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It is noted that the pair correlation matrix § of the nearest neighbor Ising model on periodic three-dimensional
(d = 3) kagome-like lattices of corner-sharing triangles can be calculated partially exactly. Specifically, a macro-
scopic number 1/3 N + 1 out of N eigenvalues of § are degenerate at all temperatures T, and correspond to
an eigenspace L_ of §, independent of T. Degeneracy of the eigenvalues, and L_ are an exact result for a
complex d = 3 statistical physical model. It is further noted that the eigenvalue degeneracy describing the same
L_ is exact at all T in an infinite spin dimensionality 7 limit of the isotropic m-vector approximation to the
Ising models. A peculiar match of the opposite m =1 and m — oo limits can be interpreted that the m — oo
considerations are exact for m = 1. It is not clear whether the match is coincidental. It is then speculated that
the exact eigenvalues degeneracy in L_ in the opposite limits of m can imply their quasi-degeneracy for inter-
mediate 1 < m < oo. For an anti-ferromagnetic nearest neighbor coupling, that renders kagome-like models
highly geometrically frustrated, these are spin states largely from L_ that for m = 2 contribute to { at low T.
The m — oo formulae can be thus quantitatively correct in description of § and clarifying the role of perturba-
tions in kagome-like systems deep in the collective paramagnetic regime. An exception may be an interval of T,
where the order-by-disorder mechanisms select sub-manifolds of L_.
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1. Introduction

Exact insights into collective behaviors are rare even for the simplest systems of many interacting
constituents. For instance, no exact solutions of short-range classic-spin models on periodic lattices are
known above spatial dimension d = 2 [1]]. An exception is critical behaviors above upper critical dimen-
sions, due to methods of the renormalization group [2]. Properties of d = 3 spin models are deduced from
approximations. A classic approximation is a limit of the large spin-space dimension m, and expansions
about it [3].

The approximation renders the models trivially coupled and thus exactly solvable. Yet these are non-
trivial interactions and correlations between degrees of freedom that are behind the complexity of the
d = 3 physical world. In this context, highly geometrically frustrated (“frustrated”) condensed matter
systems have recently attracted much attention. At temperatures T lower than the scale of the leading in-
teractions J, they can form massively degenerate highly correlated states, called spin liquids or collective
paramagnets. Exotic properties of these states are believed behind the richness of quantum and classical
phenomena observed in the frustrated systems at low T [4].

This paper presents observations regarding the characteristics of correlations in a family of proto-
typical frustrated spin models on d = 2 and d = 3 kagome-like lattices. First, both for d =2, and d =3
models, the correlations can be described exactly to a large extent. Second, despite the models can form
a collective paramagnetic phase, the correlations in this phase can be well reproduced by the m — co
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approximation. The paper suggests that, potentially with the exception of the T interval where order-
by-disorder mechanisms [5] are relevant, the structure of the equilibrium pair correlation function does
not support the division into two distinct regimes of a paramagnet and a collective paramagnet. The
kagome-like models thus may be “transparent” to the conventional paramagnetic treatment deep below
the mean-field critical temperature O that is usually interpreted as signaling the onset of a collective
paramagnetic regime.

2. Main result

The paper is based on extending, connecting and interpreting two known observations (1) and (2)
below. Observation (1) is essentially due to [6} [7]; observation (2) stems from [8H12]. Consider a lattice
consisting of equivalent corner sharing triangles. This can be a d = 2 kagome lattice, or a d = 3 kagome-
like lattice, shown in figure [1} Other lattices, for which the argument of the paper holds, can be seen
e.g., in figure 2 (b), (c) of [13],, or in figure 1 of [12]. Kagome-like lattices describe magnetic materials. For
example, in gadolinium gallium garnet, magnetic Gd>* ions occupy sites of two inter-penetrating species
of the lattice of figure[](a), which are separated by a distance larger than the n.n. distance in each species.
See, e.g., [14] for a list of positions of Gd3* in the cubic unit cell.

Define an isotropic m-vector model on the lattice of figure[](a) by the Hamiltonian:

F€=) J0, ) (i 1)), 2.1)
iLj

where i, j span N sites of the lattice, each site i carries an m-dimensional isotropic O(m) vector spin p;
of length \/m, the spins are coupled via a dot product, and entries of the symmetric interaction matrix
J(i, j) are 0, except for the nearest neighbor (n.n.) sites, when they are half the n.n. coupling J = 1. Let
(-++)(B) denote a Gibbs ensemble average defined by . For instance, a spin-spin correlation matrix
1H reads:

Try pé’u}f exp(—pfA)
Try, exp(—BA)

P HEXTATHE : (2.2)

2

(c)

Figure 1. (Color online) (a) Kagome-like lattices are periodic arrangements of points in the three-
dimensional (d = 3) space. They are analogous to the kagome lattice in d = 2 space (b). (a, b) Each point
is at the common corner of two equilateral triangles and is in the same environment of other points.
Centers of triangles form the hexagonal (b) and a hexagonal-like (a) lattices. The kagome-like lattice (a)
can be obtained by replicating a cubic unit cell, similar to the simple cubic lattice; unlike it, its unit cell is
non-Bravais and consists of 12 points each. (a) The super-imposed black piecewise line shows the shortest
closed path on the kagome-like lattice that is allowed to pass through one edge of each triangle only. (c)
Gibbs factor of three coupled Ising spins pj, pg, p3 can be generated with the help of an auxiliary spin o,
see equation in the main text. Each site of a kagome-like lattice has two unique neighbors ¢ and ¢’
on a hexagonal-like lattice.
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Figure 2. (Color online) (a) Consider eigenvalues of the N x N correlation matrix § of a nearest neigh-
bor antiferromagnetic m-vector model on a d-dimensional kagome-like lattice in descending order [see
equation and the following text]. The difference A between the eigenvalues number 1 and 1/3 N +1
is exactly zero in two limits, the Ising limit 72 = 1 and the spherical limit m — oco. High-T expansion [15]
suggests non-zero A for other values of m. The magnitude of A can be thought of as a measure of devia-
tions of correlations from their m — co form. Small deviations can explain the heuristics of applicability
of the m — oo limit, and the variational mean-field theory, to study correlations deep in the collective
paramagnetic regimes [9H12] of the finite-m models. (b) The behavior of n.n. classical m-vector models
on regular frustrated lattices, such as the d = 2 kagome lattice, can be divided into four regimes. As tem-
perature T is lowered, a model can firstly cross-over from a high-T paramagnetic phase to a correlated
collective paramagnetic phase at about the mean-field critical temperature ©. Then, the model can un-
dergo (a sequence of) cross-overs or phase transitions due to order-by-disorder mechanisms [5] that are
activated at temperatures O,,q < Oc. Strictly at T = 0, there can be a discontinuity, that separates the
T — 0 phase from the microcanonical ground states phase. The paper suggests that the juxtaposition of
T = 0, collective paramagnetic and paramagnetic phases as separated entities may be not supported by
the structure of the equilibrium correlation function. The exception might be the regime 0 < T < O,pq
where the order-by-disorder is important. The diagram is qualitative and does not show exact energy
scales.

where g, v enumerate the components of spins, § = 1/T is the inverse temperature, and Tr, means
integration over all degrees of freedom. We assume §*¥ = § x 6 with 6*" being Kronecker delta. The
assumption would hold for phases that preserve the global spin rotational symmetry of the Hamiltonian,
for example in the paramagnetic, collective paramagnetic and E = 0 phases [cf. figure [2|(b)]. In this way,
any "V is fully characterized by the matrix §, whose dimensions are N x N independently of m. Below,
we are interested in the properties of } as a function of m.

For any finite model of L3 cubic unit cells with periodic boundary conditions, the following two
statements about j are correct.

(1) For the Ising case m = 1, y; = +1, the macroscopic number 1/3 N + 1 out of N eigenvalues of §
coincide (are degenerate) at any 3. At > 0, they are the largest eigenvalues in the spectrum of j. Here,
N =12L3 is the number of spins in the model.

The eigenspace L_ of the degenerate eigenvalues of } is solely determined by the interaction matrix j
of |l and is independent of f. Specifically, . coincides with the eigenspace of j of dimension 1/3N + 1
corresponding to its degenerate minimal eigenvalue —1. Informally:

JL_=-1_. (2.3)

(2) For the case m — oo at 8 > 0, the macroscopic number 1/3 N +1 of the largest eigenvalues of § are
again degenerate and describe the same L_ (2.3).

3. Derivation

(1) Consider the Ising version m = 1 of (2.1). A star-triangle (Y — A) transformation, said to be due to
Onsager, relates exactly the zero-field partition function of n.n. Ising models on d = 2 kagome, hexagonal
and triangular lattices [16]. A perhaps less known its application is a relationship between the n-spin
correlation functions of the three models [17]. In particular, [6, /7] showed that the largest eigenvalues of
the correlation matrix of the d = 2 kagome Ising model are degenerate at all 7. The argument uses a local
lattice topology and works for Ising models on lattices at any d, as soon as they consist of corner sharing
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triangles. This paper adopts the argument [6,/7,[17] to three-dimensional lattices, such as the kagome-like
lattice of figure[](a).

The Y — A transformation recasts the Boltzmann weight factor of any three coupled Ising variables
1, po, p3, figure[T](c), via a partial summation Tr, over a new Ising variable o:

Try e—ﬁdU(u1+#z+#3) — Ae—ﬁ(#1#z+#2#3+u3u1) ) (3.1)

Here, B, and A are known functions of 8. Introduction of o decouples p;, L2, 113. We use new variables
{o} to decouple all triangle-coupled kagome spins {u}, and then sum {u} out (applying the “decoration-
iteration” transformation [17]). Graphically, the remaining variables {o} can be thought of as forming a
n.n. Ising model on a lattice of the centers of the original corner-sharing triangles: the hexagonal lattice
at d = 2 and a hexagonal-like lattice at d = 3, see figure [1] (a), (b), with the spin number Ny = 2/3N.
Analytically, the partition functions Zy and Z of any pair of the hexagonal-like and kagome-like Ising
models become related by the same, exact formula of [16].

To recast the kagome-like model spin correlations in terms of the hexagonal-like model spin corre-
lations, we again decouple {u} in the Boltzmann factors by using {o}. However, when summing {u} out,
we include a product of the chosen p;u; in . Same procedure works for multi-spin correlations.
Note that every spin y; of the kagome-like lattice neighbors a unique pair of spins, say o;, U/i, that are
nearest neighbors on the corresponding hexagonal-like lattice, cf. ﬁgure (c). Denoting fi; =o0; + a’i, we
obtain [6}[7]:

(uip) (B) =845 (1+ M*(i5n) = M? (Lifi)n. (3.2)
Here, (---)n (Br) means thermal average in the hexagonal-like model with n.n. coupling 1 at the inverse
temperature By, and M2(fy) = 1/4(e*fr —1) > 0.

Consider a sign-alternating linear combination 7 of kagome spins lying on a closed path. For the
kagome-like lattice of figure [1| (a), the mode 7 can be formed of ten spins yj,..., 1o of the loop in fig-
ure @: 7 =cipp + -+ crop10, Where ¢ =1, ¢ = =1, ..., ;0 = —1. Note that is a difference of
an identity matrix times a constant, and a positive semi-definite matrix. In (3.2), the special choice of 7
zeros the second term contribution to the mode susceptibility (r2), thus maximizing it. This makes any
¢=(---,ck, ), whose entries are non-zero only if they coincide with the sign-alternating coefficients of
a loop, the eigenvector corresponding to the largest eigenvalue of §.

Observe that can be written as a sum of squares minus a constant. It is clear that every ¢ zeros
the squares, and thus is the eigenvector of  corresponding to the smallest eigenvalue —1 of . The linear
span of all ¢ forms L_, whose dimension is N minus the dimension of the triangles constraints in the sum
of squares, which is N, — 1. We have: diml_ =1/3 N +1.

(2) Examine at arbitrary m. [18][19] showed that an m-vector lattice model is exactly solvable in
the limit m — oo, where it coincides with the spherical model of Berlin and Kac [20]. In particular, the
spherical limit of the correlation matrix of model reads [19]:

.11 (3.3)
Xo=35 T .
where parameter ry is fixed by normalization
1 1
r— - =N, (3.4)
2ro+pJ

and f is the interaction matrix in . The variational mean-field theory [21], see e.g., [9] for its applica-
tion in the context of frustrated magnetism, gives the dependence of § on J in the same form of a [0/1]
Padé approximant. Since {7 is an (analytic) function of f, {, has a set of degenerate eigenvalues cor-
responding to L_. Since - is a monotonously decreasing function of /, 8 > 0, the smallest degenerate
eigenvalues in the spectrum of J are the largest in the spectrum of .

4. Interpretation

It was previously observed, for instance in [10, [12], that the m — oo formulae provide an excellent
fit to the collective paramagnetic correlations of finite-m n.n. m-vector models on the d = 3 pyrochlore
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and a kagome-like frustrated lattice. The variational mean-field theory was observed in e.g., [9} 11} [22] to
quantitatively correctly describe the role of perturbations in lifting the degeneracy in the collective para-
magnetic regimes. This paper may shed light as to why these theories are well applicable into collective
paramagnetic regimes for the case of kagome-like latticesE]

We showed above that the upper 1/3 N + 1 eigenvalues of the correlation matrix j of model
are exactly degenerate for m =1 and m — oo at all T, and the corresponding eigenspace L_ is indepen-
dent of T. We can quite naturally conjecture that for the intermediate values 1 < m < oo, the eigenvalues
of L_ become at all T only weakly dispersed. The upper eigenvalues can remain quasi-degenerate also
for m < 1, for instance in the polymer limit m — 0. Observe that at T = 0, i.e., strictly in the phase of
the microcanonical ground states, and at m = 2, these are the spin states belonging to L_ only that con-
tribute to §. Thus, at T =0, j is determined by its approximate form of the m — co projector on the linear
space L_.

We can consider the (relative) dispersion A of the quasi-degenerate eigenvalues of § as a measure
of deviations of correlations from the m — oo projector form. The dependence of A on m can have a
shape of figure2](a). The location m of a maximum might depend on d and on the choice of the kagome-
like lattice, but might not exceed 3. For instance, no order-by-disorder phenomenology was observed for
larger m on the d = 2 kagome lattice [6}[7], pointing that such a model is in the m — oo regime, where no
order-by-disorder is observed either.

We can next speculate that the m — oo projector form A = 0 of j is valid in the collective param-
agnetic phase at a finite T, which by definition mainly consists of the states from the extensively de-
generate manifold L_. The projector form would hold several orders of magnitude in T below O, the
mean-field critical temperature, but potentially above Ogpq4, the order-by-disorder temperatures, where
thermal fluctuations can select subset(s) of L_ with the greatest number of low-energy excitations [23}24],
cf. figure[2](b). As L_ is known exactly, the interesting question about the structure of correlations at low
T may be not the projector form of § per se, but the nature of the (small) deviations from it. Above about
O, the m — oo form (3.3) can be expected to apply naturally. Therefore, the correlations in model
can be well reproducible by their 71 — co form for m = 2 and at all 7, with the potential exception of the
phases dictated by the order-by-disorder.

Consider any other Hamiltonian .7’ on a kagome-like lattice, which preserves the symmetry of the
lattice. Let, for m = 2, #' admit the same microcanonical T = 0 degenerate ground states as the original
JC . For instance, /' can be obtained from by using another interaction matrix J’, for which
is true, but which is not necessarily the nearest neighbor. The coincidence of ground states for
distinct s and /" was a dubbed projective equivalence in [25] in the context of spin models on the
pyrochlore lattice. As T = 0 states of /#’ and # coincide, the upper eigenvalues of the correlation matrix
are again quasi-degenerate for all m = 2. The quasi-degeneracy, and the m — oo form of correlations for
#' should be again correct for m =2 and all T, potentially excluding the window 0 < T < Ogpq.

Consider another Hamiltonian /" different from /' by small perturbations such that is not
valid. The perturbations can force the model /" to undergo a phase transition at T > @pq, the regime
where equation is applicable. We can thus use equation to study, for instance, the selection
of the ordering wave vectors dictated by perturbations. In essence, frustration may be unimportant for
applicability of the m — co approximation, while the variational mean-field theory may be used for the
study of the role of perturbations deep below the mean-field critical temperature ®. [9H12]. If we regard
the applicability of these approaches as defining the nature of correlations, there may be no difference
between a collective and regular paramagnet. Correspondingly, the m — oo, and the related variational
mean-field approaches may claim back their status as simple, powerful and standard tools for the study
of perturbations at low T in kagome-like and other frustrated systems, as was heuristically observed for
instance in [9} [11].

1 Pyrochlore lattice case will be presented elsewhere.
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FpaHNLUA BeNNKOi BUMIPHOCTI cniHa Ta Kopensauii cniHOBOI
piguHN y Karomenoi6HUX cNiHOBUX MoAenax

T. ABOpCbKMIA

JocnigHNuUbKMI LeHTp NpuknagHoi MmatemaTnku, yHiBepcuTeT KoBeHTpi, CV1 5FB, BennkobputaHis

3ayBaxeHo, L0 NapHOKOpensLiiiHy MaTpuLo § Mogeni [3uHra Halbanx4Ymx CycigiB Ha NepiogUYHUX TPUBK-
MipHUX (d = 3) karomMenoAi6HMX rpaTkax MoXHa 064MCANTI YACTKOBO TOYHO. 30kpema, 1/3 N +1 i3 N BnacHux
3HaYeHb § BMPOAXKeHi npu ycix TemnepaTtypax T Ta BiANOBiAalOTL BAAaCHOMY iHiliHOMY npocTtopy L_ maTpuui
X, He3anexHomy Big T. BUpoAXeHHS BAaCHUX 3HaveHb Ta L_ — npukiaj TOYHOro pesynbTaTty Afs CKNagHoi
d = 3 mMogeni CTaTUCTNYHOT Gi3UKKN. 3ayBaXKeHO Aani, WO BUPOMKEHHS BAACHWX 3HAYeHb, SIKi OMUCYHTb TOI
camuin L_, — TouHe npwu ycix Ty rpaHunLi 6e3mMexHOi BUMIPHOCTI CriHa 172, Ky MOXHa po3rnsjati Ak Habau-
KEeHHS i30TPOMHOI 771-BeKTOPHOI MoAeni 4o mogeni I3uHra. CBoepigHe cniBnagiHHA npotuaexHux m = 1 Ta
m — oo rpaH1Lb MOXHa MpoiHTeprnpeTyBaTh y CMOCi6, WO MipKyBaHHSA AN 1M — 0O 3a/ULIAKTLCA TOUHUMU
npu m = 1. He3po3ymino, um cniBnagiHHa Bunagkose. HakiHeLb 3p061eHO NpynyLLeHHS, L0 TOYHe BUPOAXe-
HHS BNACHWX 3HauveHb y L y npoTunexHux rpaHnuax m =1 1a m — oo MOXe 03HauaTu iX KBa3iBUPOLKEHHS
npu 1 < m < oco. Ansa aHTMdepoMarHiTHOT KOHCTaHTK 3B'A3Ky MiXK HaNBAVXXYMMU CycCigamu, Npw skili karomeno-
Ai6HI Mojeni CTaloTb CUILHO reoMeTPUYHO GpPYCTPOBaHUMY, Came CTaHu i3 L_ pobnsTb nepeBaXHWI BHECOK
y ¥ npu Husbkili T ana m = 2. Lle 03Hayae, WO PiBHAHHSA Y rpaHULL m — 0o MOXYTb 6YyTW YMcenbHO npa-
BWbHI A1 ONKCY § Ta yTOUHEHHS poni 36ypeHb Yy KaroMenoZibHnx cnctemax rmnboKo y pexmnmi KoneKTMBHOro
napamarHeTnka. BuHatkom moxe 6ytu iHTepsan T, Ae MexaHi3mn nag-6e3nag snbupatote nignpoctopu L_.

KnrouoBi cnoBa: rpatka karome, ppycrpawjisi, crniHosi kopensyii, To4Hnii pe3yabTart
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