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Recently, the field of strongly correlated electrons has begun an intense search for a correlation induced topo-
logical insulating phase. An example is the quadratic band touching point which arises in a checkerboard lattice
at half-filling, and in the presence of interactions gives rise to topological Mott insulators. In this work, we per-
form a mean-field theory computation to show that such a system shows instability to topological insulating
phases even away from half-filling (chemical potential u = 0). The interaction parameters consist of on-site
repulsion (U), nearest-neighbour repulsion (V), and a next-nearest-neighbour correlated hopping (zc). The .
interaction originates from strong Coulomb repulsion. By tuning the values of these parameters, we obtain a
desired topological phase that spans the area around (V = 0, u = 0), extending to regions with (V > 0, u = 0)
and (V > 0, u > 0). This extends the realm of current experimental efforts to find these topological phases.
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1. Introduction

Study of topological phases in condensed matter systems is one of the most active areas of research
in recent times [1]]. In conventional topological insulators, a combination of spin-orbit interactions and
time-reversal symmetry gives rise to protected conducting states at edges/surfaces in spite of the presence
of a bulk band gap (like an ordinary insulator). The focus has mostly been on noninteracting systems. In
this work, we consider the proposal of inducing topological insulating phases in 2D materials through
interactions, without the need for spin-orbit coupling or large intersite interactions [2H8]]. While bulk
insulating gaps arise due to interactions, the topological nature is captured by the topologically protected
edge states. We will dub them “topological Mott insulators” [2]. The quantum anomalous Hall (QAH)
effect, emerging as a 2D topological insulating phase, can be understood as a generalization of the
quantum Hall effect for the spin-singlet case, which is an integer quantum Hall phase with gapless chiral
currents at the edges, but realized in the absence of any external magnetic field. The QAH ground state
breaks time reversal symmetry with unbroken lattice translational symmetry and has a bulk insulating
gap. The quantum spin Hall (QSH) effect is the analogue of the QAH effect, but the gapless edge states
are helical such that electrons with the opposite spins counter-propagate giving rise to spin currents
(rather than charge currents). Moreover, the ground state does not break time reversal symmetry. In the
set-ups for realizing interaction-driven 2D topological phases proposed so far [3H7], electron-electron
interactions at a quadratic band crossing point (QBCP) were considered, because parabolically touching
bands have a finite density of states in 2D.

QBCPs can arise on the checkerboard [3]] (at % filling), Kagome [3] (at % filling), and Lieb [5] lattices.
The spin-singlet d-density wave (DDW) state in a checkerboard lattice is the same as the QAH phase
discussed in [3} 9]. This is because when the diagonal hopping terms are modulated right at the lattice
level, this in effect gives us the dy, + id,>_,» phase on the square lattice, which is the QAH phase
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involving the time-reversal symmetry breaking current loops. The corresponding triplet variety is the
QSH phase. We also note that the QSH phase has the same energy as the QAH phase, and hence cannot
be distinguished at the mean-field level.

The importance behind the study of checkerboard lattice is as follows: This lattice consists of criss-
crossed squares, which can be viewed as a 2D projection of a 3D pyrochlore lattice (whose structure
is very common in nature) onto a plane. Furthermore, in the cuprate superconducting materials, each
copper-oxygen layer forms a checkerboard lattice consisting of alternate copper and oxygen ions, such
that the oxygen ions form squares with copper ions at the centers. There is one orbital per site, resulting
in two bands crossing at a QBCP at the wavevector (7, t) with a fourfold rotational symmetry. Hence, at
half filling, the Fermi level and the QBCP coincide.

We must emphasize that checkerboard lattice is merely a 2D analogue of the 3D pyrochlore lattice.
Similarly, the cuprate planes are stacked in 3D to form a complex 3D structure. A change in dimensionality,
especially in presence of a Fermi surface (not a Fermi point), can lead to nontrivial consequences. Hence,
there is a caveat in naively assuming checkerboard lattices to explain these real materials. Nonetheless,
as with other simplifying physics models, we can consider the checkerboard lattice as a toy model to get
some real intuition about the actual physics going on in the 3D systems. The real motivation of studying
it in this work is of course to analyse the phases for QBCP and at points away from the exact QBCP.

There is no intrinsic reason why the interaction-induced QAH phase should not exist for a generic u
if the lattice and the interactions are of the right kind. In the previously studied models, the interaction
parameters considered were: on-site repulsion (U), and nearest-neighbour repulsion (V). We generalize
this by including a pair-hopping (or correlated hopping) [10], denoted by an interaction strength ., as this
term is known to favour DDW/QAH ordering [[11]. The next-nearest-neighbour correlated hopping (z.)
originates from strong Coulomb repulsion. In this paper, our goal is to show that there is a QAH phase on
the checkerboard lattice (at least in mean-field theory) for a chemical potential (x) that does not exactly
correspond to a Fermi point at quadratic band touching, and in fact it continuously connects/extends to
the regions of (V = 0, u = 0) and (V > 0, u = 0), given that we tune U and 7, to some optimal values. Our
study considers instabilities among QAH, charge-density wave (CDW) and spin-density wave (SDW)
phases. We employ a mean-field theory approach by minimizing the free energy involving the possible
competing phases in order to study the effect of chemical potentials away from the QBCP.

2. The checkerboard lattice model

We consider the Hamiltonian of [[/], illustrated in figure m

H = Hy + Hiy,
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Figure 1. (Colour online) The checkerboard lattice, with the nearest-neighbour hopping of amplitude ¢
denoted by the green lines. The two next-nearest-neighbour hopping amplitudes tdizag and — tdizag are shown

by dashed brown and dashed yellow lines, respectively.
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with {m = (@i, j),m’ = (i, j"),m" = (i", j”)} and (o, o’) denoting the site and spin indices, respectively.
The nearest-neighbour pairs hop with strength ¢, while the next-nearest neighbours are connected by
diagonal bonds with hopping strength 74i,. We note that the diagonal hoppings give rise to the com-
mensurate singlet d,,-density wave ordering [11]]. In the interaction terms, U is the on-site repulsion, V
is the nearest-neighbour repulsion, and . is the next-nearest-neighbour correlated hopping. The symbol
(m, m’) indicates nearest-neighbour pairs. The next-nearest-neighbour correlated hopping occurs when
an electron hops from m’’ to m’ when m’, in turn, is vacated by an electron hopping to m. For the non-
interacting part (Hp), the QBCP appears at half-filling (4 = 0), when the non-interacting electrons have
a finite density of states but lack a Fermi surface. To simplify the notation, ¢ and the nearest-neighbour
bond length a are set to be units of energy and length.

Our aim is to reduce the Hamiltonian into a form including various ordered phases [10l [11]] as

follows{]

o = [ 10K 61 1) 6 b + [ 199880 g b + )
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Q =(m, ), fx=cosky—cosk,, [dk]= , (2.2)
where the indices o, @, 3, y, ¢ are spin-indices and summation over repeated indices is implied. The free
fermionic dispersion on a square lattice is e = —2¢(cos kx +cos k), while &k = —2t4i5¢ sin ky sin k, is the
energy dispersion for the d, phase emerging from a checkerboard lattice with #4;,, as the diagonal hopping
strength on adjacent plaquettes. The third, fourth, fifth, sixth and seventh terms on the RHS represent
singlet DDW, triplet DDW, SDW, d-wave superconducting (DSC) and CDW phases, respectively. The
couplings are given by [10]:

gadw = 8V +24t.,  gwuw = 2U,
gase = 12tc — 8V, geaw = 16V + 241, — 2U. 2.3)

Since the order parameters condense at the wave vector Q = (7, ), we use the reduced BZ (RBZ)

by folding the full 2D Brillouin zone (BZ). The RBZ is defined in terms of the rotated coordinates:
r o kxtky o, kx—ky i _ o m
ki =25t k= 25t where ki kj € [ - . .
Here, we will consider only two competing phases — QAH (or DDW) and SDW. We will assume
that the CDW phase is suppressed by a large enough U, which is true for the parameter regime when

'Nayak and Pivovarov [10] solved the mean-field phase diagram arising from correlated hopping on a bilayer square lattice,
while we are interested in a single layer checkerboard lattice.
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gedw < 07| We are interested in the regions of strong interactions, where DDW phase can appear, and it is
not our motivation to study the regions with all possible phases included. So this criterion considerably
shortens the range of parameter space where we have to perform our search, which is computationally
expensive. We will also leave out DSC because our aim is to study the phase diagram away from the
parameters leading to the familiar high-T;. cuprate phase diagrams. In other words, we are interested in
examining how the topological QAH phase can appear near ¢ = 0 and away from the doping values
responsible for DSC. It has already been shown [[10] that a DDW phase favours superconductivity in its
proximity and will eventually give rise to DSC for large enough p, and hence this is not what we want to
study.
The SDW and the singlet d,>_,» order parameters can be expressed as:

b = 0n [10K1 (1001 = (e 0000

Paaw = 9o J[dk]fk@@a(:k;a). (2.4)

The QAH order parameter is decomposed in momentum space just like a DDW and looks like:
igbfk<ClT(+Q;C,Ck;(r)~

To derive a mean-field theory, it is convenient to take the Fourier transform of the Hamiltonian in
equation (2.1)) and regroup the terms. To do so, first let us Fourier transform Hiy to obtain [11]:

Hipe = 70> Z I[dkl][dkz][dk3][dk4]6(k1 + k3 — ko — Ka)ey  Chyior O Chyior { VICOS( = k)

o,0”’

+cos(ky — k)] — te[cos(kf — k) + cos(ki — k) + 2 cos ki cos kj +2cos k] cosk!]},  (2.5)

where I[dk]é(k) = 1. As an example, we have demonstrated how to extract the DDW contribution
from the interaction part in appendix [A] following [12]]. In appendix [B] we have shown how we can
formulate the mean-field theory for various order parameters.

3. Phases from free energy minimization

At the mean-field level, singlet DDW (or QAH) and triplet DDW (or QSH) turn out to have the same
energies and hence we cannot distinguish between them. Therefore, we will determine the phase diagram
by considering two order parameters: one for SDW, and the other for singlet DDW. For notational
simplicity, we will use ¢, and ¢y to denote these two order parameters, respectively. The mean-field
Hamiltonian, including the above two phases, is given by:

, ; S L U
Hp = J[dk]‘/’ll LAk) = ] v + PR U = (CIL;T’ CIL+Q;T’ CIL;L’ Cl1<+Q;l)’
a
&k &k — 2¢a — 2ighp fi 0 0
_ | &k — 264 + 2ighy Sk —&k 0 0
h(k) h 0 0 &k 2¢a - 2i¢bfk + &k |’ G.1
0 0 2¢, + 2igy fx + Ek —&k

Let us assume for simplicity that ¢, and ¢y are real. Diagonalizing h(K), the energy eigenvalues are found
to be:

E) = \Je2 + 8 + 402 + 45y + 40212,

ER = \Je2 + & + 467 — déudy + 40012,
E} =-E!, El=-E. (3.2)

2In other words, we will restrict to the regime where CDW is not energetically favourable and therefore ruled out.
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The ground state energy at zero temperature (same as free energy at 7 = 0) becomes

4|2 4|p)?
| Bal . 12y , (3.3)
Ga

4

F= Z J [dK]E]6(u — EL') +
n=1 9o

where the sum over n runs over four bands. For a given set of parameters, we only expect one ordered

state. If one finds more than one ordered state, then the one with the lower free energy should dominate.

Hence, for each ordered parameter, one can minimize the free energy to find a self-consistent equation.

For example, for the SDW state, the self-consistent equation becomes

8¢a _ (3 . n _Egn
ey ; J [dK]E!6(u — EP). (3.4)

Similarly, one can derive self-consistency equations for the other phase as well by minimizing the free
energy energy. We choose units such that t = 1.

We note that the SDW vertex depends only on U, whereas the DDW vertex depends only on V and f..
Therefore, DDW phase will be favoured by increasing the values of V and #.. Clearly, if we want DDW
phase to exist around V = 0, we need to reach an optimum value of #.. This is what our results show.

Figure |Z| shows the phase diagrams for 745, = 0.75 and U = 1.0, such that the QAH phase appears
around (V = 0, u = 0) region by increasing f. to a nonzero optimum value, and extends continuously into
the regions with (V = 0, u > 0) and (V > 0, u > 0). We have shown the ranges for V for which we are
allowed to neglect the CDW phase. Figure[3]is shown to emphasize that the QAH phase can indeed exist
near V = 0 for a nonzero value of u. In this case, . = 0.05 and only the allowed region for neglecting
CDW vertex is shown in the phase diagram. The energy bands are shown in figures [4] and [5] which
indicate that interactions open up gaps at the quadratic band touching point. We note that for the QAH

Phase
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H M
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Figure 2. (Colour online) The panels show the phase diagrams obtained for different values of 7., in the
u—V plane. The QAH phase exists near (i = 0,V = 0) region in the last panel. We have set g5y = 0.75
and U = 1.0. The values of #; are {0.02,0.05} for the successive panels in increasing order. The ranges
for V are such that the CWD phase can be neglected. All the parameters are in units with r = 1.
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Figure 3. (Colour online) Phase diagram for p = 0.1, #gjag = 0.75, #c = 0.02 in the U-V plane for the
allowed region in which the CDW phase can be neglected.
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Figure 4. (Colour online) The four energy bands for (a) #gjag = 0.75, U
(non-interacting case); (b) Idiag = 075, U =1,V =0,1t = 0.02, u =

V = 0.04, 1 = 0.02, 4t = 0; (d) fgigg = 0.75, U = 14,V = 0.02, 1 = 0.0, u

X
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e

0,
(c
0;

X

V=01=0u=0
) tdiag = 0.75, U = 1,
(€) fdiag = 0.75,U = 1,

V =0.01, tc = 0.02, u = 1.0; (f) tgiag = 0.75, U = 1,V = 0.01, 1 = 0.02, u = 1.5; () tgjag = 0.75,
U=1,V =0.03,t =0.02, u = 1.0; (h) Idiag = 0.75,U =1,V =0, t. = 0.05, u = 0. As usual, we
use the convention: I' = (0,0), X = (-n/2,wt/2), M = (0, x), for the symmetry points of the RBZ. The
panels showing only two energy bands actually involve each band being doubly degenerate.
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Figure 5. (Colour online) The four energy bands for (a) #gjag = 0.75, U =0,V = 0,1 =0, u =0
(non-interacting case); (b) Idiag = 075, U =1,V =0.04, tc = 0.02, u = 05 (c) ldiag = 0.75,U =1,
V =001, 17 =0.02, g =1.0; (d) tgiag = 0.75, U = 1,V = 0.01, zc = 0.02, u = 1.5; () tgiag = 0.75,
U=1V =01 =0.05 pu=0; () t4iag =075, U = 1,V = 0.03, tc = 0.02, u = 1.0. The panels
showing only two energy bands actually involve each band being doubly degenerate.

phase, the band opening is such that we have Ell = El% and Elf = El‘(‘, where E]l = —Elf . In other words, the
QAH phase is characterised by two doubly degenerate bands which are negative of each other, similar to
the non-interacting Hamiltonian energies [shown in figures [4] (a) and[3] (a)]. This case is captured by the
figures @] (d), ] (g), B (h), ] (e), 5] (f). On the contrary, for the SDW bands, there is no degeneracy. We note
that when SDW appears at u = 0 region, two of the bands still touch the other [see figures 4] (b), 4] (c) and
[5](b)] — a gap appears only at higher values of u [see figures[](e), ] (f),[5](c) and[5](d)]. On the contrary,
when QAH state appears at u = 0, a gap appears between the positive and negative energy bands, each
remaining doubly degenerate. Around (V = 0, u = 0), a higher value of 7, thus enables this gap-opening,
making the QAH state feasible in that region. Since we have a large number of parameters in the theory,
we have chosen to show the various possible scenarios with an exhaustive number of figures.

Our numerical results show that QAH/DDW phase can exist for nonzero u (away from QBCP) in the
interaction-driven scenario, both for V.= 0 and V > 0. Furthermore, an optimum ¢, value allows QAH
phase to exist around (V = 0, u = 0). Hence, this extends the realm of current experimental investigations
to find these topological phases.

Our simulations show that as 7. and V is increased, keeping the values of other coupling constants
fixed, we move from an SDW phase around to a DDW phase u = 0. That this will happen can also be seen
from the relation gppw = 8V + 24¢.. This can be achieved in real experiments, for example, by applying
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pressure. Since correlated hopping appears from the off-diagonal elements of the Coulomb interactions
between the nearest neighbouring lattice sites, pressure can affect the ease with which correlated hopping
can take place by changing the lattice spacings. For example, there will be an increase in 7, when the
lattice spacing shrinks (under increased pressure) caused by increased admixtures of nearest neighbour
electronic wavefunctions, whereas this will not affect the one-site Coulomb repulsion captured by U.
Increased pressure will also tend to increase V.

4. Conclusion

We have shown by our numerically derived mean-field phase diagrams that the QAH (or DDW) state
appears in a generic doping range without fine tuning in the presence of interactions of the right kind. Our
interaction terms include correlated hopping, which essentially originates from strong local Coulomb
repulsion. In future work, one can study the effect of disorder for the finite chemical potential case.

Experimental investigations of systems showing QBCPs are just starting [13]]. Since it is experi-
mentally challenging to tune exactly at the point of zero chemical potential, our work shows that the
experimental explorations with extended realms can access topological Mott phases.
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A. DDW contribution from interactions

In this appendix, we extract the DDW contribution from the interaction part, following [12]. The
spins are the same in this case and hence we drop the spin index. We replace the four-particle operators
by sums of two-particle operators and C numbers:

CIC§C3C4 - <CIC4>CZTC3 + <C;C3>CIC4 - <CIC3>C§C4 - <CZTC4>CIC3 - <CIC4><C;C3> + <CIC3><C;C4>

= cilck2c£30k4 — — (clzlck4)cligck2 - (cllckz)cllch14 + <Cli1ck2>clz3ck4 + <cl7;3ck4>clilck2
+ (o e e, ) = (e e o) (A1)
First, resolving into DDW mean-field ansatz, we get:

ok; +k; —ky - k4)cltlckzcllck4

— —i6 (ks —ka + Q) 6(ky — ki + Q)(cos ki — cos kel ck;rq
—i6 (ki — ks + Q) 6(k2 — k3 + Q)(cos k3 — cos k‘zy)c;ckﬁQ
+16 (k3 — kg + Q) 8(ka — ky + Q)(cos k3 — cos kel ciseq
+16 (ki — ko + Q) 6(ks — k3 + Q)(cos kj — cos k)cf ck,+q
+ [irrelevant terms involving (cos k5 — cos kzy )(cos ki — cos kly)
— (cos kj — cos kJ )(cos k3 — cos kJ)]

— —2i6 (ks — ko + Q) 6(ks + Q — ky)(cos k — cos kf)cli3 Ck3+Q
[interchanging dummy variables in second term as: (ki, Ko, k3, k) — (K3, kg, k1, Ko)]
+2i6 (k3 — kg + Q) 5(ka — ky + Q)(cos k3 — cos kg)c]; Ck3+Q
[interchanging dummy variables in third term as: (ky, kp, k3, ky) — (k3, kg, ki, kp)]. (A2)
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Multiplying by 2V[cos(k — k) + cos(kg - kf)] and integrating over the appropriate variables, only the
first term in the last two lines of equation (A.2)) contributes, leading to the result:

Hi, = -2i-4V j[dk](cos ky, — cos ky)cltck+Q, (A.3)

where the factor 4 is due to the choices +Q. Similarly, we can work out the correlated tunnelling part,
for which the second term of equation (A.2)) contributes. This gives us the value of gqaw = 8V + 24t..

B. Mean-field formulation for various order parameters

In this appendix, we demonstrate how we can formulate the mean-field theory for various order
parameters.

B.1. Triplet DDW

First we consider the triplet d,>_, > ordered phase [10.[11]], such that the Hamiltonian in equation (2.5)
can be written as:

't =~ ge J[dk] [dk'] fi fic [CLQ;(,O'ZQﬁck;ﬁ] [Cl/;yUZ(SCka;a] , (B.1)
where g. = ggaw = 8V + 24t.. Expanding the spin indices above, we get:
Hie=—gc J[dk] [dK'] fic /i, [CLQ;TCk;T - C;+Q;lck;l] [CE/;TCk’+Q;T - Cll;ick%Q;l]
= —ge J[dk] [dK'] fic /i, [Cl+Q;TCk;TCL;TCk’+Q:T - CLQ;TCk;TCL;lewQ;L
- C£+Q;ick2lcl:;TCk'+Q;T + Cli+Q;le§iC]:;le'+Q;lj|' (B.2)
We define the two mean-field order parameters:
ol = ge [ 10, qqenr). 8L = g [ 1KLL, g cx) B3)

and expand the four-fermion operators using these to obtain the mean-field Hamiltonian:

T *
. . ¢ ¢ * T
Hrrclf - _ j[dk] [¢0Tfkck;TCk+Q;T + ¢g kalTHQ;TCk;T _ Cg c _ ¢lfk6£;lck+Q;i - ¢i kakJrQ;TCk;T
1L ‘o
ol i " fuc! b : ey
+ Cgcc - ¢clkak;TCk+Q;T - ¢I fkcl‘(+Q;lck;l + Cg - ¢ikalL;le+Q§l + ¢i fl'iclwa;lck;l
) ¢i¢c*] (B4)
gc

We will now choose ¢§ = i¢¢, and q&cl = —i¢., where ¢. € R, as this choice gives spin currents of equal
magnitude (QAH state). The mean-field Hamiltonian then takes the form:

&k — U &k + 2ig. fx 0 0 ,
¢ _ 7| &k = 2ipcfu  —ex— 0 0 4¢c
mf J[dk]wk 0 0 ek—H &k —2igcfk Yt ge
0 0 & +2igcfkx  —exk—H
I AR
0= (Gl e e ) (B.5)
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B.2. SDW and singlet DDW

Using the expressions in equation @]) for the SDW and the singlet d,>_

»2 order parameters, where

the corresponding couplings are g, = gsqw = 2U and gp = ggaw = 8V + 24t., one can find the mean-field
Hamiltonian for these order parameters in the manner outlined for triplet DDW.
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MosiBa TONOMIOFiIYUHMX MOTIBCbKMX AieNneKTPUKiB Nno6amn3y ToHoK
AOTUKY KBagpaTUYHOI 30HU

I. MaHga® C. Fremweiin?

L JNlabopatopis ¢i3nku aToma i TBepaoro Tina, KopHenbcbkunii yHiBepcuTeT, ITaka, NY 14853, CLLA
2 isnuHwit dakynbTeT, TexHiUHNIA yHiBepcuTeT [lpe3geHa, 01069 m. [pe3seH, HimeuunHa

HewoaaBHo, y ranysi ¢pisaviku CabHO CKOPeNbOBaHMX €1eKTPOHIB PO3MoYanunch iHTEHCUBHI AOCNIAXEHHS Kope-
NAUIAHO iHAYKOBAHOI TOMONOFYHOT AienekTpuyHoi ¢pasu. Mprknagom Moxe CayryBaTu Touka AOTUKY KBagpaTu-
YHOT 30HM, IKa BUHWKAE Ha rpaTLi TMNY LWaxiBHWLi NPV HaniB3anoOBHEHHI, i B NPUCYTHOCTI B3aEMOAi Npu3Bo-
AUTb 0 NOABM TOMOONYHNX MOTIBCbKMX AieNneKTpuKiB. B Uil poboTi, My 34iiCHUAM 064YnCIeHHS B HaOAVXKeHHi
cepeAHbLOro Noss, Wo6b nokasaTy, Lo AaHa CMCTeMA AeMOHCTPYE HeCTINKICTb MO BiAHOLLEHHIO 40 TOMOAOT YHNX
JienekTpryHMX $pa3 HaBiTb Janeko Bif HamiB3anoBHeHHs (XiMiuHWiA noTeHuian y = 0). MapameTpy B3aeMogii
BK/HOYAOTh B cebe 0ZHOBY3M10Be BiagwToBXyBaHHA (U), BigLLUTOBXYBaHHS MiX Habamxummm cycigamm (V) ta
HaCcTyMHi 32 HARGAMXUMMK CyCidaMmn CKopenbOoBaHi CTPMOKM (fc). B3aEMogist fc BUHMKAE 3aBASKN CUTBHOMY KY-
NOHIBCbKOMY BifLLUTOBXYBaHHI0. Peryntoroumn 3HaueHHs LUMx napaMeTpiB, M1 oTpuManu 6axaHy TOMONOFiYHY
¢asy, sika oxonitoe o6nactb B Mexxax (V = 0, u = 0), posnoscrogxytouncs go obnacrein 3 (V > 0, u = 0) ta
(V > 0, u > 0). Lie gae 3mory po3LumpuTit 061acTb NOTOUHUX eKCreprMeHTaNbHUX 3yCU/b 3 METOH 3HAXOZAXKe-
HHS UMX TononoriyHmx ¢as.

KntouoBi cnoBa: twaxosi rpatyl, TOYKU JOTUKY KBaAPATAYHOI 30HY, TOMOJIOrISl, MOTIBCLKUIA AieNEKTPUK,
d-ryctvHHa xsuns
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