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Abstract

We report an ab initio simulation and theoretical study of collective dynamics in liquid Sb at

973 K. An application of the GCM (generalized collective modes) theoretical approach to analysis

of simulation-derived time correlation functions resulted in two types of propagating eigenmodes.

We found that the almost flat dispersion of the high-frequency branch of propagating modes can be

explained by out-of-phase oscillations of nearest neighbors which form quasi-bound atomic pairs

for at least 30 ps. We discuss the features of collective dynamics in non-simple metallic melts

containing quasi-bound pairs.
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INTRODUCTION

Collective dynamics in liquids has specific features defined by two mechanisms of sound

propagation: on macroscopic distances due to local conservation laws and on nanoscales

due to regular elastic forces. That is why usually the propagation of longitudinal acous-

tic modes is characterized on different spatial scales by two different quantities: adiabatic

speed of sound cs and high-frequency (elastic) speed c∞. For comparison, in transverse case

the existence of the only conserved transverse quantity, the transverse component of total

momentum, excludes a possibility to obtain from its balance a second order differential wave-

type equation, that results in the absence of the macroscopic transverse sound in liquids,

while in elastic regime (outside the hydrodynamic region) the overdamped shear waves can

exist [1–3].

Upon getting outside the hydrodynamic region the most obvious non-hydrodynamic ef-

fects are a deviation from the linear hydrodynamic acoustic dispersion law ωs(k) = csk,

where ωs and k are the frequency and wave number, and emergence of shear waves in

transverse case. The deviation of the longitudinal dispersion law outside the hydrodynamic

regime can be either ”positive” towards higher frequencies as it is typical for dense liquids

or ”negative” due to strong effect of damping from a coupling to thermal fluctuations [4].

For liquids which cannot be called as simple ones there exist new features in dispersion law

of longitudinal modes, observed in scattering experiments and molecular dynamics (MD)

simulations, and which are under active debates. The scattering experiments on liquid Bi

[5, 6] and liquid Sb [6] as well as ab initio simulations of these liquid metals [6, 7] revealed

that the dispersion in the region of the first pseudo-Brillouin zone kp/2 (where kp is the

location of the main peak of static structure factor S(k), does not have the simple form with

a maximum at kp/2 but shows quite an extended plateau [5, 6]. The origin of the extended

high-frequency plateau in dispersion of longitudinal propagating modes in liquid Bi and Sb

so far remains unclear. Both liquid metals show ability to form short-time chemical bonds

which lead to a possible emergence of dimers, trimers and more sophisticated short-time

complexes [7].

From the point of view of collective dynamics the existence of short-time living complexes

can be treated as a dynamics of chemically reacting mixtures. The theory of long-wavelength

dynamics for such systems was developed in Refs.[8–10], and the main effect on dynamics
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in the long-wavelength region was found to be the existence of relaxation processes due

to mutual diffusivity of atomic and quasi-bound species, that causes the difference with

relaxation behaviour of simple one-component liquid. From the other point of view an

atomic pair confined by a chemical bond must have the normal modes with opposite phases

of motion for bound particles, as well as to perform some rotational moves. There is a need

to develop models within generalized hydrodynamics which can account for existence of the

quasi-bound complexes in liquids. With this in mind we will study the collective dynamics

of liquid Sb with a focus of defining the quasi-bound pairs of atoms and how they can be

treated in generalized hydrodynamic schemes.

The remaining part of this paper is organized as follows: in the next section we provide

information about our ab initio simulations of liquid Sb. In Section III we will use the five-

variable thermo-viscoelastic dynamic model for analysis of dynamic eigenmodes in liquid Sb.

Then we will check out the most living quasi-bound pairs (QBP) of atoms, which will be

used for defining a corresponding dynamic variable, and which will be used for estimation of

related time correlation functions and spectra of ”bare” collective modes. We will summarize

the conclusions of this study inthe last section.

AB INITIO MOLECULAR DYNAMICS SIMULATIONS

We simulated liquid Sb at 973 K using a system of 600 particles in NVT ensemble by VASP

package[11–13]. The electron-ion interaction was represented by PAW potentials[14, 15]

with five valence electrons. The PAW potentials have an essentiav advantage over the

standard pseudopotentials because they allow to recover the correct nodal structure of wave

functions in core region. The plane-wave cut-off energy was 215.05 eV (which is a default

one for ”precision high” tag in VASP), and only Γ point was used in sampling of the 1800

electronic states in Brillouin zone. The generaized gradient approximation in Perdew-Burke-

Ernzerhof formulation[16] was applied for exchange-correlation effects in the electron density

functional. The time step in simulations was 3 fs, and upon an equilibration over 8 ps the

production run of 54 ps was used to obtain trajectories of particles, their velocities along the

trajectories and correcponding forces acting on partiales. All these quantities were used to

sample spatial Fourier components of dynamic variables of particle density n(k, t), density of

total momentum J(k, t) and first time derivatives of the total momentum, which is directly
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connected to the longitudinal (L) and transverse (T) components of the stress tensor via

J̇L/T (k, t) ≡
dJL/T (k, t)

dt
= ikσL/T (k, t) .

These dynamic variables along with the spatial Fourier components of energy density ε(k, t)

and energy current ε̇(k, t) form the set of dynamic variables of the thermo-viscoelastic (TVE)

description of the collective dynamics in liquids[2, 4]

A(TV E)(k, t) =
{

n(k, t), JL(k, t), ε(k, t), J̇L(k, t), ε̇(k, t)
}

. (1)

Analytical solutions for the long-wavelength asymptotes of longitudinal collective modes

within the TVE dynamic model were given in [4]. In order to obtain k-dependent propa-

gating and relaxing collective modes in a wide range of wavenumbers one has to solve the

eigenvalue problem for a generalized hydrodynamic matrix T(k) obtained for a chosen set

of Nv dynamic variables from the generalized Langevin equation[17]. In this study the TVE

set of dynamic variables was used to generate the matrix T(k) and solve the eigenvalue

problem using as an input the correlators from AIMD like it was proposed in [18, 19].

RESULTS AND DISCUSSION

The standard information about microscopic atomic structure of liquids can be obtained

from pair distribution function g(r) and static structure factor S(k). The pair distribution

function for the simulated liquid Sb has its first peak at the distance 3.05Å corresponding

to the most probable distance to the nearest neighbors, and a well-defined shoulder at

r ∼ 4 − 5Å, which makes evidence of another preferred location of the nearest neighbors.

Note, that a splitting of the first coordination shell with a pressure increase was observed

even in liquid Li and was caused by strong redistribution of electron density at high pressures

[20, 21]. The static structure factor, calculated via instantaneous density-density correlations

S(k) = 〈n(−k)n(k)〉 is shown in Fig.1b. For our study it is important that the main peak

of structure factor is located at kp ≈ 2.15Å−1, and hence, the first pseudo-Brillouin zone

should have its boundary at kp/2 ∼ 1.07Å−1.

The single-partricle dynamics in liquids usually is represented by mean square displace-

ments (MSD) 〈δR2(t)〉 and velocity autocorrelation function (VACF) ψ(t) = 〈vi(t)vi(0)〉,

where both time-dependent functions were averaged over all particles and different origins
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FIG. 1: Pair distribution function g(r) and static structure factor S(k) of liquid Sb at T=973K

from ab initio simulations.
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FIG. 2: Mean square displacements of Sb atoms with linear long-time behavior corresponding to

difusion constant of 0.583 Å2/ps. The inset shows the correct ballictic short-time regime of the

mean square displacements ∼ t2.

of the time correlations. The MSD has typical behavior at small and large times: ballistic

regime ∼ t2 (see inset in Fig.2) is replaced by the diffusive one which is perfectly linear at

large time (Fig.2) resulting in the diffusion coefficient D = 0.583Å2/ps.

The Kubo-Green integration of the VACF resulted in the same value of diffusion coeffi-

cient within the error bars of 3% as estimated from MSD. Another very important quantity

obtained from VACF is its frequency spectrum, which outside the low-frequency region

(dominated by diffusive contribution to VACF) can reflect the vibrational density of states.

In Fig.3 one can see a well-defined maximum in the region of frequencies ω ∼ 18ps−1 which
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FIG. 3: Power spectrum of velocity autocorrelation function. The high-frequency region corre-

sponds to the vibrational density of states with a peak at ∼ 18ps−1.

typically should correspond either to the maximum in dispersion of collective modes at

the boundary of the pseudo-Brillouin zone (Debye-like frequency) or to a flat region of the

dispersion curve.

For estimation of dispersion of collective excitations in liquid Sb we made use of two ap-

proaches. The standard one is for purely numerical estimation of dispersion of extended

acoustic modes ωL(k) via peak positions of the longitudinal current spectral functions

CL(k, ω), defined as

CL/T (k, ω) =
1

mkBT

∫

∞

0
F

L/T
JJ (k, t)dt . (2)

The second approach is a combination of theory and simulations, the GCM approach, which

allows to analyze the shape of time-dependent correlations via contributions from dynamic

relaxing and propagating eigenmodes. In this study we made use of the thermo-viscoelastic

model[4, 18] of generalized hydrodynamics which accounts for stress fluctuations and heat

current fluctuations in addition to standard fluctuations of conserved quantities. It is impor-

tant that the GCM approach within the thermo-viscoelastic model explicitly fullfills the stan-

dard sum rules for the short-time behavior of density-density correlations up to the fourth fre-

quency moment of dynamic structure factor. In Fig.4 we show how the thermo-viscoelastoc

model of generalized hydrodynamics recovers the shape of AIMD-derived density-density and

longitudinal current-current time correlation functions for different wave numbers. Within
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FIG. 4: Density-density and longitudinal current-current time correlation functions at two wave

numbers obtained from AIMD simulations (solid red lines) and from the thermo-viscoelastic dy-

namic model of GCM theory (dash green lines).

the Nv-variable GCM theory the time correlation functions are represented as

Fij(k, t) =
Nv
∑

α=1

Gij(k)e
−zα(k)t , (3)

where zα(k) is the α-th real (relaxing mode) or complex (propagating) eigenmode, and

complex in general weight coefficients Gij(k), which are directly related to the eigenvectors

of the α-th collective mode [17]. Similar exponential expansions for time correlation functions

were used in [22, 23]

The frequencies of propagating eigenmodes of the thermo-viscoelastic model for liquid Sb

are shown in Fig.5 by cross and star symbols. For comparison a dispersion estimated via

the peak positions of the current spectral function CL(k, ω) at different k-values sampled in

AIMD is shown by plus symbols with error bars. In general, the AIMD-derived dispersion

is very similar as obtained from IXS experiments on liquid Sb at 973 K[6] and from ab initio

simulations [7]. The very striking feature of this numerically estimated dispersion is in a

7

Page 7 of 13 AUTHOR SUBMITTED MANUSCRIPT - JPCM-121428

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
ω

 [p
s-1

]

k [A�°-1]

AIMD
TVE eigenvalues

FIG. 5: Dispersions of two branches of propagating eigenmodes from the 5-variable GCM theory (1)

in comparison with the dispersion of collective excitations obtained directly from AIMD via peak

positions of the current spectral function (2). Existence of a nonacoustic branch of high-frequency

propagating modes (green cross symbols) right in the region of a peak in power spectrum of VACF

(Fig.3) follows from the GCM theory.

quite extended flat region in wave numbers at the frequency ∼ 18ps−1, which practically

coincides with the high-frequency peak location in the frequency spectrum of VACF (Fig.3).

Surprisingly, for one of the two propagating GCM eigenmodes the region of wave numbers

at the frequency ∼ 18 − 20ps−1 is much more extended and starts at k ∼ 0.3Å−1, while in

this region and for smaller wave numbers the low-frequency branch shows typical increasing

with k behavior of the dispersion of acoustic modes. To some extent the behavior of the

dispersion of high-frequency eigenmodes resembles the optic branch in binary liquids[24, 25].

In order to explain the high-freuqency eigenmodes in Fig.5 we checked the time evolution

of distances between all the pairs of particles in our simulations, selecting among them

those which remain the nearest neighbors for time at least 30 ps. We have chosen a cut-off

distance of 5Å in order to include the region of the first maximum and shoulder in Fig.1a.

We allowed the particles for not more than 100 timesteps to cross the sharp cut-off at

r = 5Å and return back to smaller distances between them in order to keep counting them

as nearest neighbors. In Fig.6 we show as an example interparticle distance as a function of

time for three pairs of particles, which after the period of ∼ 32ps move apart and distance

between them increases. Note that during the time spent as nearest neighbors both particles
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in a pair move with opposite phases, similarly as in normal modes of dimers. In that sense

those pairs of neighbors which remain the nearest neighbors for relatively long period of time

in order to make an effect on high-frequency collective dynamics of the liquid can be called

as quasi-bound pairs. In our simulations we identified 11 quasi-bound pairs of atoms. With

increasing the cut-off or decreasing the ”lifetime” of QBP their number growths rapidly. We

can show that the dynamics of QBP corresponds to much faster processes, than the typical

longitudinal current-current correlations. In Fig.7 we show the longitudinal current-current

time correlation functions for the total mass current (tot in Fig.7) and longitudinal current

autcorrelation just of the QBPs

FL
JQLP JQLP

(k, t) = 〈JL
QLP (−k, t)J

L
QLP (k, 0)〉 . (4)

Here the dynamic variable of the longitudinal current of QLP is

JL
QLP (k, t) =

m

k
√

2NQLP

NQLP
∑

j

[(kvj
1)e

−ikrj
1 − (kvj

2)e
−ikrj

2 ] , (5)

NQLP is the number of QLP identified in AIMD, index j corresponds to the j-th pair with

particles 1 and 2 in it. The strong decay of the longitudinal QBP current autcorrelation

after 0.3 ps is connected with the average over the whole production run, not just over the

”lifetime” of the quasi-bound pairs. There is a need to derive more correct sampling of QBP

with their creation/annihilation with simultaneous annihilation/creation of non-bounded

particles.

Having the autocorrelation functions of QBP current (4) and (5) we can calculate the

corresponding spectral function CL
QBP (k, ω) and to estimate the dispersion of corresponding

modes from its peak positions. In Fig.8 we compare the dispersions obtained from the

longitudinal current spectral function CL(k, ω) (for total mass current) and CL
QBP (k, ω) (for

only QBP current). The straight dash line with the label HD corresponds to the linear

hydrodynamic dispersion law with the adiabatic speed of sound estimated [18, 26] to be

1910 m/s being close to the experimental values of [6, 27]. One can see in Fig.8 that

the peak positions of CL
QBP (k, ω) form quite flat dispersion law in the frequency region

16 − 18ps−1, that practically overlaps with the flat region of the dispersion of collective

excitations obtained from the total spectral function CL(k, ω). We have take into account too

that the QLP-derived modes from CL
QBP (k, ω) can have additional shift down in frequency

due to damping because of average over the whole trajectories (not only over the QBP

9
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FIG. 7: Longitudinal autocorrelation functions of total current (solid line) and of current of quasi-

bound atoms (dashed line) make evidence of different time scale of corresponding collective modes.

The time scale τ is 1.64377 ps.

”lifetime”). Therefore it is reasonable to connect the extended flat region of the dispersion

of collective excitations, observed in IXS experiments [6] and in previous AIMD simulations

[7] for liquid Sb, to be caused by QLP of Sb atoms. Formation of quasi-bound pairs in

a liquid leads to the emergence of the extended flat region of wave numbers close to the
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FIG. 8: Dispersions of collective modes obtained from peak positions of spectral functions of the

total current (solid line) and of current of quasi-bound atoms (dashed line). The short-dash line

correspond to hydrodynamic dispersion law with the adiabatic speed of sound 1910 m/s [6, 27].

boundary of the pseudo-Brillouin zone.

CONCLUSION

We performed AIMD simulations of liquid Sb with a purpose to understand the role of

quasi-bound pairs of atoms in the dispersion of collective excitations. First we performed a

theoretical GCM analysis of the dynamic eigenmodes in the simulated system, that resullted

in two types of propagating eigenmodes. Then, we observed 11 pairs of atoms, distance in

which between the neighbors remained within the region of the first coordination shell and its

shoulder on pair distribution function (Rij ≤ 5Å) over at least 30 ps. We constructed from

these quasi-bound pairs of Sb atoms current autocorrelation functions and corresponding

spectral functions, which resulted in a flat (in the whole k-range) dispersion of propagating

modes connected with the QLP. This

The existence of quasi-bound pairs poses a requirement to generalized hydrodynamics to

account for their effect on density and current fluctuations. Perhaps a promising direction is

an extension od the hydrodynamic treatment of chemically reacting fluids [8–10]. A related

problem is how to treat at the sampling of spatial-Fourier components of particle density or

current density from AIMD the breakdowsn of a quasi-bound pair when two particles begin to

diffuse independently, i.e. when describing the system as a binary mixture of quasi-localized
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pairs and independent particles is so far unclear how to sample creation/annihilation of quasi-

localized pairs in a form of dynamic variable of QLP density or QLP current. Similar problem

is in the case of molecular-to-atomic fluid transition in fluid Hydrogen under pressure [28].

Our generalized hydrodynamic treatment of this kind of complex fluids will be reported

elsewhere.
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