the
minimal energy. It is natural to suppose that the domain walls
should be of the form which minimizes the linear density of
energy. However, this complicated problem is not a subject of
the present work.

Usually the dimensionality of disorder at a fixed density
of particles is the same as at fixed chemical potential but not
always. We did not try to find a case where this is not so in the
model under consideration.

VIII. CONCLUSIONS

We considered the ground-state problem of the lattice-gas
model (or the equivalent spin one) on the triangular lattice with
pairwise interactions of nearest and next-nearest neighbors
and with three-particle interaction of nearest neighbors. Using
the solution of this problem found in the previous paper [3],
we constructed and analyzed ground-state structures at all
three-dimensional boundaries of the full-dimensional regions
in the Hamiltonian parameter space, except for two mutually
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symmetric boundaries where the ground states were analyzed
only partially. It enabled us to analyze the phase transitions
between the full-dimensional phases. We also found the
dimensionality of disorder for all boundaries. To facilitate
the use of our results we constructed the ground-state phase
diagrams in the (h,J2) plane. Hence, this ground-state problem
can be considered as completely solved and the researchers
dealing with this model can use our results. True, it remains to

find ground states at the boundary between phases 9 and 12.
However, this problem is so complicated and so interesting
that it is worthy of a separate study.
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