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Nature of extrinsic and intrinsic self-trapping (ST) of charge carriers in cuprates have been studied theoretically.

The binding energies and radii of the extrinsic and intrinsic large polarons and bipolarons in cuprates are calcu-

lated variationally using the continuum model and adiabatic approximation. We have shown that the extrinsic

and intrinsic three-dimensional (3D) large bipolarons exist in underdoped cuprates at η= ε∞/ε0 < 0.127 and

η< 0.138, respectively [where ε∞ (ε0) is the optic (static) dielectric constant].
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1. Introduction

It is well known that electron-phonon coupling (EPC) is one of the most common and fundamental
interactions in solids. In particular, a strong EPC in high-temperature superconducting cuprates (HTSC)
was reported by a lot of experiments, which implies that EPC plays an important role in pairing. Ac-
cordingly, charge carriers in polar materials interacting with the phonon field can cause the formation
of self-trapped polarons and bipolarons. The interest to the polarons and bipolarons is caused by their
important role in explaining many characteristics of HTSC compounds (see [1, 2] and references therein).
The ground state of an undoped HTSC is an antiferromagnet (AF) whose doping by holes leads to the
phase showing high temperatures of the superconducting (SC) transition. The extended t -t ′-t ′′-J -Hubbard
model, where a hole in a two-dimensional (2D) AF is simultaneously magnetic and a lattice polaron that
moves through the lattice emitting and absorbing magnons and phonons, is used in many papers for cal-
culation of spectral properties of underdoped HTSC compounds [3]. According to the band calculations
and angle resolved-photoemission spectroscopy (ARPES) data [4, 5], the electronic structure of the parent
cuprate compounds is well described by a three-band Hubbard model and the oxygen valence band lies
within the Mott-Hubbard gap. Furthermore, according to the combined study of the ARPES and quantum
Monte Carlo simulations, there was proposed a novel polaronic metallic state in underdoped cuprates
[3]. The variety of opinions range from a complete negation of the role of EPC in the physics of HTSC [6, 7]
to the statement that the binding energy of the polaron is an order of magnitude larger than any charac-
teristic energy of the magnetic subsystem, and, therefore, exactly the magnetic system is irrelevant [8, 9].
Both of the above radical statements have been criticized many times. On the other hand, the success of
the extended t -J -Hubbardmodel in describing the ARPES [3, 10] and optical spectra [11] does not make it
possible to completely disregard the role of the magnetic subsystem. Correspondingly, there is an opinion
that interactions with both magnetic and lattice subsystems are important [12]. Results indicating an im-
portant role of the EPC in HTSC compounds are presented, with emphasis on its implications for ARPES
and optical conductivity [12].

Hole doping of the cuprates produces first quasi-free holes having the mass mh in the oxygen valence
band. The hole carriers are assumed to be within both a three-dimensional (3D) and a 2D deformable
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medium, the last one being CuO2 layers [13]. In reality, however, no systems can be purely 2D, and there-
fore, the layered cuprate compounds may be approximated as a 3D deformable medium. There is also
a convincing experimental evidence that the consideration of cuprates as 3D systems may appear to be
more appropriate (see [14–17]. The experimental results presented in [16] indeed confirm that the hole-
doped system La2−xSrxCuO4 (LSCO) becomes less 2D in the strongly localized state. In polar materials,
the hole carriers interacting both with lattice vibrations (i.e., acoustic and optical phonons) and with lat-
tice defects (e.g., dopants or impurities), can easily be self-trapped near the defects and in a defect-free
deformable lattice. Actually, the carrier localization in the cuprates is interrelated and the quantitative
theory of this phenomenon is still lacking. Particularly, possible roles of large- and small-radius dopants,
dopant-driven and carrier-driven inhomogeneities, carrier–defect–lattice and carrier–lattice interactions
and other factors are very important for the localization of carriers in hole-doped cuprates. In the present
paper we study the extrinsic (defect-assisted) and intrinsic (phonon-assisted) single particle and pair self-
trapping (ST) of carriers using the continuum model of ionic crystal and adiabatic approximation. The
possibility of the formation of localized extrinsic and intrinsic (bi)polaronic states as well as hydrogen-
like impurity states in charge-transfer (CT) gap of the cuprates is examined and compared with the ex-
perimental data.

2. Calculation of the ground-state energy of the system of a defect-

bound hole carrier in the polar crystal

Electron-phonon interaction (EPI) affects the electronic properties of semiconductors and polar crys-
tals in various ways depending on the strength of the electron-phonon interaction. Among them, the
polaron formation and the ST are its typical and important effects on the carriers. The relevant charge
carriers in hole-doped cuprates are large polarons [13, 18] and the strong EPIs are responsible for en-
hancement of the polaron mass mp = (2.0−3.0)mh [19] (where mh = me is the free electron mass). Ac-
cording to Toyozawa [20], the mechanisms for ST of carriers are classified as intrinsic and extrinsic ones.
The intrinsic mechanism means that carriers are self-trapped at deformed lattice sites through EPI. The
extrinsicmechanism consists of short-range and/or long-range potentials by impurities or defects enhanc-
ing ST of carriers due to EPI. So far, there are no detailed quantitative studies of the intrinsic and extrinsic
ST of the carriers in lightly doped cuprates. In order to better understand the situation, the possibility of
the formation of extrinsic self-trapped states and of the intrinsic ones in the CT gap of the cuprates need to
be thoroughly examined and compared with the existing experimental results confirming the existence
of such localized in-gap states.

We use a continuum model proposed in [20] and adiabatic approximation to calculate the ground-
state energy of an interacting system of a defect (dopant)-bound hole carrier in the polar crystal. In the
continuous approximation, the functionals of the total energies of the single-carrier and two-carrier sys-
tems can be written as follows:
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where m∗ and e are carrier effective mass and charge, respectively, r1 and r2 are the position vectors
of the carriers, Ed and EdD are the deformation potentials of the carrier and the defect, respectively, ε̃ is
given by ε̃−1 = ε−1

∞ −ε−1
0 = (1−η)/ε∞ , K is an elastic constant, V0 is the short-range defect potential, Z is

the charge state of the defect. A large ionicity of the cuprates η= ε∞/ε0 ≪ 1, enhances the polar EPI and
the tendency to polaron formation.

In order to minimize the functionals (2.1) and (2.2) with respect to ψ(r ) andΨ(r1,r2) we can take the
trial wave functions as follows:

ψ(r ) = N1 exp[−(σr )] (2.3)

and

Ψ(r1,r2) = N2[1+γ(σr12)]exp[−σ(r1 + r2)] , (2.4)

where N1 =σ3/2/
p
π and N2 =σ3/π

√

K1(γ) are the normalization factors,σ=β/a0, K1(γ)= 1+ 35
8
γ+6γ2

is the correlation coefficient, β and γ are the variational parameters that characterize the localization
degree of carriers and the correlation in their motions, respectively. r12 = |r1−r2| is the distance between
the carriers, a0 is the lattice constant. Substituting equations (2.3) and (2.4) into equations (2.1) and (2.2),
and performing the integrations in equations (2.1) and (2.2), we obtain the following functionals

E1[β] = A
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5
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]

(2.5)

and
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where A=ħ2/2m∗a2
0 , gs=E 2

d/16πK a3
0 A and g l = 5e2/16ε∞a0 A are dimensionless short-range and long-

range carrier-phonon coupling parameters, bs = 16
(

EdD/Ed−K V0/E 2
d

)

is short-range carrier-defect-pho-
non coupling parameter, and the correlation coefficients are analytical functions of the variational pa-
rameter γ:
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Minimization of the functionals (2.5) and (2.6) over the variational parameters β and γ would give the
ground state energies Emin

1 (β) and Emin
2 (β,γ) of single and pair self-trapped carriers. As a function of

β and γ, these functionals have also got the maxima Emax
1 (β) and Emax

2 (β,γ). The other parameters A,
gs, g l, bs and Z entering equations (2.5) and (2.6) play different roles in the formation of self-trapped
states and determine the nature of the localized states of carriers in doped polar materials. The values
of the parameters A, gs and g l can be obtained using the experimental values of the parameters a0, m∗,
K , ε∞ , ε0 and the Fermi energy EF of the undoped cuprates. The parameters bs and Z characterize the
formation of extrinsic (i.e., hydrogenic and non-hydrogenic) self-trapped states of carriers, whereas the
parameters gs and g l characterizing the strengths of short- and long-range carrier-phonon interactions
are responsible for the formation of intrinsic self-trapped states.

Using the equations (2.5) and (2.6), we calculate the energies of different localized in-gap states in
the CT gap of the cuprates. In order to determine the nature of these in-gap states and the quasi-free
to localized state transition, we distinguish different physical situations in these systems. One can make
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interesting analyses of real systems based on the sign and magnitude of bs. In hole-doped cuprates, the
situations might be quite different for different types of dopants. In particular, the signs of the deforma-
tion potential constants Ed and EdD for holes and small-radius defects are always positive, while EdD for
large-radius defects is negative [20]. However, at present no information is available for the magnitudes
of the parameters EdD and V0. Therefore, the parameter bs in equations (2.5) and (2.6) can be considered
as the free parameter. We consider first the possibility of the formation of localized in-gap states at single
and pair ST of carriers near the small-radius dopants (with EdD > 0 or bs > 0) in La-based cuprates. In this
case, both short and long range parts of the defect potential in equations (2.1) and (2.2) are attractive, so
that the substitution of small-radius cations (e.g., Ca2+ and Nd3+ ions) for La3+ ions in La2CuO4 and for
Sr2+ ions in LSCO leads to a combined defect- and phonon-assisted ST of hole carriers with the formation
of localized single-carrier and two-carrier impurity states, which are extrinsic polaronic and bipolaronic
(the so-called U-pairing) states. At Z , 0 and bs > 0, the minima of E1(β) and E2(β,γ) correspond to the
ground-state energies of the extrinsic large polaron and bipolaron, respectively, measured with respect to
the top of the oxygen valence band. The binding energies of such extrinsic large polaron and bipolaron
(or negative U center) are defined as EpI = |Emin

1 (β)| and EbU = |Emin
2 (β,γ)− 2Emin

1 (β)|, respectively. In
3D systems, there is generally a potential barrier between the large- and small-radius self-trapped states.
The two states of the extrinsic large polaron are separated by a potential barrier, with activation energy
EA

1 = Emax
1 (β)−Emin

1 (β) needed for the transition from the large-radius localized state to the small-radius
one. The potential barrier EA

2 = Emax
2 (β,γ)−Emin

2 (β) exists between the large and small-radius extrinsic
bipolaronic states.

We now calculate the basic parameters of the extrinsic large (bi)polarons in La-based cuprates. At low
temperature, the La-based cuprates are orthorhombic with the lattice parameter a0 ≃ 5.4 Å. According to
the spectroscopy data, the Fermi energy of the undoped cuprates is about EF ≃ 7 eV [21]. To determine the
value of the short-range carrier-phonon coupling constant gs, we can estimate the deformation potential
Ed as Ed = (2/3)EF [22]. For the cuprates, typical values of other parameters are m∗ = me [13], ε∞ = 3−5

[23, 24], K = 1.4 ·1012 dyn/cm2 [25], and Z = 1. The calculated values of EpI, EbU, EA
1 and EA

2 for bs = 1

and different values of ε∞ and η are presented in table 1. From table 1 we can see that the potential
barriers separating the large- and small-radius extrinsic (bi)polaronic states are rather high. These high
potential barriers prevent the formation of small extrinsic (bi)polarons in 3D cuprates. The defect- and
phonon-assisted ST of large polaron and large bipolaron in La-based cuprates are shown in figures 1 and
2, respectively.

Table 1. The calculated parameters of the extrinsic large polarons and bipolarons (with correlation be-

tween the pairing carriers) in 3D cuprates at Z = 1, bs = 1 and different values of ε∞ and η.

η
ε∞ = 3.5 ε∞ = 4 ε∞ = 4.5

EpI , eV EbU , eV EA
1 , eV EA

2 , eV EpI , eV EbU , eV EA
1 , eV EA

2 , eV EpI , eV EbU , eV EA
1 , eV EA

2 , eV

0.00 0.1135 0.0610 5.3373 5.8611 0.0863 0.0456 5.6962 6.4752 0.0679 0.0354 5.9807 6.7958
0.02 0.1240 0.0525 5.2128 5.7649 0.0943 0.0391 5.5849 6.3881 0.0741 0.0303 5.8801 6.7090
0.04 0.1349 0.0434 5.0893 5.6693 0.1026 0.0321 5.4742 6.3013 0.0806 0.0247 5.7800 6.6224
0.06 0.1464 0.0336 4.9668 5.5743 0.1113 0.0246 5.3643 6.2150 0.0874 0.0188 5.6804 6.5359
0.08 0.1584 0.0231 4.8453 5.4799 0.1203 0.0166 5.2552 6.1292 0.0945 0.0125 5.5815 6.4495
0.10 0.1709 0.0120 4.7248 5.3861 0.1298 0.0081 5.1468 6.0438 0.1019 0.0058 5.4831 6.3633
0.12 0.1839 0.0001 4.6053 5.2929 0.1396 — 5.0391 5.9588 0.1096 — 5.3854 6.2773

Another interesting question is in what way large-radius dopants in cuprates affect the carrier-pho-
non system, especially near such defects. This opposite situation is realized in LSCO or La2−xBaxCuO4

(LBCO), where the radius of Sr2+ ions is larger than that of La3+ ions [26], so that for Sr2+ ion Z = 1,
EdD < 0 or bs < 0. In this case, the short-range part of the impurity potential in equation (2.1) is re-
pulsive. Therefore, one can treat it like a hard core. The hole-lattice interactions near the large-radius
dopants in LSCO and LBCO are suppressed by this repulsive defect potential and hole carriers are lo-
calized at a distance from the dopants (i.e., hole-carriers are loosely bound to dopants by long-range
Coulomb attraction). From these considerations, it follows that the hole-lattice interaction near the large-
radius dopants is weak and the localized impurity state may be of a hydrogen-like character described
by a rigid lattice model [27]. Therefore, we can consider the hydrogen-like impurity centers having the
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Figure 1. (Color online) The dependence of ground-state energy of extrinsic large polaron on the varia-

tional parameter β for η= 0.08 in La-based cuprates. The red point indicates a single carrier self-trapped

state.

Figure 2. (Color online) The dependence of ground-state energy of extrinsic large bipolaron on the varia-

tional parameters β and γ for η= 0.08 in La-based cuprates.

Bohr radius aH = 0.529ε0(me/m∗) Å and the ionization energy EH
I = e2/2ε0aH in lightly doped LSCO and

LBCO. A similar argument can be made for other cuprates, such as La2CuO4+δ, YBa2Cu3O7−δ (YBCO) and
Bi2Sr2CaCu2O8+δ (Bi-2212). In these systems, the doping centers are excess oxygen atoms which capture
the electrons from the oxygen conduction band and form the acceptor centers, i.e., O− ions. One can
assume that such extra O− ions just like Sr2+ ions may have negative EdD.

Figure 3 shows the variation of the ratio EbU/2EpI with η for bs = 0.5 and 2.0 for the stability region
of the extrinsic large bipolaron in 3D cuprates. One can find out that such bipolarons exist as long as η is
less than the critical value ηc = 0.127 and the ratio EbU/2EpI reaches up to 0.287 (at ε∞ = 3 and η→ 0).
We have determined the stability region of the extrinsic large bipolaron in cuprates and found that such
bipolarons exist as long as η is less than the critical value ηc = 0.127 and the ratio EbU/2EpI reaches up
to 0.287 (at ε∞ = 3 and η→ 0). Figure 4 shows the variation of the ratio EbB/2Ep with η for ε∞ = 3, 4
and 5 for real large bipolarons in cuprates. One can see that in 3D cuprates, the intrinsic large bipolarons
can exist at η = ηc É 0.138 and the ratio EbB/2Ep reaches up to 0.27 (at ε∞ = 3 and η → 0). While the
inset in figure 4 shows the variation of the ratio EbB/2Ep [calculated from equations (2.5) and (2.6) at
gs = 0 and Z = 0] with η for large optical bipolaron. Of course, besides the ratio η= ε∞/ε0, the values of
the Fröhlich electron-phonon coupling constant α are very important for the formation of large optical
bipolarons. The long-range coupling of carriers with optical phonons is much stronger than their short-
range coupling with acoustic phonons. Therefore, the long-range Fröhlich-type EPI in polar materials
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Figure 3. (Color online) The ratio of the binding energy of the extrinsic large bipolaron to twice the extrin-

sic large polaron binding energy as a function of η for two values of bs in 3D cuprates. The inset shows

the dependence of the ratio of the binding energy of the extrinsic large bipolaron to twice that of the

extrinsic large polaron on η for two values of ε∞ in 3D cuprates.

have been studied extensively [28, 29], although the short-range deformation potential type interaction is
also important and leads to new effects. The dimentionless EPI Fröhlich coupling constant is defined as

α= e2(1−η)

2ε∞ħωLO

(

2m∗ωLO

ħ

)1/2

, (2.7)

where ωLO is the frequency of the longitudinal-optical (LO) phonon in an ionic crystal.

In polar materials, the formation of optical bipolarons is favored by larger values of α and by smaller
values of η [2, 29], i.e., the optical (Fröhlich or Pekar) bipolarons exist only if α is is greater than a critical
value αc and when η< ηc. Such 3D bipolarons can exist above rather high critical values αc, e.g., αc = 7.3

as found by Adamowski [30] and αc = 6.8 found by Verbist, Peeters and Devreese [31]. Further, the value

Figure 4. (Color online) The ratio of the binding energy of the real large bipolaron to twice that of the

real large polaron as a function of η for different values of ε∞ in 3D cuprates. The inset illustrates the

ratio of the binding energy of the optical large bipolaron to twice that of the optical large polaron on η

for ε∞ = 3.0 in 3D cuprates.
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of αc corresponding to the onset of the strong coupling regime is found to be αc = 5.8 [32], below which
the formation of large optical bipolaron in 3D systems is unlikely. At a given value of η, the value of
αc depends on m∗, ε∞ and ωLO. The values of ħωLO in high-Tc cuprates range from 0.03 to 0.05 eV
[13, 33]. Then, according to equation (2.7), the values of α corresponding to these high-Tc materials with
m∗ = me, ε∞ = 3 and η = 0.02−0.10 are equal to α = 4.96−6.95. Thus, the conditions for the formation
of large optical bipolarons are more favorable in the cuprates with ε∞ = 3, η = 0.02−0.06 and ħωLO =
0.03−0.04 eV, at which conditions α>αc ≃ 5.8 [32] and α>αc = 6.8 [31] are well satisfied.

We note here that the largest values of ηc = 0.079−0.14 and EbB/2Ep = 0.22−0.25 as found in the
literature [34–36] (see also [29]) were obtained for the optical bipolaron and do not correspond to spe-
cific substances. At the same time, the critical values of η below which the optical bipolarons can exist in
cuprates were small enough (ηc = 0.040−0.055), as estimated in [29]. Our results are quite impressive in
the sense that both the real and the optical bipolaron in 3D cuprates, can really exist for relatively large
values of η (figure 4) and the large bipolarons are formed with the binding energies reaching up to 27%
(at η→ 0) of twice the large polaron energy. The distinctive feature of the cuprates is their very large ratio
of static to high-frequency dielectric constants. This situation is favorable for carriers attracted to polar-
ization well created by the other ones or to Coulomb centers (dopants) to form 3D intrinsic or extrinsic
large bipolarons. At ε0 > 30, such bipolarons (pair states) can be formed in lightly doped cuprates and
they become unstable in an underdoped regime. As can be seen from tables 1 and 2, the binding energies
of extrinsic and intrinsic large (bi)polarons and the ratios EbU/2EpI and EbB/2Ep depend on several pa-
rameters. In particular, EpI, Ep, EbU and EbB would rapidly increase with ε∞ decreasing from 5 to 3, while
the ratios EbU/2EpI and EbB/2Ep increase more slowly as ε∞ decreases. Interestingly, EpI is an increasing
function of η (table 1), while Ep is a decreasing function of η (table 2). Furthermore, we find that both EbU

and EbB decrease with increasing η. We also find that the ratio EbU/2EpI appreciably increases with bs as
shown in figure 3. The calculated values of the radii of extrinsic large (bi)polarons RI (RBI) (at Z = 1 and
bs = 1) and intrinsic large (bi)polarons, Rp (RB) (at Z = 0 and bs = 0) for different values of ε∞ and η are
presented in table 3.

Table 2. Calculated parameters of the real large polarons and bipolarons (with correlation between the

pairing carriers) in 3D cuprates at different values of ε∞ and η.

η
ε∞ = 3.5 ε∞ = 4 ε∞ = 4.5

Ep , eV EbB , eV EA
p , eV EA

B , eV Ep, eV EbB , eV EA
p , eV EA

B , eV Ep , eV EbB , eV EA
p , eV EA

B , eV

0.00 0.1107 0.0583 27.275 19.989 0.0845 0.0439 28.049 21.063 0.0666 0.0343 28.656 21.744
0.02 0.1063 0.0484 27.398 20.269 0.0811 0.0364 28.158 21.313 0.0640 0.0284 28.753 21.980
0.04 0.1019 0.0389 27.521 20.551 0.0778 0.0293 28.267 21.564 0.0614 0.0228 28.851 22.217
0.06 0.0977 0.0299 27.645 20.834 0.0746 0.0225 28.376 21.815 0.0588 0.0175 28.949 22.453
0.08 0.0935 0.0215 27.769 21.118 0.0714 0.0161 28.485 22.068 0.0563 0.0125 29.046 22.690
0.10 0.0895 0.0136 27.893 21.404 0.0683 0.0101 28.595 22.321 0.0539 0.0078 29.144 22.928
0.12 0.0855 0.0061 28.017 21.691 0.0653 0.0044 28.704 22.576 0.0515 0.0003 29.242 23.166
0.14 0.0816 — 28.142 21.980 0.0623 — 28.814 22.832 0.0491 — 29.341 23.404

Table 3. Calculated values of the radii of intrinsic and extrinsic large (bi)polarons Rp, RI, RB and RBI in

3D cuprates at different values of ε∞ and η.

η
ε∞ = 3.5 ε∞ = 4 ε∞ = 4.5

Rp , Å RB , Å RI , Å RBI , Å Rp, Å RB , Å RI, Å RBI, Å Rp , Å RB , Å RI , Å RBI , Å

0.00 8.6096 13.045 8.2839 12.403 9.8840 15.057 9.5633 14.434 11.158 17.066 10.841 16.457
0.02 8.7917 13.577 7.9061 12.084 10.092 15.663 9.1322 14.072 11.392 17.746 10.357 16.052
0.04 8.9813 14.146 7.5586 11.777 10.309 16.311 8.7357 13.724 11.636 18.475 9.9111 15.662
0.06 9.1791 14.756 7.2378 11.482 10.535 17.007 8.3699 13.390 11.890 19.256 9.5001 15.288
0.08 9.3854 15.413 6.9409 11.199 10.770 17.756 8.0313 13.068 12.155 20.098 9.1197 14.928
0.10 9.6009 16.121 6.6652 10.926 11.017 18.564 7.7169 12.758 12.432 21.005 8.7665 14.581
0.12 9.8261 16.887 6.4084 10.662 11.274 19.438 7.4243 12.460 12.722 21.986 8.4379 14.248
0.14 10.062 17.718 6.1688 10.408 11.543 20.386 7.1512 12.173 13.025 23.051 8.1312 13.926
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3. Discussion

We now make some remarks about the characteristic (i.e., binding) energies of large bipolarons in
the cuprates. The binding energies of extrinsic and intrinsic bipolarons strongly depend on ε∞ , ε0 and
η. The values of ε∞ and ε0 observed in high-Tc cuprates are 3–5 [4, 37, 38] and 33–105 [4, 39], respec-
tively, so that the values of η range from 0.028 to 0.15. Using the values of ε∞ = 3 and η ≃ 0.03, we find
EbU ≃ 0.07 eV and EbB ≃ 0.061 eV. If we take other experimental values of ε∞ = 4 and ε0 ≃ 50 for the
cuprates (see [2, 29]), then we obtain EbU ≃ 0.017 eV and EbB ≃ 0.016 eV at η = 0.08. Further, at ε∞ = 5

and η= 0.08 we find EbU ≃ 0.0097 eV and EbB ≃ 0.0102 eV. Thus, the extrinsic and intrinsic bipolarons can
be experimentally found in high-Tc cuprates in the energy ranges ∼ 0.01−0.07 eV and ∼ 0.01−0.06 eV, re-
spectively. The binding energies of large polarons and bipolarons are manifested in the excitation spectra
of the hole-doped cuprates as the temperature-independent low-energy gaps or pseudogaps, which are
different from the high-energy CT gaps (∆CT ≃ 1.5−2.0 eV [13]) of the cuprates.

It is of interest to compare our results with experimental data on localized in-gap states (or bands)
and energy gaps (which are responsible for the existance of insulating phase and are precursors to
the pseudogaps observed in the metallic state) in hole-doped cuprates. The above extrinsic and intrin-
sic (bi)polaronic states as well as hydrogenic impurity states emerge in the CT gap of the cuprates. In
the experiments, these localized states are displayed as the in-gap states. One can see that the value of
EpI ≃ 0.13 eV obtained at ε∞ = 4 and η = 0.1 (table 1) is consistent with experimental data for lightly
doped La2CuO4+δ [13]. The in-gap impurity band observed in this system at 0.13 eV might be associated
with the extrinsic large polarons. While the values of Ep ≃ 0.096−0.105 eV (table 2) obtained at ε∞ = 3.5

and η=0.04–0.06 agree reasonably well with the large pseudogap value ∼0.1 eV observed in LSCO [40].
One of the important experimental observations is that in LSCO, the flatband [41], which is ∼0.12 eV be-
low the Fermi energy for x = 0.05, moves upwards monotonously with increasing x, but the flatband is
lowered as x decreases and loses its intensity in the insulating phase. Apparently, the flatband observed
by ARPES in the lightly doped LSCO (x = 0.05) is the energy band of large polarons since the effective
mass of carriers obtained from the analysis of the ARPES spectra is about 2.1me [41]. The values of Rp

(table 3) are also in good agreement with the experimental values of the radii of polarons which vary
from 6 to 10 Å in cuprates [13].

4. Conclusions

We have studied the possible mechanisms of carrier localization in inhomogeneous hole-doped cup-
rates. The quantitative theory of the impurity-assisted and phonon-assisted single particle and pair ST of
hole carriers in 3D lightly doped cuprates is developed within the continuum model and adiabatic ap-
proximation. The possible mechanisms for carrier localization lead to the formation of extrinsic large
(bi)polaronic states, the hydrogenic impurity states (i.e., impurities with loosely bound free carriers or
large polarons) and intrinsic large (bi)polaronic states in the CT gap of the cuprates. We have variation-
ally calculated the binding energies and radii of the extrinsic and intrinsic large polarons and bipolarons,
taking into account the short- and long-range parts of the carrier-defect-phonon and carrier-phonon in-
teractions. We have determined the stability region of the extrinsic large bipolaron in cuprates and found
that such bipolarons exist as long as η is less than the critical value ηc = 0.127 and the ratio EbU/2EpI

(where EpI and EbU are the binding energies of the extrinsic large polaron and bipolaron, respectively)
reaches 0.287 (at ε∞ = 3 and η→ 0). We have obtained the conditions for the real large bipolaron stability
and estimated the values of EbB/2Ep in 3D cuprates (where Ep and EbB are the binding energies of the
intrinsic large polaron and bipolaron, respectively).
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Природа зовнiшнiх i внутрiшнiх самозахопних носiїв струму

в слабкозлегованих купратних високотемпературних

напiвпровiдниках

O.K. Ганєв

Фiзичний факультет, Унiверситет Узбекистану, 100174 Ташкент, Узбекистан

Теоретично вивчено природу зовнiшнiх i внутрiшнiх самозахопних носiїв струму в купратах. Енергiї

зв’язування i радiуси зовнiшнiх i внутрiшнiх великих поляронiв i бiполяронiв в купратах обчислено

варiацiйно, використовуючи неперервну модель та адiабатичне наближення. Ми показали, що зов-

нiшнi i внутрiшнi тривимiрнi великi бiполярони iснують в слабозлегованих купратах, вiдповiдно, при

η= ε∞/ε0 < 0.127 i η< 0.138 [де ε∞ (ε0) — оптична (статична) дiелектрична стала].

Ключовi слова: полярон, бiполярон, самозахоплення, високотемпературнi надпровiдники
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