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The effect of thickness on the width of the percolation threshold in metal-dielectric composite films was ex-
amined. The distribution of current intensities through cubic networks of metal and dielectric components
was determined using Kirchhoff’s equations. From the tail of current distribution, the width of the percolation
threshold was defined using Lévy statistics, and determined as a function of the film thickness for a system size
100. In the 2D-3D crossover region, the percolation width decreases as a power-law with a power exponent of
0.36±0.01.
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1. Introduction

Percolation theory is an old model used extensively to describe different second order phase transi-

tions in various fields of disordered systems. Different analytical and numerical methods have been used

to determine the percolation threshold and critical exponents, among which there are effective medium

theory, field theory, random resistors network, and Monte Carlo simulations [1–5].

The construction of continuous macroscopic objects having random spreading of particles or links,

like polymers, aggregates or piles, or vitrification, as well, have been, so far, the subject of many studies.

They were modelled using many different approaches on the basis of the percolation model [1, 2, 6–9].

The power law behaviours for some physical quantities, such as correlation length and the strength

or the weight of the percolating cluster, are investigated near the percolation thresholds (critical points),

and the results are interpreted using critical exponents, which depend only on the space dimension D.

Crossover from 2D to 3D has also been the subject of many studies. For instance, thin magnetic [10]

and electric [11–14] films were investigated. More recently, Zekri et al. [15] investigated the effect of thick-

ness on the percolation threshold pc and the conductivity critical exponent ofmetal-insulator composites.
The percolation threshold pc can be defined only for infinite systems where the transition is abrupt. For
finite systems, the percolation probability assumes values between 0 and 1 for a continuous finite range
of the density of “conducting” components (see page 72 of [1]). This defines the width of the percolation

threshold.

In the present work, we focus on the width of percolation threshold dependence on the film thickness.

Since the percolation phase transition induces maximum disorder, the width of percolation threshold is

determined from the current distribution by using Lévy statistics [16–19]. The novelty of the present work

is the use of the width of the percolation threshold to study the percolation in 2D-3D crossover.
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2. Method description

Various calculation methods, such as the real-space renormalization group method (RSRG) [20], ex-

act transformation method like Lobb and Frank method [21], and transfer matrix method [22, 23], are

used to numerically define the network conductivity. These methods are limited to 2D or show numeri-

cal instability for large systems. We used the exact method (EM) in our previous work [24] based on the

numerical resolution of Kirchhoff ’s equations in the network, leading to the effective conductance deter-

mination (admittance or impedance ) and the current or the local field distribution in each component

(or network link) as well. Here we consider a random network of resistors, of L×L×h cubic elementary
cells where h−1 is the thickness and L−1 is the size of the perpendicular plane of the cell (figure 1). The
network is randomly filled with metallic and insulating components, having conductances of σm = 1 Ω−1

and σd = 10−15
Ω
−1
with filling densities of p and 1−p , respectively.

The d.c. voltage in each node and the current in each link are exactly calculated by solving Kirch-

hoff ’s equations at each node i , j in figure 1, for resistor networks [24]. The first index represents the
coordinate index in the plane and the second one is the plane position in the third direction. The current

conservation in each node yields ∑
k,l

= (Vk,l −Vi , j )σi , j
k,l = 0, (2.1)

where the sum over (k, l ) spans nearest neighbors of the nodes with coordinates (i , j ) and conduc-

tances σ
i , j
k,l . For the nodes connected to the edges, the potentials Vi , j take values 0 or 1 depending on

the edge side. We have N equations [N = L × (L −1)×h] of N unknown potentials. Equation (2.1) can be

Figure 1. A network of size 3×2×1with conductivities distributed randomly between the metals and the
insulators.
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written in a matrix form

Γ̃~V =


P11 P12 0 . . . 0
P21 P22 P23 . . . 0
. . . . . . . . . . . . . . .
. . . . . . PN−1,N−2 PN−1,N−1 PN−1,N

. . . . . . 0 PN ,N−1 PN ,N




V1

V2

. . .
VN−1

VN

=


S1

S2

. . .
SN−1

SN

 . (2.2)

In this matrix equation, the matrix Γ̃ is tri-diagonal symmetrical with (N −1)×(N −1) block elements
Pi j being themselves matrices of dimension N ×N . These matrices are composed of combinations of the
branch conductivities corresponding to currents directions either within the face i (diagonal block ele-
ments) or coming to this face from its neighboring plane faces (off-diagonal block elements). Therefore,

at most three of the matrix elements Pi j do not vanish for each face i . The diagonal matrix is tri-diagonal
as it involves the currents within the lines and inter-lines in the same face. The off-diagonal matrix is di-

agonal. TheN−1 elementsVi are vectors of sizeN representing the N unknown potentials. The elements
Si are vectors of the same size as Vi . Their elements vanish except the L first ones which correspond to
the edge at 1 V. The set of equations (2.2) are solved by the substitution method described in detail in [24].

In this work, in order to further understand the behaviour of the increment between 2D and 3D,

we investigate the distribution of the current intensities P (In) for different network thicknesses h, to
evaluate the width of the percolation thresholds pc. This distribution was interpreted on the basis of
the Lévy distribution. The calculations are performed for various thicknesses and many layer sizes. The

intensities of currents are averaged by considering 100 samples which is sufficient to reach the desired

accuracy [24]. Note here that for the networks used here, the percolation threshold for infinite systems is

pc = 0.5 for 2D square networks (h = 1), and pc = 0.2492 for 3D cubic network (h = L =∞) [1].

3. Results and discussions

The current distribution is shown in figure 2 for a system size 100×100×3 with values of the metal
density below, at and above the percolation threshold. Two main branches appear as the percolation

threshold is reached: one seems to be log-normal (Galton’s distribution) for large strengths of the cur-

rent (see the inset of figure 2), and the other one is power-law decreasing for very small strengths of

the current. The log-normal branch corresponds to the backbone of the metallic largest cluster whereas

the power-law decreasing branch corresponds to the insulating cluster. Below pc, the log-normal branch
obviously disappears as there are only small metallic clusters. Above this threshold, the power-law de-

creasing branch tends to disappear because most of the metallic links belong to the largest cluster. This

behaviour is similar to that observed by Zekri et al. [25] for the distributions of critical links. Thus, near

the percolation threshold, the largest cluster is composed mainly of critical links. These links are respon-

sible for the percolation transition.

The above discussed behaviour of the current distribution is thus related to the percolation phase

transition. At the threshold transition, fluctuations (disorder) are larger. In the present case, current fluc-

tuations should be large at the percolation threshold. The behaviour of current fluctuations can be easily

determined from Lévy statistics [16, 26]. Distribution P (I ) asymptotically decays as a power law I−(1+µ)
,

the exponent µ being positive (see the power-law fit in the inset of figure 2). The exponent µ is then

extracted from the linear fit of the log-log plot of P (I ) for large values of I .
For large (diverging) current fluctuations, the exponent µ is in the range [0–2] and the secondmoment

〈I 2〉 diverges (the first moment 〈I 〉 diverges for µ < 1). For larger exponents (µ > 2), the fluctuations
converge and the distribution becomes stable [26]. In this case, the system is either in its metallic or

dielectric phase. Thus, the percolation threshold corresponds to an exponent µ smaller than 2.
Here, the minimum of the exponent µ corresponds to the maximum of the current fluctuations (max-

imum disorder), and thus we define it as the percolation threshold for infinite systems [1, 27]. For infinite

systems, at this threshold density, only the exponent µ is smaller or equal to 2 . For finite systems, fluc-
tuations are large (µ É 2) for a finite range of densities around pc. This range shows a continuous band
of filling densities with diverging current fluctuations, and defines the width of percolation threshold w
for a finite system corresponding to the intersection with the line µ = 2 in figure 3. Indeed, for a finite
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Figure 2. Distribution of the logarithm of the current for the size 100×100×3 and for p = 0.32, pc = 0.34,
and p = 0.35. The inset is a zoom in the region of the log-normal branch.

system, there is a finite percolation (non-percolation) probability even below (above) pc (see page 72 of
[1]). The threshold values obtained from the minimum of µ are compared in table 1 to those obtained

in [15] for different thicknesses and for L = 100. These values are comparable within statistical errors.
Therefore, as expected above, the percolation threshold for infinite systems corresponds to the filling

density with minimum value of the exponent µ (this density is independent of the size). The use of Lévy

statistics allows one to deduce the percolation threshold for infinite systems by using finite systems.

Table 1. The threshold values as function of the thickness h for the size L = 100.

Thickness h pc (present method) Uncertainty pc (method of [15])

3 0.340 0.005 0.337

4 0.305 0.005 0.305

5 0.290 0.005 0.290

8 0.270 0.005 0.268

10 0.265 0.005 0.262

12 0.260 0.005 0.258

15 0.260 0.005 0.254

20 0.255 0.005 0.251

25 0.255 0.005 0.250

The thickness dependence of the width of percolation threshold is shown in figure 4 for size L = 100.
In this figure we distinguish three different regions: a region quasi-2D or small thicknesses h < 5 (where
the percolation width w increases), a crossover region, and a saturation where w becomes constant. In

the crossover region (5 É h É 10), the width of percolation w is a power-law decreasing function of the h

43001-4



Effect of film thickness on the width of percolation threshold

Figure 3. The exponent µ versus the concentration p for size 100 and various thicknesses.

Figure 4. Percolation width w versus the thickness h for a 3D network of size L = 100. The inset figure
shows the log-log plot of the data.
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(see the power-law fit in the inset of figure 4):

w ∝ h−x . (3.1)

Here, the exponent x is 0.36±0.01.Within the statistical errors, this value is compatible with 1/ν3 −
1/ν2 = 0.38 , where ν2 = 1.33 [1] and ν3 = 0.88 [2] are 2D and 3D correlation length exponents. The power-
law behaviour of the width of percolation thresholdw appears similar to that of pc(h)–pc(3D)with a very
close exponent (see equation (7) of [15]).

The non-monotonous behaviour, observed in figure 4 as h increases, can be explained by the com-
petition between the width w which increases and pc which decreases. As the thickness increases, there
are more percolating paths, so that the width increases. For a size 100, the width for 3D systems (0.039) is
greater than that for 2D ones (0.02). For very small thicknesses (h < 5), the increase of w is independent

of the decrease of pc. Above h > 5, pc significantly decreases and thus the width becomes constrained
by pc. The quantity pc×w seems to be constant for h < 5 and decreases above this thickness (not shown
here). A further work is under preparation to clarify this behaviour near the crossover region.

4. Conclusion

In this work, the width of percolation threshold of a randommetal-dielectric composite network was

interpreted from the behaviour of the current distribution using Lévy statistics. The percolation thresh-

old pc corresponds to the minimum of the exponent µ. The width of the percolation threshold w was

examined as a function of the thickness h. A power-law decrease of w is found in the crossover region

with an exponent similar to that obtained for pc(h)–pc(3D) in [15]. This induces a relation between the
widthw and pc(h). The saturation region corresponds to the 3D behaviour. As discussed above, the width
w should vanish for infinite systems. The scaling of this width for different thicknesses will be the subject
of a forthcoming work.
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Вплив товщини плiвки на ширину перколяцiйного порогу в

композитах метал-дiелектрик

M.Мохтарi1,2, Л. Зекрi1, А. Кесс3, Н. Зекрi1
1 Унiверситет науки i технологiй iм.Мохамеда Будiафа м. Оран, USTO-MB, LEPM,
BP 1505, 31000 Оран, Алжир

2 Унiверситетський центр Тiссемсiлту, BP 182, Тiссемсiлт, Алжир
3 Марсельський унiверситет, CNRS, IUSTI UMR 7343, 13453,Марсель, Францiя
Дослiджено вплив товщини плiвки наширину перколяцiйного порогу у плiвках метал-дiелектричних ком-
позитiв. Розподiл iнтенсивностей струму через кубiчнi мережi компонентiв металу i дiелектрика визна-
чався, використовуючи рiвняння Кiргофа. Ширина перколяцiйного порогу визначалася з хвоста розпо-
дiлу струму, використовуючи статистику Левi, i була визначена як функцiя товщини плiвки для розмiру
системи 100. В кросовернiй областi 2D-3D ширина перколяцiї зменшується за степеневим законом з по-
казником 0.36±0.01.
Ключовi слова: розподiл струму, перколяцiя, композитнi матерiали, резисторна мережа
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