Condensed Matter Physics, 2017, vol. 20, No. 1, 13004
DOI:10.5488/CMP.20.13004
arXiv:1703.10368
Title:
Scaling laws for random walks in long-range correlated disordered media
Author(s):
 
|
N. Fricke
(Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D–04009 Leipzig, Germany)
,
|
 
|
J. Zierenberg
(Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D–04009 Leipzig, Germany;
Bernstein Center for Computational Neuroscience, Am Fassberg 17, D-37077 Göttingen, Germany;
Max Planck Institute for Dynamics and Self-Organsization, Am Fassberg 17, D-37077 Göttingen, Germany)
,
|
 
|
M. Marenz
(Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D–04009 Leipzig, Germany)
,
|
 
|
F.P. Spitzner
(Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D–04009 Leipzig, Germany)
,
|
 
|
V. Blavatska
(Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine)
,
|
 
|
W. Janke
(Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D–04009 Leipzig, Germany)
|
We study the scaling laws of diffusion in two-dimensional media with long-range correlated disorder through exact enumeration of random walks. The disordered medium is modelled by percolation clusters with
correlations decaying with the distance as a power law, r-a, generated with the improved Fourier filtering method. To characterize this type of disorder, we determine the percolation
threshold pc
by investigating cluster-wrapping probabilities. At pc, we estimate the (sub-diffusive) walk dimension dw for different correlation exponents a. Above pc,
our results
suggest a normal random walk behavior for weak correlations, whereas anomalous diffusion cannot be ruled out in the strongly correlated case, i.e., for small a.
Key words:
long-range correlated disorder, critical percolation clusters, random walks, exact enumerations, scaling laws
PACS:
05.70.Jk, 64.60.al, 64.60.De
|