Condensed Matter Physics, 2017, Vol. 20, No 1, 13702: 1T0] CONDENSED
DOI:[10.5488/CMP.20.13702 MATTER
RHYVSICS

http://www.icmp.lviv.ua/journal

Rashba spin-orbit interaction enhanced by graphene
in-plane deformations”

B. Berchem, F. MirelesB], E. Medingd12

L Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine,
54506 Vandoeuvre-les-Nancy, France
2 Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, 21827, Caracas, 1020 A, Venezuela
3 Centro de Nanociencias y Nanotecnologia, Universidad Nacional Auténoma de México,
Apdo. Postal 14, 22800 Ensenada B.C., México
4 Yachay Tech, School of Physical Sciences & Nanotechnology, 100119-Urcuqui, Ecuador

Received January 2, 2017, in final form February 8, 2017

Graphene consists in a single-layer carbon crystal where 2p, electrons display a linear dispersion relation in
the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+ 1 spacetime. Spin-orbit
effects open a gap in the band structure and offer perspectives for the manipulation of the conducting electrons
spin. Ways to manipulate spin-orbit couplings in graphene have been generally assessed by proximity effects
to metals that do not compromise the mobility of the unperturbed system and are likely to induce strain in the
graphene layer. In this work we explore the U(1) x SU(2) gauge fields that result from the uniform stretching
of a graphene sheet under a perpendicular electric field. Considering such deformations is particularly relevant
due to the counter-intuitive enhancement of the Rashba coupling between 30-50% for small bond deformations
well known from tight-binding and DFT calculations. We report the accessible changes that can be operated in
the band structure in the vicinity of the K points as a function of the deformation strength and direction.
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1. Introduction

Modifying the interactions present or lacking in graphene has been a topic of continued interest since
perturbations by, e.g., proximity effects [1], can generate gaps [2] [3] for semiconducting properties, spin
splitting for spintronic effects [4} 5], spin-orbit interactions for topologically protected edge currents [6l,
spin alignment to induce anomalous Hall effects [7] and RKKY interactions [8]. Regarding spin-orbit (SO)
interactions, the intrinsic contribution in graphene depends directly on the atomic SO coupling of carbon,
(~ 6 meV). Nevertheless, it is a second order effect in flat graphene with energies in the range of peV.
To enhance such an interaction one can resort to the bending of the graphene sheet [9], as it occurs in
nanotubes [10]. This results in a SO interaction increase of three orders of magnitude due to a change in
the p, orbital overlaps. On the other hand, bringing the graphene in close proximity to a gold interface
can increase the Rashba coupling [11]] both due to the interface electric field caused by charge transfer
and due to the strong atomic SO interaction of gold. Depending on the registry of the two materials, the
SO can increase to ~ 70 meV.

Here, we explore another mechanism for SO enhancement, making use of uniform lattice deforma-
tions. We take advantage of the non-intuitive behaviour of the Rashba coupling in planar graphene that
depends inversely proportional to the o bond length [12] [13]]. The stretching of the bonds lead to an in-
creased SO coupling when an electric field, perpendicular to the graphene plane, is present. In this work
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we will first derive a uniform deformation field that will stretch and rotate the base graphene lattice.
We will then derive the Hamiltonian corresponding to such deformations which can be mapped onto an
equivalent U(1) and SU(2) gauge field theory [14H18], once an expansion around the K point is performed.
We then derive the energy spectrum of the problem as a function of the stretching intensity and the ro-
tation angle. We find that a uniform strain can control both the formation of a substantial gap for strains
less than 15% and modulate the chiral spin splitting of the band structure. The strain angle also controls
the spin splitting, which becomes less sensitive to strain as the strain angle increases. Let us also men-
tion a recent study that reported a spin filter/valley filter via strain induced Rashba SO interaction and
magnetic barrier [19].

2. Undeformed Hamiltonian in the vicinity of the K point

We are interested in the modification of graphene electronic properties due to sheet deformations
which lead to changes in the hopping parameters within a tight-binding (TB) approach [20}21]]. This prob-
lem was elegantly addressed in the U(1) gauge theory context [22]. Here, we extend this analysis to include
spin-orbit (SO) effects which can be enhanced due to in-plane deformations. We use the convention that
one of the C—C bonds is chosen along the y direction of the lattice in such a way that the nearest neigh-
bour lattice vectors, between A and B sublattices, are denoted as 5 {=(al V3) 7, 53 =(al2)1-(al2 \/§)T
and 55’ = —(a/2)i- (a/2v/3)j. The modulus of the nearest neighbour vectors is given by the C—C distance,
16 l=al v/3 = 1.42 A where a = 2.46 A is the unit cell basis vector’s modulus (see figure .

In the reciprocal space, the Brillouin zone (BZ) is hexagonal, with Dirac points at the edges, where the
dispersion relation is linear. The coordinates IZ} of the two inequivalent Dirac points are labelled by a
(valley) parameter { = +1, I?( ={(4n/3a,0), and the vicinity of these Dirac points in momentum space is
parameterized by the wave vectors k= I?( + p/h, hence ky ={(4n/3a)+ py/h, ky = py/h.

In the continuum limit, the Hamiltonian follows from the expansion of the TB matrix elements in
powers of p/h. If one only retains the kinetic energy (KE), the non-diagonal matrix elements describing
the nearest neighbour (nn) hopping are given by

5o _ V3at

(H)ap = Z(—t)ei%' —5 Px=ipy)+ o(pI*1n®, 2.1)

where the sum is over nn sites and the prefactor proportional to the hopping amplitude defines the
Fermi velocity vr = v/3at/2h with t = Vyppn, the hopping integral between p, clouds in graphene. The
other non-diagonal matrix elements follow from complex conjugation, (H)pa = (H)ZB, and the diagonal
elements (H)aa = (H)gp are chosen to be zero fixing the Fermi energy. The primitive cell Hamiltonian
can be collected into the matrix expression (from now on, we will focus on the { = +1 valley without loss
of generality)

Ho = vp(Oxpx +0ypy), (2.2)

Figure 1. (Color online) The primitive cell in unstrained graphene (pair of square and circle sites) and
the vectors & ;.’ joining the A site to its nearest neighbours. The lattice parameter a indicates a reference
length scale of the lattice.
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where dimensionless Pauli matrices o; have been introduced to describe a pseudo-spin degree of free-
dom. In what follows, bold fonts are used to denote matrices in pseudo-spin and/or spin space.

When a graphene sheet is deformed, the lattice is subjected to local modifications that in general
change the nearest neighbour vectors 5 ¢ and thus change the continuum Hamiltonian in equation .
Since the hopping amplitudes ¢ are themselves functions of the nearest neighbour distance (typically ex-
ponentially decaying functions of the distance), it is simpler and more transparent to model an arbitrary
sheet deformation by a change in the hopping integrals t — ¢; [22} [23]. Here, we disregard bond angle
effects on hopping integrals [24] which are important for electron-phonon coupling.

The effect of deformations on the kinetic energy is well known, but its role in the spin-orbit interaction
(SOI) have not been fully addressed. Here, we focus on the Rashba spin-orbit (RSO) interaction which is
due to both the atomic SOI of graphene, and an externally applied electric field perpendicular to the
graphene surface. The latter can be due to either a charge transfer to a nearby substrate or an applied
gate voltage. For a perfect lattice, non-diagonal RSO amplitudes are given, in the TB approach, by terms
of the form [25]

(Hr)ag = —i

1
RS
X y 5 \/§
Here, assuming unstrained graphene Ar; = AR is a constant, having the dimensions of energy and ranges
between 13 to 225 meV depending upon the substrate [11] 26H28]. s; are the dimensionless spin Pauli
matrices. Taking into account the kinetic energy corrections due to the SOI, the Rashba Hamiltonian is
then

pxa

a
T (isgtsy) + %(sx+isy)]}+0(|ﬁ|2/h2). 2.3)

1 [pxa pya
—— | — (0 Sy +04S))+ ——(0Sx—O s)] 2.4)
o3 L ST OxSyIT Tm O xSk TSy
in the vicinity of the K point. Contrary to equation (2.2), this expression has a 4 x 4 matrix structure, where
0;s; is a short notation for g; ® s, hence, when compared to SOL the purely kinetic term is implicitly

multiplied by the identity matrix in spin space 1;.

Hy = AR{UJ,SX —UxSy+

3. Gauge fields in the deformed graphene sheet Hamiltonian

Let us now consider that the graphene sheet is subjected to a uniform tension in the plane resulting
in a tensile strain in a given direction, in the coordinate system x’-)’, oriented at an angle 6 relative to the
lattice coordinate system x-y. Such strain would induce a uniform deformation of the lattice (figure [2).
The deformation is characterized by the strain tensor €’ in the x'-y’ system. For a graphene sheet, the
only nonzero deformations are €', and €/, so

!
! __ Exx 0
€ _( 0 E,y )) (31)

where the uniaxial strain components are related to each other through the Poisson ratio o by e/yy =
—o¢€!,, with o = 0.165 in graphite [29H31]]. The strain tensor in the lattice coordinate system is given by
€ = UT€'U, where the matrix elements of the rotation matrix U are Upv =0pycosO+(=1)"sinf(1 -6 ),

with {u, v} = 1,2. The deformation induces a change in the nearest-neighbor lattice vectors 519 as follows,
gi =1+ 6)5?, with i =1,2,3, leading to (in units of a, = a/ V3, ie.,all 0;’s to be understood as §;/a,),

161 = 1+€11(89)° +€22(89)° +2€126%,8 (3.2)

xi~yi’

where the strains are defined by

€11 = €(cos’ 0 — asin?0), (3.3)
€12 =€(1 +0)cosOsinb, 3.4)
€2 = e(sin2 0 — o cos? 0). 3.5)
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Figure 2. (Color online) Homogeneously deformed graphene sheet, parameterized by strain € and strain
angle 6 as described in equations (3-3)-(3.9).

We use as a tunable parameter the uniaxial strain € = €. The deformations lead to a modification of the
hopping amplitudes which decay exponentially with the nn atomic distance. For the case of the kinetic
term one has -

ti= tppn(lgil) = te—ﬁ(\éil/ao—l)’ (3.6)

where = 3.37 [29}[32]. Starting from the TB expressions and allowing only for nn hopping amplitudes
t;, with i = 1,2,3 according to the labeling of the n.n. vectors 9;, equation for the kinetic energy
becomes

(Hap = _tzei%'gi +Z(t— ti)ei%'gi = vp(px —ipy — o x +igf)) + second order terms, 3.7
i i
with
oy = 2 h[t 1(t+t) _2h 5t (3.8)
x_\/§at1223_\/§at’ .
n not
Ay=—(3—t)=——. 3.9
y at(g 2) P (3.9)

Both terms above vanish in the case of the undeformed graphene sheet. The notation suggests the intro-
duction of an Abelian gauge field [22] of = ol T+ </,] (here, in two space dimensions) in order to describe
the effect of sheet deformations. The second order terms which are neglected in equation comprise
Of] ﬁlzaz/ hi2) terms as well as products of order O(|plad t/ht) where dt/t represents any dimensionless
combination involving the hopping amplitudes and which vanish for the undeformed graphene sheet,
e.g., of the form 6t = (53— 1) or 6t' = 1; — %(tz + f3) in equations —. In this approximation, the
continuum limit counterpart of is now

Hy = VF[ax(px_dx”s +0'y(py_-§¢y)1|s]. (3.10)

The Rashba term also needs to be corrected to account for space dependent hopping amplitudes.
However, the origin of the coupling between nearest neighbours is quite different, and arises via the
atomic SOI and the Stark interaction (due to the external electric field). Within tight-binding approach,
the Rashba parameter strength for the unstrained case is given to leading order by [12}[13]

Eps (3.11)
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where E is the external electric field, eEzg) is the matrix element of the Stark Hamiltonian between s and
p: orbitals, ¢, is the matrix element of the atomic SOI (carbon) coupling the p, orbitals and the bonded
in plane py, py orbitals. Finally, Vsp. is the matrix element coupling the s orbital in one carbon to the py,
py orbital of the n.n. atom. It is the latter bond that is stretched by the deformation field. According to
DFT and tight-binding calculations [13], the Rashba parameter shows an exponential increase due to the
lattice constant stretching. It is controlled by the decay of the matrix element V;,, through the increase
of interatomic carbon-carbon distance.

We can express Ag, = /1;0) [Vs(g)g/ Vipol = /lg))rf.p ? for each bond, where Vispo 1s the stretched hopping
matrix element. By fitting the numerical values of the dependence on the lattice constant arising from
the hopping parameter Vi, reported in [13], we can thus model Tls.p “ as a dimensionless ratio given by

2 5. _ 5. _1)2
TSPU(|5i|):ey(I5,I/ao l)eK(|6z|/a0 1) , (312)

where y = 1.265 and « = 1.642. For illustration, in figure [3 we plot the dependence of the hopping pa-
rameter ¢(¢)/ ¢ and Rashba coupling strength Ag(£)/ )Lg)) as a function of a given stretched lattice constant

¢=16:l/ ao.
Henceforth, to zeroth order in py, py, equation obeys the expression

(0)

. 2 iiF 2 . .
(Hg)ap = —1/1{{” E Zripaelk 0if; (—=syT+s8:)) = % [ (41?’70 + T;pg + T;pa) (~isy)
1
- \@(TSW -1 ) s+ \/§(T;pg -1377) (—isy) =3 (1,77 +T;pa)sy], (3.13)

thus, the full Rashba Hamiltonian, to lowest order is expressed as

(©)
0 _ M
HY = - [(4Tipo +7,"7 41377 ) oy =3 (1,7 + 13 ) o usy — VB (1P - 13" (axsx—aysy)] . (3.14)

It is interesting to note that together with an asymmetric Rashba type of interaction, there also appears
a regular Dresselhaus spin-orbit (DSO) interaction o< (0 ysy — 0 syx) when the hopping parameters T;p 7
and rgp “ are unequal, no matter the parameters of the deformation.

2.00 . : . : . :
SRR ——t(e)t
[ \ e ©
g 1.75 l\ exp[-B(E-1)] ® XR(i)/KR .
c [ ]
% \I
S 150 \a §
£ \
S N 4
g -\ ./o
© 1.25 o’
% .\ .,o/.
.E \h ’././o’
o 1.00 4 i -o® i
2 00 P
Q 1 ,.,r”.'.
ﬂ ,_./. I\
S 0.75-  exply (E-1Hx(E-1)] “u_ 4
> u,
(o] -\.\
I\.\.
0.50 : ; . , >
0.8 0.9 1.0 1.1 1.2
€

Figure 3. (Color online) Exponential behavior of the hopping parameter #(¢)/ ¢ [equation ] and Rashba
coupling strength AR (&)/ /1{3) [equation 1| and as a function of a given stretched C-C lattice constant

&=16;1/ag. Here p =337,y = 1.265, and x = 1.642.
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As we have done in the case of the KE, we can introduce here non-Abelian gauge fields [33] to describe
the effect of deformation on the SOI, namely write equation as

Hl(f) =—up (axlesx +OH sy +0y7//y1sx +0y7//y2sy) (3.15)
with the components Wiﬁ of the non-Abelian gauge field carrying an ordinary space index i = 1,2 and an

internal superscript § = 1,2,3 which specifies the spin component to which the term couples. Here, one
has

\/§/1(0) /1(0)
7//1 - _ R _L_SPO _TSPU , Wl _ R 4TSp0 +Tspa +Tspa , (3.16)
* 6vp ( 2 3 ) Y 6up ( 1 2 3 )
/1(0) \/g/l(O)
2 _ R spo , _Spo 2 _ R spo_spo
7’/x——ZUF (Tz +75 ) WJ’_B—UF(TZ — T4 ) 3.17)

and there is no coupling to the third component s,. The non-Abelian character can be made explicit if
one calculates the commutator between #'; = #;“s, (where contraction over the superscript @ = 1,2 is
understood) and #'; = Wjﬁ sg, 1.e. [7/’;",7/’? 1= iheaﬁpWi“?//jﬁ Sp, With €4, the fully antisymmetric tensor.
The non-Abelian gauge field components have the dimensions of momentum. Let us define § 757 = T;p 7
7,7 Then, in a rather weak strain case (¢ < 0.05), the expression (47" +7," +7;"7)/6 = (6+667°7) /6 =
1 and therefore, #,! = —71/},2 = }Lgnérs””/(z V3vp), and 7//},1 =-W2= —/lg))/vp.

Altogether, the Hamiltonian that comprises the modified kinetic energy and the modified Rashba
spin-orbit interaction may be written in terms of gauge fields as

H=vp[0:(pils— LN~ # i -8)+0,(pyls— )1 -W - 9)]. (3.18)

We note that the intrinsic spin-orbit contribution & o ;s; which, being associated to next-nearest-neigh-
bour hopping terms, is an order of magnitude lower so it can safely be neglected. Note that in contrast
to [19) 23] we have a non-Abelian gauge field arising from the stretching of the lattice. In this work,
stretching produces both changes in the velocity and in the spin couplings. We explicitly incorporate the
change of the Rashba-parameter due to the lattice deformation, which is controlled by the decay of the
hopping V;ps with the nn interatomic distance, while in [19] the Rashba parameter is just a constant in
the strained region.

In conclusion, we have now a Hamiltonian to dominant order in ¢/ and §7°P?, changes that can be
cast as an effective U(1) and as a SU(2) gauge potential, respectively. We will now exactly diagonalize this
Hamiltonian in the previous approximation to see the effects on the band structure.

4. Effect of the sheet deformation on the band structure

The energy spectrum in the continuum limit for graphene with uniaxial deformations and Rashba
spin-orbit interaction is described by the eigenvalues of the Hamiltonian (3.18). We first notice that due
to the small factor 67°P7, the terms %, and 7//y2 are typically two orders of magnitude smaller than Wyl

and #;2, then the dispersion energies are explicitly given by

112
EY =nus {)Lle + AR, + (px— o)? + (py — y)? + 25 [ AR AR, + AR, (px— o)* + AR, (py — o,)?)? } “4.1)

with the definitions Ag, = 7//),1 and Ag, = #2. The labels n = +/— and s = +/— denote the electron/hole

and spin chirality, respectively. In the absence of Rashba spin-orbit coupling [)Lg)) =0], the band spectrum
simplifies, as expected from the gauge approach solely applied to the kinetic energy, to

D=

EY =nup [(px— ot0)? + (py — )7 (4.2)
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In figure @ we show the characteristic band dispersion as a function of pa (with p = py = p,) for
different deformation strengths and for Rashba coupling /lg =0.0048¢ and 6 = 0. The plot clearly shows
that even for a rather small strain there is a shifting of the band structure. It varies with the orientation
angle of the tension applied, not shown here. The presence of the strain opens a relatively large gap
between the electron and hole bands and it can be significantly tuned by the strain. A similar behavior
is shown in figure|5|and figure |§|where a larger Rashba SOI [)Lgn =0.024¢ and /lg)) = 0.0578¢] has been

0.5 T~ — T T L A — T 7T
J \z;:O.lS_ J 4 (b) e=-0.15 4
_ 4 Je=-010 i
04 £=0.10 _/ ¢
i § :=—0.05
0.3 S:O.(N ‘
0.2 H £=001 £=-001
0.14 u
= 1 ]
B 0.0 2900048 29 20,0048
S
o - i
w -0.1- ] N
-0.2 4 £=0.01 e=-0.01
0.3+ g:o,os/ £=-0.05 E
04 8:0,10/ ] _‘\ 1> \
1 £=0.15 7 0=01 1e=0 e=-0.15 4 g
05 ——

T T L L LI
-0.3 -0.2 -0.1 0.0 01 0.2 03 -0.3 -0.2 -0.1 0.0 01 0.2 03
pa/n pa/fi

Figure 4. (Color online) Band structure for a graphene sheet under a simultaneous presence of relatively
weak Rashba spin-orbit coupling [}Lg)) = 0.0048 in units of ¢] and different values of uniaxial strains in
the plane. The band pairs correspond to the chiral spin splitting due to the SOI. A large gap, ~ 0.5¢, in the
spectrum is produced by strains smaller than 15%.

0.5

\' T L — T T — T 177
1 e=0.15 4 1 1 (b) e=-0.15"7 4 E
047 c=0075 N — e
0.3 e . /—(
1 £=0.01 q e=-001 4
0.2+ B 1
0.1+ - B —
= ] ) ]
& 00429-0024 . = 29=0024
S
o ] g ]
w -0.14 B — b T
-0.24 4 i
4 &=0.01 4 e=-0.01
03 . - - x
- £=0075 o y 1 1
0.4 / R __\ | e=-0075
1 £=0.15 1 0=01 1o=0 ©&="015
05 ——

L I B T L I N A B
-0.3 -0.2 -0.1 0.0 01 0.2 03 -0.3 -0.2 -0.1 0.0 01 0.2 03
pa/n pal/h

Figure 5. (Color online) Band structure for a graphene sheet under a simultaneous presence of Rashba
spin-orbit coupling [Ag)) =0.024 in units of ¢] and different values of uniaxial strains in the plane.
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Figure 6. (Color online) Band structure for a graphene sheet under a simultaneous presence of relatively
large Rashba spin-orbit coupling [/lg)) =0.0578 in units of ¢] and different values of uniaxial strains in the
plane. The figure clearly shows how the chiral spin splitting increases with the amplitude of the strain
applied.
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- 130
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- 4 490
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8 4+ 111 — 11— 80
03 02 01 00 01 02 03 -03 -02 -01 00 01 02 0.3
g &

Figure 7. (Color online) Spin-splitting of the conduction band at k = 0 for different orientation angles 6.
(a) For weak Rashba SOI A\’ = 0.0048. (b) Large Rashba SOI 1\’ = 0.058.

used and where the gaps are consequently larger. We also observe that the gaps between E; and EZ
electron/hole bands can be continuously modulated from a semimetal to a semiconductor behavior just
by varying the direction of the strains.

The dependence of the spin-splitting energy A;(k = 0) = Ef (0) — E; (0) of the conduction band struc-
ture at k = 0 with the uniaxial strain ¢ is shown in figure[7)for different orientation angle 6 and (a) weak
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Rashba strength )Lg)) =0.0048¢ and (b) strong Rashba strength /1{3] =0.0578t. Changes of the spin-splitting
can vary from 17% to 59% in the range of strains between € = —0.3 and € = 0.3 studied here.

5. Summary and conclusions

We have developed a model to describe the spectral effects of small in plane deformations on gra-
phene, in the vicinity of the K points. We focus on the non-intuitive enhancement of the Rashba SOI due
to the stretching of the sigma s-p overlaps between the A-B sublattices. The deformations considered
involve both bond length and bond angle changes. The full Hamiltonian, to lowest order in the lattice
momentum and deformation amplitude, taking into account both kinetic energy and spin-orbit coupling
effects of deformations, can be cast into a convenient U(1) x SU(2) non-Abelian gauge formulation. We
derive the analytical form for the energies as a function of the lattice momentum in the vicinity of the K
points and its dependence on bond stretching amplitude and angle. Within reasonable lattice deforma-
tion strengths of at most 15%, we find that the electron/hole bands can be continuously modulated from a
semimetal to a semiconductor, involving both shifts in the position and size of the band gap. We also ob-
serve how the chiral spin splitting energy can be controlled by changing bonds lengths and bond angles.
The results found present an interesting prospect for spintronics application for graphene on deformable
substrates or charge induced lattice stretching controlled by the gate voltages [34} 35].
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CniH-op6iTanbHa B3aemogaia Pawbu, nigcuneHa rpadpeHoBUMUA
NAOWMHHUMM AedopMmaLiamn

b. bepuf@, @. Mipene, E. Meginad™2#

1 I'pyna ctatuctuyHoi ¢isnku, IHcTuTyT XaHa flamypa, YHiBepcuteT JloTapuHrii,
54506 m. BaHayBp-ne-HaHci, ®paHuis

2 LleHTp ¢i3nkn, IHCTUTYT HaykoBMX AocnagkeHb BeHecyenn, 21827, m. Kapakac, 1020 A, BeHecyena
3 LleHTp HaHOHayK i HaHOTexHoAOTil, HalioHanbHWA aBTOHOMHWI YHiBepcuTeT Mekcuku, M. Mexiko, Mekcuka

4 fuaii TexHoLUeHTp, Buwa wkona ¢isnuHux Hayk i TexHosorii, EkBagop

IpadeH — Lie MOHOLLAPOBWIA ByrneLeBuii KpUCTan, Ae 2Pz enekTPpoHU AeMOHCTPYIOTb NiHIHWIA 3aKoH Ancnep-
cii no6an3y piBHs ®epMi, LLLO ONKCy€eTbCS 6e3MacoBUM PiBHAHHAM [ipakay 2+1 npocTtopi-yaci. CniH-op6iTanbHi
edeKkTV BiAKPUBAIOTL LLINVNHY B 30HHI/ CTPYKTYpi i BKa3yTb Ha NMepcnekTUBM ANS KepyBaHHS CMiHOM efe-
KTPOHiB npoBigHoCTi. CNocobu KepyBaHHS CNiH-0p6iTaNbHUM 3B'A3kOM B rpadeHi B3aralbHOMY BU3Ha4atoTbCs
6113bKicTIO edekTiB 4O MeTaniB, AKi He NOCTYNarTbCA MOBINBLHICTIO He3bypeHOoi cucTemMn Ta IMOBIPHO iHAYKY-
0Tb HanpyxxeHHs B Wwapi rpadery. B uin poboti mu gocnigxyemo U(1) x SU(2) kanibpyBanbHi nons, Aki BUHK-
KaloTb 3 OAHOPIAHOrO PO3TArHEHHS rpadeHoBOro ANCTa Mij Ai€l0 NeprneHANKYNAPHO-HanpaBaeHOro enekTpu-
YHoOro nons. Po3rnag Takux gepopmalliii € 0CO6ANBO BaXNNBUM Yepe3 KOHTPIHTYITVBHE MiACUNEHHS 3B'A3KY
Pawo6n B giana3soHi 30-50% Ana manvx gepopmaliili 38'A3KiB, LLLO € A06pe BiAOMUM 3 06UNCIEHb B HABNVKEHHI
CUABHOTO 3B'A3KY i 3 Teopii GyHKLioHaNy rycTHW. My NOBIAOMASEMO JOCAKHI 3MiHW, SIKi MOXYTb 6YTI 3AiACHeHI
B 30HHIli CTPYKTYpi 06113y K ToUok, SK GYHKLL0 cuam i Hanpsamky gedopmaldlii.

KntouoBi cnoBa: rpageH, criH-cTpym, cniH-opbitaibHa B3aEMOZis
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