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It is noted that the pair correlation matrix χ̂ of the nearest neighbor Ising model on periodic three-dimensional
(d = 3) kagome-like lattices of corner-sharing triangles can be calculated partially exactly. Specifically, a macro-
scopic number 1/3 N +1 out of N eigenvalues of χ̂ are degenerate at all temperatures T , and correspond to
an eigenspace L− of χ̂, independent of T . Degeneracy of the eigenvalues, and L− are an exact result for acomplex d = 3 statistical physical model. It is further noted that the eigenvalue degeneracy describing the same
L− is exact at all T in an infinite spin dimensionality m limit of the isotropic m-vector approximation to the
Ising models. A peculiar match of the opposite m = 1 and m →∞ limits can be interpreted that the m →∞
considerations are exact for m = 1. It is not clear whether the match is coincidental. It is then speculated that
the exact eigenvalues degeneracy in L− in the opposite limits of m can imply their quasi-degeneracy for inter-
mediate 1 É m < ∞. For an anti-ferromagnetic nearest neighbor coupling, that renders kagome-like models
highly geometrically frustrated, these are spin states largely from L− that for m Ê 2 contribute to χ̂ at low T .
Them →∞ formulae can be thus quantitatively correct in description of χ̂ and clarifying the role of perturba-
tions in kagome-like systems deep in the collective paramagnetic regime. An exception may be an interval of T ,
where the order-by-disorder mechanisms select sub-manifolds of L−.
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1. Introduction

Exact insights into collective behaviors are rare even for the simplest systems of many interacting

constituents. For instance, no exact solutions of short-range classic-spin models on periodic lattices are

known above spatial dimension d = 2 [1]. An exception is critical behaviors above upper critical dimen-
sions, due to methods of the renormalization group [2]. Properties of d = 3 spin models are deduced from
approximations. A classic approximation is a limit of the large spin-space dimensionm, and expansions
about it [3].

The approximation renders the models trivially coupled and thus exactly solvable. Yet these are non-

trivial interactions and correlations between degrees of freedom that are behind the complexity of the

d = 3 physical world. In this context, highly geometrically frustrated (“frustrated”) condensed matter
systems have recently attracted much attention. At temperatures T lower than the scale of the leading in-
teractions J , they can formmassively degenerate highly correlated states, called spin liquids or collective
paramagnets. Exotic properties of these states are believed behind the richness of quantum and classical

phenomena observed in the frustrated systems at low T [4].
This paper presents observations regarding the characteristics of correlations in a family of proto-

typical frustrated spin models on d = 2 and d = 3 kagome-like lattices. First, both for d = 2, and d = 3
models, the correlations can be described exactly to a large extent. Second, despite the models can form

a collective paramagnetic phase, the correlations in this phase can be well reproduced by the m → ∞
∗
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approximation. The paper suggests that, potentially with the exception of the T interval where order-
by-disorder mechanisms [5] are relevant, the structure of the equilibrium pair correlation function does

not support the division into two distinct regimes of a paramagnet and a collective paramagnet. The

kagome-like models thus may be “transparent” to the conventional paramagnetic treatment deep below
the mean-field critical temperature Θc that is usually interpreted as signaling the onset of a collective

paramagnetic regime.

2. Main result

The paper is based on extending, connecting and interpreting two known observations (1) and (2)
below. Observation (1) is essentially due to [6, 7]; observation (2) stems from [8–12]. Consider a lattice
consisting of equivalent corner sharing triangles. This can be a d = 2 kagome lattice, or a d = 3 kagome-
like lattice, shown in figure 1. Other lattices, for which the argument of the paper holds, can be seen

e.g., in figure 2 (b), (c) of [13], or in figure 1 of [12]. Kagome-like lattices describe magnetic materials. For

example, in gadolinium gallium garnet, magnetic Gd
3+
ions occupy sites of two inter-penetrating species

of the lattice of figure 1 (a), which are separated by a distance larger than the n.n. distance in each species.

See, e.g., [14] for a list of positions of Gd
3+
in the cubic unit cell.

Define an isotropicm-vector model on the lattice of figure 1 (a) by the Hamiltonian:

H =∑
i , j

J (i , j ) (µi ·µ j ) , (2.1)

where i , j span N sites of the lattice, each site i carries anm-dimensional isotropic O(m) vector spin µi
of length

p
m, the spins are coupled via a dot product, and entries of the symmetric interaction matrix

J (i , j ) are 0, except for the nearest neighbor (n.n.) sites, when they are half the n.n. coupling J = 1. Let
〈· · · 〉 (β) denote a Gibbs ensemble average defined by (2.1). For instance, a spin-spin correlation matrix
χ̂µν reads:

χµν(i , j ) = 〈µµi µνj 〉 =
Trµµ

µ

i µ
ν
j exp(−βH )

Trµ exp(−βH )
, (2.2)

(a) (b)

µ1

µ2

µ3

σ σ′

(c)

Figure 1. (Color online) (a) Kagome-like lattices are periodic arrangements of points in the three-

dimensional (d = 3) space. They are analogous to the kagome lattice in d = 2 space (b). (a, b) Each point
is at the common corner of two equilateral triangles and is in the same environment of other points.

Centers of triangles form the hexagonal (b) and a hexagonal-like (a) lattices. The kagome-like lattice (a)

can be obtained by replicating a cubic unit cell, similar to the simple cubic lattice; unlike it, its unit cell is

non-Bravais and consists of 12 points each. (a) The super-imposed black piecewise line shows the shortest

closed path on the kagome-like lattice that is allowed to pass through one edge of each triangle only. (c)

Gibbs factor of three coupled Ising spins µ1, µ2, µ3 can be generated with the help of an auxiliary spin σ,

see equation (3.1) in the main text. Each site of a kagome-like lattice has two unique neighbors σ and σ′
on a hexagonal-like lattice.
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Figure 2. (Color online) (a) Consider eigenvalues of the N ×N correlation matrix χ̂ of a nearest neigh-

bor antiferromagnetic m-vector model on a d -dimensional kagome-like lattice in descending order [see
equation (2.2) and the following text]. The difference ∆ between the eigenvalues number 1 and 1/3 N +1
is exactly zero in two limits, the Ising limitm = 1 and the spherical limitm →∞. High-T expansion [15]
suggests non-zero ∆ for other values ofm. The magnitude of ∆ can be thought of as a measure of devia-
tions of correlations from theirm →∞ form. Small deviations can explain the heuristics of applicability

of the m → ∞ limit, and the variational mean-field theory, to study correlations deep in the collective

paramagnetic regimes [9–12] of the finite-m models. (b) The behavior of n.n. classical m-vector models
on regular frustrated lattices, such as the d = 2 kagome lattice, can be divided into four regimes. As tem-
perature T is lowered, a model can firstly cross-over from a high-T paramagnetic phase to a correlated
collective paramagnetic phase at about the mean-field critical temperature Θc. Then, the model can un-

dergo (a sequence of) cross-overs or phase transitions due to order-by-disorder mechanisms [5] that are

activated at temperatures Θobd ¿ Θc. Strictly at T ≡ 0, there can be a discontinuity, that separates the
T → 0 phase from the microcanonical ground states phase. The paper suggests that the juxtaposition of
T ≡ 0, collective paramagnetic and paramagnetic phases as separated entities may be not supported by
the structure of the equilibrium correlation function. The exception might be the regime 0 < T . Θobd
where the order-by-disorder is important. The diagram is qualitative and does not show exact energy

scales.

where µ, ν enumerate the components of spins, β = 1/T is the inverse temperature, and Trµ means
integration over all degrees of freedom. We assume χ̂µν = χ̂×δµν with δµν being Kronecker delta. The

assumption would hold for phases that preserve the global spin rotational symmetry of the Hamiltonian,

for example in the paramagnetic, collective paramagnetic and E = 0 phases [cf. figure 2 (b)]. In this way,
any χ̂µν is fully characterized by the matrix χ̂, whose dimensions are N ×N independently ofm. Below,
we are interested in the properties of χ̂ as a function ofm.
For any finite model (2.1) of L3

cubic unit cells with periodic boundary conditions, the following two

statements about χ̂ are correct.

(1) For the Ising case m = 1, µi = ±1, the macroscopic number 1/3 N + 1 out of N eigenvalues of χ̂

coincide (are degenerate) at any β. At β> 0, they are the largest eigenvalues in the spectrum of χ̂. Here,
N = 12L3

is the number of spins in the model.

The eigenspace L− of the degenerate eigenvalues of χ̂ is solely determined by the interaction matrix Ĵ
of (2.1) and is independent of β. Specifically, L− coincides with the eigenspace of Ĵ of dimension 1/3N +1
corresponding to its degenerate minimal eigenvalue −1. Informally:

ĴL− =−L− . (2.3)

(2) For the casem →∞ at β> 0, the macroscopic number 1/3 N +1 of the largest eigenvalues of χ̂ are
again degenerate and describe the same L− (2.3).

3. Derivation

(1) Consider the Ising versionm = 1 of (2.1). A star-triangle (Y −∆) transformation, said to be due to
Onsager, relates exactly the zero-field partition function of n.n. Ising models on d = 2 kagome, hexagonal
and triangular lattices [16]. A perhaps less known its application is a relationship between the n-spin
correlation functions of the three models [17]. In particular, [6, 7] showed that the largest eigenvalues of

the correlation matrix of the d = 2 kagome Ising model are degenerate at all T . The argument uses a local
lattice topology and works for Ising models on lattices at any d , as soon as they consist of corner sharing
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triangles. This paper adopts the argument [6, 7, 17] to three-dimensional lattices, such as the kagome-like

lattice of figure 1 (a).

The Y −∆ transformation recasts the Boltzmann weight factor of any three coupled Ising variables
µ1, µ2, µ3, figure 1 (c), via a partial summation Trσ over a new Ising variable σ:

Trσ e−βdσ(µ1+µ2+µ3) = Ae−β (µ1µ2+µ2µ3+µ3µ1) . (3.1)

Here, βd and A are known functions of β. Introduction of σ decouples µ1, µ2, µ3. We use new variables

{σ} to decouple all triangle-coupled kagome spins {µ}, and then sum {µ} out (applying the “decoration-
iteration” transformation [17]). Graphically, the remaining variables {σ} can be thought of as forming a
n.n. Ising model on a lattice of the centers of the original corner-sharing triangles: the hexagonal lattice

at d = 2 and a hexagonal-like lattice at d = 3, see figure 1 (a), (b), with the spin number Nh = 2/3N .
Analytically, the partition functions Zh and Z of any pair of the hexagonal-like and kagome-like Ising
models become related by the same, exact formula of [16].

To recast the kagome-like model spin correlations in terms of the hexagonal-like model spin corre-

lations, we again decouple {µ} in the Boltzmann factors by using {σ}. However, when summing {µ} out,
we include a product of the chosen µ jµ j in (2.2). Same procedure works for multi-spin correlations.

Note that every spin µi of the kagome-like lattice neighbors a unique pair of spins, say σi , σ
′
i , that are

nearest neighbors on the corresponding hexagonal-like lattice, cf. figure 1 (c). Denoting µ̄i = σi +σ′
i , we

obtain [6, 7]:

〈µiµ j 〉 (β) = δi j
(
1+M 2〈µ̄2

i 〉h
) − M 2 〈µ̄i µ̄ j 〉h . (3.2)

Here, 〈· · · 〉h (βh) means thermal average in the hexagonal-like model with n.n. coupling 1 at the inverse
temperature βh, andM 2(βh) = 1/4(e4βh −1) > 0.
Consider a sign-alternating linear combination τ of kagome spins lying on a closed path. For the

kagome-like lattice of figure 1 (a), the mode τ can be formed of ten spins µ1, . . . ,µ10 of the loop in fig-

ure 1 (a): τ = c1µ1 + ·· · + c10µ10, where c1 = 1, c2 = −1, . . . , c10 = −1. Note that (3.2) is a difference of
an identity matrix times a constant, and a positive semi-definite matrix. In (3.2), the special choice of τ

zeros the second term contribution to the mode susceptibility 〈τ2〉, thus maximizing it. This makes any
~c = (· · · ,ck , · · · ), whose entries are non-zero only if they coincide with the sign-alternating coefficients of
a loop, the eigenvector corresponding to the largest eigenvalue of χ̂.

Observe that (2.1) can be written as a sum of squares minus a constant. It is clear that every ~c zeros
the squares, and thus is the eigenvector of Ĵ corresponding to the smallest eigenvalue −1 of Ĵ . The linear
span of all~c forms L−, whose dimension is N minus the dimension of the triangles constraints in the sum
of squares, which is Nh−1. We have: dimL− = 1/3 N +1.
(2) Examine (2.1) at arbitrarym. [18, 19] showed that anm-vector lattice model is exactly solvable in

the limit m →∞, where it coincides with the spherical model of Berlin and Kac [20]. In particular, the
spherical limit of the correlation matrix (2.2) of model (2.1) reads [19]:

χ̂# = 1

2

1

r0 +β Ĵ
, (3.3)

where parameter r0 is fixed by normalization

Tr
1

2

1

r0 +β Ĵ
= N , (3.4)

and Ĵ is the interaction matrix in (2.1). The variational mean-field theory [21], see e.g., [9] for its applica-
tion in the context of frustrated magnetism, gives the dependence of χ̂ on Ĵ in the same form of a [0/1]
Padé approximant. Since χ̂# is an (analytic) function of Ĵ , χ̂# has a set of degenerate eigenvalues cor-
responding to L−. Since χ̂# is a monotonously decreasing function of Ĵ , β > 0, the smallest degenerate
eigenvalues in the spectrum of Ĵ are the largest in the spectrum of χ̂#.

4. Interpretation

It was previously observed, for instance in [10, 12], that the m → ∞ formulae provide an excellent

fit to the collective paramagnetic correlations of finite-m n.n. m-vector models on the d = 3 pyrochlore
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and a kagome-like frustrated lattice. The variational mean-field theory was observed in e.g., [9, 11, 22] to

quantitatively correctly describe the role of perturbations in lifting the degeneracy in the collective para-

magnetic regimes. This paper may shed light as to why these theories are well applicable into collective

paramagnetic regimes for the case of kagome-like lattices.
1

We showed above that the upper 1/3 N +1 eigenvalues of the correlation matrix χ̂ (2.2) of model (2.1)
are exactly degenerate for m = 1 and m →∞ at all T , and the corresponding eigenspace L− is indepen-
dent of T . We can quite naturally conjecture that for the intermediate values 1 É m <∞, the eigenvalues
of L− become at all T only weakly dispersed. The upper eigenvalues can remain quasi-degenerate also
for m < 1, for instance in the polymer limit m → 0. Observe that at T ≡ 0, i.e., strictly in the phase of
the microcanonical ground states, and at m Ê 2, these are the spin states belonging to L− only that con-
tribute to χ̂. Thus, at T ≡ 0, χ̂ is determined by its approximate form of them →∞ projector on the linear

space L−.
We can consider the (relative) dispersion ∆ of the quasi-degenerate eigenvalues of χ̂ as a measure

of deviations of correlations from the m → ∞ projector form. The dependence of ∆ on m can have a

shape of figure 2 (a). The locationm0 of a maximummight depend on d and on the choice of the kagome-
like lattice, but might not exceed 3. For instance, no order-by-disorder phenomenology was observed for
largerm on the d = 2 kagome lattice [6, 7], pointing that such a model is in them →∞ regime, where no

order-by-disorder is observed either.

We can next speculate that the m → ∞ projector form ∆ ≈ 0 of χ̂ is valid in the collective param-
agnetic phase at a finite T , which by definition mainly consists of the states from the extensively de-
generate manifold L−. The projector form would hold several orders of magnitude in T below Θc, the

mean-field critical temperature, but potentially above Θobd, the order-by-disorder temperatures, where

thermal fluctuations can select subset(s) of L− with the greatest number of low-energy excitations [23, 24],
cf. figure 2 (b). As L− is known exactly, the interesting question about the structure of correlations at low
T may be not the projector form of χ̂ per se, but the nature of the (small) deviations from it. Above about
Θc, the m →∞ form (3.3) can be expected to apply naturally. Therefore, the correlations in model (2.1)

can be well reproducible by theirm →∞ form form Ê 2 and at all T , with the potential exception of the
phases dictated by the order-by-disorder.

Consider any other Hamiltonian H ′
on a kagome-like lattice, which preserves the symmetry of the

lattice. Let, form Ê 2,H ′
admit the same microcanonical T ≡ 0 degenerate ground states as the original

H (2.1). For instance, H ′
can be obtained from (2.1) by using another interaction matrix Ĵ ′, for which

(2.3) is true, but which is not necessarily the nearest neighbor. The coincidence of ground states for

distinct H and H ′
was a dubbed projective equivalence in [25] in the context of spin models on the

pyrochlore lattice. As T ≡ 0 states ofH ′
andH coincide, the upper eigenvalues of the correlation matrix

are again quasi-degenerate for allm Ê 2. The quasi-degeneracy, and them →∞ form of correlations for

H ′
should be again correct form Ê 2 and all T , potentially excluding the window 0 < T .Θobd.

Consider another Hamiltonian H ′′
different from H ′

by small perturbations such that (2.3) is not

valid. The perturbations can force the modelH ′′
to undergo a phase transition at T >Θobd, the regime

where equation (3.3) is applicable. We can thus use equation (3.3) to study, for instance, the selection

of the ordering wave vectors dictated by perturbations. In essence, frustration may be unimportant for

applicability of the m →∞ approximation, while the variational mean-field theory may be used for the

study of the role of perturbations deep below the mean-field critical temperature Θc [9–12]. If we regard

the applicability of these approaches as defining the nature of correlations, there may be no difference

between a collective and regular paramagnet. Correspondingly, the m →∞, and the related variational
mean-field approaches may claim back their status as simple, powerful and standard tools for the study

of perturbations at low T in kagome-like and other frustrated systems, as was heuristically observed for
instance in [9, 11].

1
Pyrochlore lattice case will be presented elsewhere.
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Границя великої вимiрностi спiна та кореляцiї спiнової

рiдини у каґомеподiбних спiнових моделях

Т. Яворський
Дослiдницький центр прикладної математики, унiверситет Ковентрi, CV1 5FB, Великобританiя
Зауважено, що парнокореляцiйну матрицю χ̂ моделi Iзинґа найближчих сусiдiв на перiодичних триви-
мiрних (d = 3) каґомеподiбних гратках можна обчислити частково точно. Зокрема, 1/3 N +1 iз N власних
значень χ̂ виродженi при усiх температурах T та вiдповiдають власному лiнiйному простору L− матрицi
χ̂, незалежному вiд T . Виродження власних значень та L− — приклад точного результату для складної
d = 3 моделi статистичної фiзики. Зауважено далi, що виродження власних значень, якi описують той
самий L−, — точне при усiх T у границi безмежної вимiрностi спiна m, яку можна розглядати як набли-
ження iзотропної m-векторної моделi до моделi Iзинґа. Своєрiдне спiвпадiння протилежних m = 1 та
m →∞ границь можна проiнтерпретувати у спосiб, що мiркування для m →∞ залишаються точними
при m = 1. Незрозумiло, чи спiвпадiння випадкове. Накiнець зроблено припущення, що точне виродже-
ння власних значень у L− у протилежних границях m = 1 та m →∞ може означати їх квазiвиродження
при 1 É m <∞. Для антиферомагнiтної константи зв’язку мiж найближчими сусiдами, при якiй каґомепо-
дiбнi моделi стають сильно геометрично фрустрованими, саме стани iз L− роблять переважний внесок
у χ̂ при низькiй T для m Ê 2. Це означає, що рiвняння у границi m → ∞ можуть бути чисельно пра-
вильнi для опису χ̂ та уточнення ролi збурень у каґомеподiбних системах глибоко у режимi колективного
парамаґнетика. Винятком може бути iнтервал T , де механiзми лад-безлад вибирають пiдпростори L−.
Ключовi слова: гратка каґоме, фрустрацiя, спiновi кореляцiї, точний результат
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