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We report a theoretical analysis of collective dynamics in a molecular Hydrogen fluid performed
within a combination of ab initio molecular dynamics (AIMD) simulations and the approach of
Generalized collective Modes (GCM). A five-variable thermo-viscoelastic model of generalized hy-
drodynamics was applied to recover four different collective time correlation functions, obtained
from AIMD. Dispersion of collective excitations in a molecular Hydrogen fluid, obtained from peak
positions of the current spectral functions as well as from the GCM eigenvalues, is reported.
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I. INTRODUCTION

Collective dynamics in liquids on macroscopic scales in
equilibrium can be represented as a collection of hydro-
dynamic collective modes, which correspond to relaxing
and propagating processes reflected solely by fluctuations
of conserved quantities. In the case of simple liquids,
one has five conserved quantities: number of particles,
three components of total momentum, and total energy
— hence, the hydrodynamic collective modes in simple
liquids can be easily estimated. In longitudinal dynam-
ics, there exist just a pair of acoustic propagating modes
propagating adiabatically in opposite directions with lin-
ear dispersion law wg(k) plus a heat relaxation mode
tending to equalize the difference in local temperatures
caused by the adiabatic sound wave [1, 2]. In the trans-
verse case, there are simply two identical shear relax-
ation modes in two transverse directions. On mesoscopic
spatial scales, when the atomistic structure of matter
becomes relevant, non-hydrodynamic modes become im-
portant in collective dynamics: stress relaxation, struc-
tural relaxation, shear and heat waves, optic-like excita-
tions in ionic and many-component liquids, etc. [3, 4].
On mesoscopic and microscopic spatial, scales one needs
to apply the methods of generalized hydrodynamics to
account for non-hydrodynamic effects in collective dy-
namics of liquids [1, 5-9].

For the case of molecular liquids, there were several
schemes of how to extend hydrodynamic description of
collective dynamics to the molecular scale [10-16]. Note
that even in the case of water, which is rather a com-
plex molecular polar liquid, the generalized hydrody-
namic five-variable thermo-viscoelastic (TVE) descrip-
tion was very reasonable in recovering simulation results
on the short-time collective dynamics of water [12, 13],
although more precise schemes allowed us to recover the
long-time dynamics too [16].

Hydrogen fluid is of special interest because of its great
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role in green energy production. Many theoretical and
simulation studies were dedicated to the structural and
dynamic properties of Hydrogen fluid at ambient con-
ditions and high pressures [17-23]. Collective dynamics
in molecular Hydrogen fluid is much less studied than
that in simple liquids or water. It is not known how the
extended hydrodynamic modes behave outside the hy-
drodynamic regime. The case of collective dynamics in
molecular Hydrogen studied by AIMD is even more com-
plicated than that of simple atomic Hydrogen fluids. The
vibrational spectrum of molecular Hydrogen will con-
tain high-frequency intramolecular modes. It is unknown
how the generalized hydrodynamics and in particular the
TVE model will be working in this case.

Therefore, our aim in this study was to apply a method
of Generalized Collective Modes (GCM) [7, 8, 24] for
the analysis of collective time correlation functions ob-
tained in ab initio computer simulations. The remaining
paper has the following structure: in the next Section, we
provide details of our ab initio simulations of molecular
Hydrogen fluid and theoretical approach; in Section III,
we report our results on the application of the thermo-
viscoelastic model to the analysis of collective dynamics
in molecular Hydrogen fluid; and the last Section will
contain conclusions of this study.

II. AB INITIO SIMULATIONS AND
THEORETICAL ANALYSIS

We performed ab initio simulations of a supercriti-
cal molecular Hydrogen fluid at temperature 2500 K
and density 284.73 kg/m?, using a system of 1000 par-
ticles (500 molecules) with periodic boundary condi-
tions. The high temperature allowed us to use classi-
cal equations of motion for particles, while the elec-
tron subsystem was brought to the ground state within
the density functional theory (DFT) with exchange-
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correlations treated in the generalized gradient approxi-
mation (Perdew—Burke-Ernzerhof version) [25]. The es-
timated pressure at our simulated thermodynamic point
was 8.4 GPa. The time step in ab initio simulations was
0.2 fs. After an initial equilibration over 2 ps, we per-
formed the production run over the 39 000 timesteps. The
temperature control during the simulations was provided
by a Nosé—Hoover thermostat as implemented in the
VASP package with the mass-parameter SMASS = 1.0
[26-29].

We made use of the electron-ion interaction repre-
sented by the projector-augmented waves (PAW) poten-
tials [30, 31] as implemented in the VASP package (ver-
sion PAW_PBE H 15Jun2001). The wave functions were
expanded in plane waves with the default cut-off energy
of 250 eV. For the construction of electron density, we
used only the I' point in the Brillouin zone. Sixty wave
numbers k were sampled in the calculation of the static
and time correlation functions. The smallest wave num-
bers was kyin = 27/L = 0.349 A‘l, where the actual
box length L = 18.00 A was used. The calculated k-
dependent static and time correlation functions were av-
eraged over all possible directions of wave vectors having
the same absolute value.

During the production run, we sampled spatial Fourier
components of number density:
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where m is the atomic mass of Hydrogen, r;(t), v;(¢)
and F;(t) are the coordinate, velocity, and force acting
on the j-th particle. As was discussed in [32, 33], the
spatial Fourier components of the energy density are ex-
tremely time consuming to sample in DF'T in comparison
with classical MD simulations with effective interatomic
potentials. Therefore, for the generalized hydrodynamic
analysis of collective dynamics in connection with ab ini-
tio simulations, we made use of the GCM approach for
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one-component liquids suggested in Ref. [32], although
another fitting scheme based on GCM representation of
ab initio time correlation functions [34] is applicable too.

The general scheme of the GCM analysis consists in
the estimation of the generalized hydrodynamic matrix
T(k) on a chosen basis set of dynamic variables and
calculations of its matrix elements T;;(k). Then one
needs to find the eigenvalues and eigenvectors of the
constructed generalized hydrodynamic matrix T(k). The
pairs of estimated complex-conjugated eigenvalues cor-
respond to propagating modes, while purely real eigen-
values — to non-propagating relaxation processes. The
associated eigenvectors allow one to calculate so-called
mode strengths (weights) of the dynamic eigenmodes
in relevant time correlation functions or in the dy-
namic structure factors. In this study, the GCM anal-
ysis of MD-derived time correlation functions was per-
formed within the thermo-viscoelastic five-variable dy-
namic model, which for the case of longitudinal dynamics
[7] reads as follows:

ATVE) k)= {n(k, £), JU(k, ), (k. t), T4 (k, 1), £(k, t)} ,
(6)

where the dynamic variable of energy current is £(k, t).
The construction of the 5 x 5 generalized hydrodynamic
matrix T(k) using the set of dynamic variables (6) is
performed in the following way [8, 24]

T(k) = F(k,t = 0)F ' (k,2 = 0), (7)
where the majority of matrix elements of 5 x 5 matrix of
static correlation functions F(k,¢ = 0) and of the matrix
of the Laplace-transformed time correlation functions in
Markovian approximation F(k,z = 0) are taken directly
from AIMD. The matrix elements which need the knowl-
edge of e(k,t) and £(k,t) are taken as fitting parameters
to recover a number of AIMD-derived time correlation
functions by their GCM theoretical replicas as was sug-
gested in [32]. In the original scheme in [32], the theo-
retical GCM replicas were calculated for density-density
Fyy(k,t) and longitudinal current-current F¥; (k,t) time
correlation functions, and the number of fitting parame-
ters was 6 to recover these two AIMD-derived functions.
In this AIMD study, we additionally will consider an-
other time correlation function F,;(k,t), the imaginary
part of which upon the time Fourier transformation re-
sults in the density response function x(k,w), which is
related to the dynamic structure factor as follows:

Im y(k,w) = %S(kz,w).
Also, we will calculate the time correlation function
FYos(k,t) = (JY(=k,t)JE(k,t = 0)), the spectral func-
tion of which is related to the longitudinal current spec-
tral function in the following way

D(k,w) = w?*C (k,w).

All the theoretical GCM replicas of time correlation
functions between dynamic variables from the TVE set
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(6) are represented via separable contributions from dy-
namic eigenmodes [8, 35]:

2

Fij(k,t) =) Gij(k)e ™", (8)

1

Q
Il

where 2, (k) is the a-th real (relaxing mode) or complex
(propagating) eigenmode, and the weight coefficients of
each mode contribution G;;(k) are expressed via associ-
ated eigenvectors [8]. We will use expression (8) for the
comparison of the AIMD derived time correlation func-
tions with their GCM replicas.

For the analysis of collective dynamics, the adiabatic
speed of sound ¢4 is needed. This quantity is a charac-
teristic of sound propagation in the macroscopic hydro-
dynamic regime. Another quantity, the high-frequency
speed of sound c., reflects the elastic mechanism of
sound propagation. The macroscopic adiabatic speed of
sound was calculated by using the methodology sug-

gested in [36] as
cs = /& —¥"(0)/p, 9)

where %(0) is the value of the static correlations
for diagonal components of the stress tensor “(0) =
V{5.,5.,)/ksT, where G,,(t) = 0,.(t) — P is the fluctu-
ating part of the diagonal component of the stress tensor
and P is the pressure, and V is the volume of the sim-
ulated system, and kg is the Boltzmann constant. The
high-frequency speed of sound ¢, in (9) was estimated
from the long-wavelength asymptote of a wavenumber-
dependent quantity (normalized second frequency mo-
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Similarly, for the transverse case, the speed of non-
damped (“bare”) transverse excitations ¢y was calcu-
lated

III. RESULTS AND DISCUSSION

The standard static structural properties of any liquid
are its pair distribution function g(r) and static struc-
ture factor S(k). The results for these structural func-
tions obtained from AIMD of the molecular Hydrogen
fluid are shown in Fig. 1. The pair distribution func-
tion obtained in our AIMD has a well-pronounced in-
tramolecular peak centered at R = 0.75 A, which is in
agreement with the intramolecular distance known from
experiments [37]. The intermolecular peaks of g(r) are
not well pronounced as is typical for low-density fluids.
The static structure factor S(k), obtained in AIMD in
the sampled range of wave numbers and calculated as in-
stantaneous density-density correlations, shows the main
peak at k, = 3.12A~'. The location of the main peak
defines the first pseudo-Brillouin zone (Debye wave num-
ber) to be at kp = k,/2.
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Fig. 1. Pair distribution function g(r) and static structure factor S(k) for molecular Hydrogen at density 284.73 kg/m® and
temperature 2500 K, obtained from ab initio simulations

The single-particle time-dependent properties are rep-
resented in Fig. 2 by the normalized velocity autocor-
relation function (VACF) and its Fourier spectrum. For
molecular Hydrogen, the VACF in Fig. 2 contains fast
changes due to the intramolecular normal modes. These
normal modes are clearly seen in Fig. 2 having the fre-
quencies between 550 and 900 ps~!. The observed split
in the vibrational density of states is due to the coupling
with rotational motion as was discussed in [38].

The issue of recovering the collective time correlation
functions for molecular Hydrogen by generalized hydro-
dynamics was studied here by the application of the
GCM methodology within the thermo-viscoelastic model
(6). The number of dynamic eigenmodes and separable
contributions in Eq. (8) in our theoretical analysis was
five, and for any wave number, we obtained in this study
two pairs of complex-conjugated eigenvalues plus a sin-
gle real one. In Fig. 3, we show how the GCM theory
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is able to recover four different AIMD derived time cor-
relation functions. In general, there is good agreement
between the AIMD and GCM theory, and what is im-
portant, the fast intramolecular oscillations are well re-
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covered as is seen for the function Fyjq5(k,t), which,
according to Eq. (4), explicitly accounts for microscopic
forces acting on protons.
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Fig. 2. Normalized velocity autocorrelation function and its Fourier spectrum for molecular Hydrogen at density 284.73 kg/m?
and temperature 2500 K
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Fig. 3. Recovery of the AIMD-derived time correlation functions by the GCM theory at k = 1.209 A~ Frn(k,t) — density-
density correlations, ImF,, ;i (k,t) — imaginary part of density response function in time domain, Fv ;. (k,t) — longitudinal
current-current correlations, Fy;;v ;u(k,t) — longitudinal (J“(—k,t)J%(k,t = 0)) correlations

The good recovery of AIMD-derived time correlation
functions should result in the same level of precision
to describe the corresponding spectral functions. The
standard numerical method of estimating of the disper-
sion of collective excitations from computer simulations
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consists in following the peak locations in the L and T
current spectral functions C*/T (k,w). Here we show in
Fig. 4 that the GCM methodology allows nice recovery of
the longitudinal current spectral function C*(k,w) calcu-
lated (via numerical Fourier transformation) in the whole
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range of frequencies, including the part of intramolecular
vibrations (the inset in Fig. 4).

The dispersion of longitudinal excitations, obtained
via the peak positions of C%(k,w), is shown in Fig. 5.
Two well-defined peaks were observed in the shape of the
AIMD-derived C*(k,w) at any wave number: the low-
frequency peak resulted in the frequencies of extended
acoustic excitations, while the dispersionless branch —
in the local intramolecular vibrations. In Fig. 5,b one can
observe that the dispersion of the acoustic modes has a
minimum at k, — the location of the main peak position
of the static structure factor S(k), which corresponds to
the second pseudo-Brillouin zone, while at kp = k,/2
we observe a maximum in the low-frequency dispersion
branch. For the transverse case, we did not observe the
low-frequency peak of CT(k,w), which would indicate
the existing shear waves in molecular Hydrogen fluid.
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Fig. 4. Recovery of the AIMD-derived longitudinal current

spectral function C™(k,w) by the GCM theory at k =

1.209 A~!. The inset shows the high-frequency peak of in-
tramolecular vibrations on a larger scale
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Fig. 5. Peak positions of the AIMD-derived longitudinal cur-

rent spectral function CL(k, w). The straight line corresponds

to the hydrodynamic dispersion law, with the adiabatic speed
of sound estimated in this study by using Eq. (9)

The straight line in Fig. 5 corresponds to the hydrody-
namic linear dispersion law, with ¢ being the adiabatic
speed of sound. One can see that the linear dispersion
perfectly matches the dispersion curve of acoustic modes.
The value ¢s was obtained by using Eq. (9), which needs
the values of the high-frequency speed of sound ¢, and
of the instantaneous correlations of diagonal components
of the stress tensor. The latter was obtained from our
AIMD simulations as 1"(0) = 65.83 GPa, while the for-
mer was obtained from the long-wavelength asymptote of
Eq. (10) (as is shown in Fig. 6). The high-frequency speed
was obtained ¢, = 19313.20 m/s, while Eq. (9) resulted
in the adiabatic speed of sound ¢s = 11907.99 m/s. For
comparison, in Fig. 6 we also show the wave number de-
pendence of the normalized second frequency moment of
the transverse current spectral function, estimated from
AIMD simulations, which enabled us to estimate accord-
ing to Eq. (11) the speed of non-damped (“bare”) long-
wavelength transverse modes cr = 11440.0 m/s.
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Fig. 6. Wave-number dependence of the static

(JY (k)T T (k) J(JYT (=k)JYT(k))  correlations  for
the longitudinal (L) and transverse (T) case and evidence of
their ~ k? long-wavelength asymptotics

The complex-conjugated GCM acoustic eigenvalues
can be represented in the form [7, 8]

2o(k) = 0y (k) £ iws(k),

where the real part corresponds to the k-dependent
damping, while the imaginary part — to the dispersion
law. We show the sound eigenvalues in the first pseudo-
Brillouin zone in Fig. 7 in comparison with the AIMD-
derived peak positions of the longitudinal current spec-
tral function C¥(k,w). Also, in Fig. 7 we show the hydro-
dynamic behavior of dispersion and damping, where the
latter should follow the I'k? dependence, and in Fig. 7
one can see how the damping corresponds to the hydro-
dynamic law with the damping coefficient T’ = 34 A2 /ps.
In general, the GCM results show that the TVE model
of GCM methodology correctly describes the generalized
acoustic modes in the first pseudo-Brillouin zone.
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Fig. 7. Dispersion ws(k) as the imaginary part and damping os(k) as the real part of GCM complex eigenvalues (‘star’ symbols)
corresponding to extended acoustic excitations in the first pseudo-Brillouin zone. AIMD results from peak positions of CL(Ic7 w)
are shown by ‘plus’ symbols with error bars. The lines correspond to the hydrodynamic dispersion law csk and dispersion I'k?

IV. CONCLUSIONS

We performed ab initio molecular dynamics simula-
tions for molecular Hydrogen fluid with the main pur-
pose to analyze its collective dynamics by using the
GCM methodology. The case of molecular fluids with in-
tramolecular vibrations was not studied before by using
the GCM method, therefore, it was necessary to make
sure that some dynamic models within the GCM ap-
proach enable correct description of collective modes.
Our conclusions of this study are as follows:

i. We applied a five-variable thermo-viscoelastic dy-
namic model to analyze of AIMD-derived time cor-
relation functions and proved that the GCM eigen-
values correctly recover the dispersion of acoustic
modes, as well as they also correspond to the high-
frequency branch of intramolecular vibrations;

ii. A new feature in our methodology is that
we required recovery of the four AIMD-derived
time correlation functions: F,,(k,t), ImF,, su(k,t),
F%(k,t) and F};,;(k,t) with only 6 (the same
number as in the original formulation of the GCM
for ab initio simulations in [32]) unknown corre-
lators involving energy density and its first time
derivative in the generalized hydrodynamic matrix
T(k). Specifically, the microscopic forces which are
present in the expression for FY,  (k,t) enabled
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nice recovery of the high-frequency dynamics in the
molecular Hydrogen fluid;

iii. The methodology for the estimation of the macro-
scopic adiabatic speed of sound suggested in [36]
works fairly well for the case of the molecular Hy-
drogen fluid. The linear dispersion law with the
calculated value of the adiabatic speed of sound
¢s = 11907.99 m/s perfectly matches AIMD and
GCM dispersion curves in the long-wavelength re-
gion.

It is very promising to apply the developed method-
ology of the analysis of collective dynamics to molecular
fluids under high pressure. However, this cannot be per-
formed in a straightforward way in the case when Hy-
drogen molecules break up due to applied pressure. Such
systems should be treated as binary ones composed of
molecular and atomic units [39]. Hence, the proposed
in this study GCM methodology for a fluid of flexible
molecules should be extended to binary liquids in a sim-
ilar way as it was reported recently having a case study
of molten NaCl [33].
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I-M. ILENKOV, T. BRYK

JOCJITIKEHHSA KOJIEKTUBHUX 3BY/I2XKEHBb ¥V MOJIEKVJIAPHOMY BOJHEBOMY
®JIIOIAI METOIOM AB INITIO-MOJEJIFOBAHHS

I.-M. Inenkos!, T. Bpuk!:?
! Inemumym gisuru xondencosanus cucmem Hayionanronot axademii nayx Yepainu,
eya. Ceenyiyvrozo, 1, JIveis, 79011, Yxpaina,
2 Incmumym npukaciroi Mamemamury ma PyYHOCMEHMAILHUT HAYK
HauionanvHozo ynisepcumemy “/Iveiecvra nosimexrnira”,
6ya. Mumponoauma Andpea 5, J/Iveis, 79013, Yxpaina

3a 10moMorow KOMGIHAINT MOIETIOBAHHS METOIOM ab initio Mmonexkynsapuoi muanamiku (AIM]T) ta mig-
xofly y3arasibHenux kosiekTuHuX MoA (YKM) 3pob6iieno teopernvnuil anaji3 KOJEKTUBHOI JUHAMIKY B
MOJIEKyIApHOMY BomHeBoMY (uioimi. II'aru3MinHa TepMO-B’A3KOMPyKHA MOIEIb y3araabHeHOl Tiapoam-
HaMiku OyJia 3aCTOCOBaHA /i BiITBOPEHHS YOTHPHOX PI3HUX YACOBUX KOPEIANiMHUX (PyHKIIiH, orpuMa-
uux 3 AIMJI. TIopiBHIOEMO AMCIEPCII0 KOJEKTHUBHUX 30YIKEHB Y MOJEKYJISIPHOMY BOIZHEBOMY (DJIIOiI],
OTPUMaHY 3 MOJIOKEHb MAKCUMYMIiB CIIEKTPAJbHUX (PYHKII MOTOKY Ta 3 BJIACHUX 3HAYEHD y3arajbHEHOI
rizpoaunamidnol marpuri migxomxy YKM.

Kurro4oBi cjioBa: 1py2KHi BJIaCTUBOCTI, MOJIEKYJ/IAPHI PiAMHU, [OLIMPEHH:A 3BYKY, ab initio MoJeKy-
JIApHA JTUHAMIKA.
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