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In this work we examine thermodynamics of fluid with “molecules” represented by two fused hard spheres,
decorated by the attractive square-well sites. Interactions between these sites are of short-range and cause
association between the fused-sphere particles. The model can be used to study the non-spherical (or dimer-
ized) proteins in solution. Thermodynamic quantities of the system are calculated using a modification of
Wertheim’s thermodynamic perturbation theory and the results compared with new Monte Carlo simulations
under isobaric-isothermal conditions. In particular, we are interested in the liquid-liquid phase separation in
such systems. The model fluid serves to evaluate the effect of the shape of the molecules, changing from spher-
ical to more elongated (two fused spheres) ones. The results indicate that the effect of the non-spherical shape
is to reduce the critical density and temperature. This finding is consistent with experimental observations for
the antibodies of non-spherical shape.
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1. Introduction

Aggregation of proteins in solution is both desired and undesired. It represents the first step in the
downstream processing, i.e., salting out of the proteins for the purpose of cleaning and application. It
is also one of the intermediate steps in the process of protein crystallization. The unwanted, pathologi-
cal, protein aggregation is known to cause several diseases. Very importantly, bio-pharmaceutical drugs
should be free of aggregates, otherwise they may be harmful. To increase the stability of protein in aque-
ous solutions is, therefore, an important technical problem. For an excellent review of the theoretical and
experimental studies of protein solutions see reference [1].

The class of proteins we are interested in here are the so-called globular proteins. A typical represen-
tative of this class is lysozyme, which was extensively studied both experimentally and theoretically (see
for example [1], Chapter 9). Despite their complicated 3D structure, many properties of protein solutions
can be successfully described using relatively simple models [2H8]. Globular proteins are in their native
form (we assume that during the experimental treatment they do not denature) most often pictured as
perfectly spherical objects. This naive representation is in reality never satisfied, it is used merely to sim-
plify the calculations. There is a large list of non-spherical proteins, for example the shape of lysozyme
mentioned above is ellipsoidal, including antibodies, lactoferrin, and others, where more complex ge-
ometry of particles would need to be taken into account to generate realistic results. This is important
because the interactions leading to protein aggregation are directional and of short-range.

The shape of protein molecules influence their mutual interaction directly and indirectly. For exam-
ple, (i) depletion interaction is largely dependent on the shape of particles [9]]. (ii) Experimentally, it is
observed that many of proteins with roughly spherical shape exhibit upper critical solution temperature
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at protein concentration equal to 240 g/L [1} 10} [11]. In contrast to that, Y-shaped antibodies exhibit the
shift toward much lower values, way down to 100 g/L [12} [13]. (iii) The hydrodynamic radii of the non-
spherical objects are different, therefore, their hydrodynamic and transport coefficients [14], as well as,
kinetic parameters [15] are modified. It is also known that classical nucleation theory has difficulties in
describing the crystallization of other than spherical (for example ellipsoidal) particles [1}[16].

Recently, we used a simple spherical model [8] to analyze experimental results for the cloud-point
temperatures in aqueous protein solutions with added salts [10} [11]. We modelled the solution as a one-
component system; the protein molecules were represented as perfect spheres, embedded in the contin-
uum solvent composed of water, buffer, and various simple salts. The attractive short-range interactions
between the proteins were due to the square-well sites located on the surface of protein molecules. The
model was numerically evaluated using Wertheim’s perturbation theory [17H19]. The short-range and di-
rectional nature of the interactions among proteins led to good agreement with the experimental data for
the liquid-liquid phase diagram in case of lysozyme and y-crystallin solutions [10}, [11]. With knowledge
of the experimental cloud-point temperature as a function of composition of electrolyte present in the
system, the model gave predictions for the liquid-liquid coexistence curves, the second virial coefficients,
and other similar properties under such experimental conditions.

One weakness of the model presented above was its simplified geometry. Neither lysozyme nor other
proteins are spherical, and some of them for example, lactoferrin [20] look more like two fused spheres.
The other weakness was that we assume for protein molecules to exist in form of monomers, which is
not true. Even in very dilute solutions, proteins can be at least partially dimerized. The purpose of the
present work is to investigate how the relaxing of these two basic assumptions influence the liquid-liquid
coexistence curve.

The models for the association of spherically symmetric particles into dimer molecules are of consid-
erable interest to science and technology and have been actively studied earlier. Of particular interest for
us are the models where there is an inter-penetration (“fusing” of cores) of the spherical particles upon
association so that the bonding length L is less than the core diameter o. The “shielded sticky shell” and
the “shielded sticky point” models of Stell and co-workers [21H23]] and their extensions [24H26], belong
to this group of models and are the starting point for our work. These types of the models were studied
using regular [21} 122} 24] and multi-density [23}25H29] integral equation theories.

In the present study, we use spherical particles as building blocks, which are fused together to form
a new species. In this way, we compose the molecule with arbitrary spacing L between the centers of
spheres. Next, we decorate the surfaces of fused-sphere molecules with the attractive short-range binding
sites, which may cause the association of the newly formed molecules. Such an extension of the protein
model follows from our previous work [8]. Here, we wish to explore the effects of the non-spherical shape
on various thermodynamic properties.

Different versions of the model of dimerizing particles, represented by the tangentially bonded chain
molecules, have been studied earlier [30}[31]. In this type of the model, dimerization occurs due to square-
well bonding site, placed on the surface of one of the hard-sphere terminal monomer of each chain. The-
oretical description of the model was carried out using first order thermodynamic perturbation theory
(TPT1) of Wertheim [17,[18]. There are two major features of our model that set it apart from the models
studied earlier, i.e., (i) in our model the molecules are represented by the two hard-sphere monomers
fused at a distance L, which is less than the contact distance ¢ and (ii) the molecules upon association can
form a three-dimensional network. Due to the former feature of the model, a straightforward application
of Wertheim’s multi-density approach fails to produce accurate results [29} 32} 33]]. In the present work,
we use a modified version of the TPT1, which takes into account the change of the overall packing frac-
tion of the system due to the association forces [29} 34} 35]. The accuracy of our modified TPT1 approach
is checked by the newly generated Monte Carlo simulation data.

2. Model, theory, and simulations
2.1. Model

We introduce a one component model of spherical particles, decorated with additional binding sites
of two different types, A and B. The binding site A is placed within the sphere, with the displacement
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Figure 1. (Color online). Spherical particles with diameter o are capable of, due to the attraction among
sites of type A, penetrating to form fused sphere molecules. The cross interactions A-B are prohibited. In
this figure, Kg = 3.

da < 0/2, while an arbitrary number Kg of binding sites of type B is located on the surface of the sphere
(the displacement dp = ¢/2). The model is visualized in figure [1} We consider a special case, where we
exclude the cross interactions among sites A and B. The total pair potential is written as follows:

B
u® = ur(r)+ Y, upmmEpm), 2.1
M=A

where ug is the pair potential for hard spheres, and uas and ugp are inter-particle site-site potentials.
The vector r (r = |r|) connects the centers of hard spheres, and xps)s denotes the inter-particle vector
connecting two sites of the type M. As mentioned above, u)), is the orientation dependent square-well
potential between the sites M € {A,B}, defined as follows:

ey =—emm—émm,  for Xyl < amm, ©.2)

u X =
My (K1) { 0, for xXpml = amm.

The site A causes inter-penetration of particles (see figure[3). Note that we need the term & — oo to com-
pensate for the hard sphere repulsion. For the periphery sites B, we do not need such a term, therefore
&g — 0. To fuse hard cores at separation L, we choose dp = L/2 and take the limit eap — oo0.

2.2. Theory

An appropriate theoretical approach to be used is the first-order Wertheim’s thermodynamic pertur-
bation theory (TPT1) [17, [18]. According to this theory, the Helmholtz free energy of the system can be
written as a sum of several terms:

A = Adg AP 4 AAA L ABB 2.3)

where A4+ APS = Ap is the free energy of the reference system represented by the hard-sphere sys-
tem [36] and AA 2 + ABB = A3 is the contribution due to A-A and B-B interactions. Following Chapman
et al. [19], we have:

A-A AMA - BABB
ﬁ(N R ﬁN +'6N ) (2.4)
BAAA 1 1
v = InXa- X+, @2.3)
BABE 1 1
N = Kg lnXB_EXB+5 . (2.6)
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Here, 8 = (kp 7)~! and kg is Boltzmann’s constant as usual, T is the absolute temperature, and N is the
number of spheres. Further, X, defines the average number fraction of particles, which are not bonded
through the binding site M. Parameters X, and Xp are determined by the mass-action law [19]

1
Xan = , 2.7
1+ p(XaAaa + KpXpAag)
1
XB = y (2.8)
1+ p(XaApa + Kp XpAgs)

where p = N/V is the number density of spheres and Ap;y connects the pair distribution function of
hard spheres ghs(r) (reference system) and the binding potential for sites M and N. The corresponding
ApN parameters are:

dM+dN+uMN
Ayn = 4n f ghs(r)fMN(r)rzdr VY M, N € {A,B}. (2.9)

dy+dn

Expression for the solid-angle averaged Mayer function

fun(r) = fffMN(XMN(r))dQMdQN (2.10)
was initially derived by Wertheim [37] and further generalized here to be

exp(~Pe)y) - !

2adndnT (apn +dy +dy—1)?QRayn — dy — dy +1). (2.11)

fun ()

To suppress the cross interactions A-B, we set Ay = Apa = 0, which finally yields two independent equa-
tions, written in a quadratic form

PAAMXE + Xp—1 0, (2.12)
pKpApp X5 + Xp — 1 (2.13)

2.2.1. Association parameters Ay and Agp

The association parameter Aa, is related to X, via equation and to the free energy contribution
due to A-A binding, by equation (2.5). For the complete association limit, i.e., fusing of hard cores at
separation L, no monomer spheres are present, so Xa = 0. We re-write the association parameter Aap
and introduce the cavity correlation function yhs(r) to obtain

2dpa+anp

Apa = 47m f Y5 (1) e (r) faa (1) r2dr, (2.14)
2dp

where e"(r) = exp[—Bur(r)]. Note that, as already mentioned before, 2d, = L. By applying the sticky
limit approximation [37], that is by assuming the constant value of y within the integration domain, we
obtain

Apa = Y"S(r=2dp)Iaa, (2.15)
2dp+anp

Ina = 4m f () fan (r) rF2dr. (2.16)
2dp

The integral given by equation is not used in further calculations and, accordingly, it will not be
considered in more detail here.

Parameter App determines the degree of association of fused spheres and the free energy contribution
due to the B-B binding, see equations and (2.13). Notice that due to the association between A-type
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of the sites, the packing fraction of fused spheres nesr is different from the packing fraction originally
present (un-fused) hard spheres 7. These fractions are related as follows:

ner = DU, 2.17)
* _ 1 3 * 1 *3
DU = 5(1+51 5l ) 2.18)

where n) = mpo3/6 is the packing fraction of hard spheres and [* = L/o is reduced A-A bonding distance.
Using the sticky limit approximation [37] for Agp [equation (2.9)], we have:

Aps = g"(r=0,1=neIep, (2.19)
O+dgp

Iy = 4=m f fes(r)rédr. (2.20)
g

The integral in Igg can be evaluated analytically. We have used the Carnahan-Starling approximation for
the contact value of ghs at the effective packing fraction of fused spheres nest

2 —Tett

_ 2.21
2(1 _neff)s ( )

g =0, ="1ex) =

2.2.2. Cavity correlation function y

The last unknown quantity in equation is the cavity correlation function of hard sphere fluid,
yhs. It is calculated by using the Tildesley-Streett expression for pressure of the hard dumbbell fluid [38].
By choosing Kg = 0, da < 0/2 and applying sticky limit conditions, i.e., ean — 00, aap — 0 while keeping
the integral in equation finite, our model reduces to the hard dumbbell fluid. We modify the mass
action law [equation (2.12)], by inserting equation with Xa = po/p, where pg stands for the number
density of spheres, not bonded through binding site A (monomers). The result represents a different form
of equation (110) of Wertheim’s paper [37]

P =po+pelany™(r=1L). (2.22)
Following Wertheim [37], we get the expression for the excess pressure in the form:

6ln[yhs(r =L)]}

ap (2.23)

1
(PP =~ (p=po){1+p

We are now in position to obtain the cavity correlation function yhS of hard sphere system. We use the
Carnahan-Starling equation of state [36] for the reference system (Pg) and the Tildesley-Streett equation
of state [38] for the perturbed hard dumbbell system (P).

* Carnahan-Starling EOS:

P 1 N
L2 S s i (2.24)
[ 1-n)
 Tildesley-Streett EOS:
pP LU +VImei+ A+ W+ X T2~ A+ Y I+ Z1 ) 2.25)
pd (1=nef)? ’ '

where pq = p/2 is the number density of hard dumbbells. The set of numerical parameters U, V, W, X,
Y, Z is given in table[T]
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Table 1. Parameters in the Tildesley-Streett EOS [38].

U |4 w X Y Z
0.37836 | 1.07860 | 1.30376 | 1.80010 | 2.39803 | 0.35700

Within the framework of Wertheim’s theory, we must set pp = 0 in equation (2.23) to recover the
fluid of hard dumbbell particles (no monomers present). Next, we use equations (2.17), (2.18), (2.23) and
equations of state [(2.24) and (2.25)] to obtain the derivative

dln[y"s(r=1L Y8  ain’
paly =Bl - i (2.26)
6‘0 1+ Zi:l biTll
The set of equations which determine a; and b; [D = D(I*)] are as follows:
A = (1+U*+VI3D, 2.27)
B = (1+WI*+XxI*%D? (2.28)
C = (+YI*+ZI"D, (2.29)
with the arrays
a,=A+3D-8, by =-3(1+D),
a;=-3A+B+15D—-3D? +4, b, =3(1+3D+D?),
a3 =3A-3B—-C—-3D-15D?+ D?, by =—(1+9D+9D%+ D%,
a;=-A+3B+3C-3D+3D?+5D5, by = a»D,
as=-B—-3C+3D?-D3, bs = a; D?,
ag=C-D?, bg = D3.

It is obvious pdln[yhs(r = L)]/0p = naln[yhs(r = L)]/0n, therefore equation can be easily inte-
grated to yield:

n
In[y(r=L0)] = —f

0

Z?zl aj ti_l

- (2.30)
1+ Z?:l bt

The integral was checked to be non-singular for all investigated 1 and [* values. Numerical results for
In[ yhs(r)] are for a few fluid densities shown in ﬁgure

Infy"S(ra™")]

Figure 2. Logarithm of the cavity distribution function yhS of hard spheres for po? is equal to: 0.4 (dashed
line), 0.6 (dashed-dotted line) and 0.8 (solid line). The limit of yhs, lim;— g yhs(r), coincides with equa-
tion (2.21) for the “non-effective” packing fractions 7.
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2.2.3. Other thermodynamic properties

Next, we calculate the excess pressure P55 = P — Pp and the excess chemical potential u?%% = u— ug

needed in phase diagram calculations as also excess internal energy E*® = E — Eg, due to association.
Starting with the pressure, we have

,0[B(A— AR)/N] b i (6[ﬁ(A—AR)/N] )( GXM)
op NEA 0Xm on
By inserting the appropriate derivatives from equations (2.4), (2.12), and (2.13), we get the final expres-

sion for the excess pressure. The second term B is evaluated at 7¢fr, See equation (2.21), therefore upon
differentiation we get an additional factor D(I*)

(2.31)

PP —Pgr)=p

BP-Py) = pPM4+pPBE (2.32)
Mo P oln[y™(r = L)]
pP+ = 5 XA){IHI—an , (2.33)
hs(,. _
pPBB = —EKB(1—XB){1+D(Z*)17M( } 2.34)
2 on N=Neft

The expression ndln| yhs(r =L)]/0n is obtained from equation li while the second derivative
6ln[ghs(r =0)]/ 617|,7:,7eff is obtained analytically at 7 = negr from equation

dln(gns(r=L 5-2
n[g™(r )]’ _ Teft _ (2.35)
on N=Teft (1 —nefr) (2 — Netr)
The excess chemical potential u?$® = u — ug is obtained through the relation
AaSS PaSS
uss = + . (2.36)
N P

The logarithmic term In X, in equation is divergent for the complete association limit (Aaa > 1),
therefore we re-write this term by using equation (2.15) as follows:

—1+ /1+4pAps ol NZTINW
2pApa )N n( 2pApa
The second term in equation is independent of density and, accordingly, does not contribute to the
pressure. The expression for P is the same as derived before [equations (2.32)-(2.34)]. The equilibrium
conditions require the equality of chemical potential at a constant temperature (see equations below), so
the second term in equation cannot affect the coexistence curve. The equilibrium conditions read:

,U(PI; T) = ,U(PIL T)) (238)
P(PI» T) = P(PII, T)y (239)

1 1
InX, = 1n( ) =~ Inlpy™ (W) = S Il (B 2.37)

where p; and pyy are the two coexisting densities. At this step, the phase diagram can be constructed by
applying equations (2.38)-(2.39) as it is in more detail explained in the previous work [8].
Another thermodynamic quantity is the excess internal energy E?*® = E — Ey, obtained as

E-F O[B(A- AR)/N] EAD  EBE
ko OpUA-AWIN]_ETREE (2.40)
N ap N N
EAA oA
= = —g ﬁa—gA, @.41)
B2 L P gy dim (2.42)
N 2P e '

Since EA*/ N is divergent, the only relevant part is E®8/N. Derivative dApg /0 is obtained analytically
from equations (2.19)-(2.20), since g is B independent. Thermodynamic functions for the reference
system of hard spheres, BAr/ N, BPg, ug and Er/N, can be found elsewhere [36].
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2.3. N, P, T Monte Carlo simulation

To validate the accuracy of the modified TPT1 approach, we performed Monte Carlo computer sim-
ulations in the N,P, T ensemble [39]. We assumed fused spheres with one and two binding sites on
each sphere, where the prescribed arrangement of sites was preserved during the simulation. Simulated
molecules are schematically shown in figure 3] We adopted the sampling method suggested by Tildesley
and Streett [40], where a single displacement parameter was needed to describe the translation and ro-
tation of fused spheres. The simulation box contained 250 fused spheres (molecules), which is equivalent
to 500 penetrating (original, un-fused) spheres. We defined the cycle with 250 attempts to move the ob-
ject and by 1 attempt to change the volume box. Next, we defined the block to be equal to 5 x 10* cycles.
Initially, we performed 1 block, to equilibrate the system, while 4 independent blocks were needed to
calculate thermodynamic properties via the block averaging. Simulations were performed for three [*
values: 0.2, 0.6, 1.0, and four different pressures Pkg T/03: 0.5, 1.0, 2.0, and 4.0, for each model object
visualized in figure[3} The acceptance rate of trial configurations was between 0.2 and 0.6.

(a) (b)

Figure 3. (Color online). Different molecules in N, B, T Monte Carlo simulations: fixed binding sites on the
opposite poles, Kg = 1 (a), and more complex geometry with two binding sites on each sphere, Kg =2 (b).
In the last example we set agp = /2 with perpendicular orientation of lines, connecting sites B on each
sphere. Center-to-center separation L (I* = L/¢) and displacement distance dp = /2 were fixed.

3. Results and discussion

3.1. Thermodynamic properties: Theory against Monte Carlo simulations

To test the accuracy of TPT1 we performed N, B, T Monte Carlo simulations for values of K equal to
1 and 2 (three [* values for each Kg). We chose to compare the pressure P and the internal energy due
to B-B binding, E®B. Since we used the complete A-A association limit within TPT1, the latter quantity,
E®B, was the one that could be directly compared to computer simulations. We fixed the temperature
T* = kgT/e =1, while the pair potential characteristics are given in table The comparison between the

Table 2. Pair potential parameters used for testing TPT1 againt simulations.

[7):):8 0.1c0
epp: 5.0¢
dg: 0.50

theory and simulations is presented in figure[dl We found very good agreement for the pressure, while
the theoretical predictions for EB were less accurate. In case of * = 1 we obtained very good agreement
for Kg = 1 and fair agreement for Kg = 2 (black lines and corresponding symbols in EBB/Neskg T sub-
figures). If we reduced the [* values (blue and red lines, symbols), the deviations became larger, though
the qualitative picture remained correct. Deviations at low [* could be caused by the facts that: (i) fusing
of two spheres at small [* is not a small perturbation regarding the reference system of hard spheres,
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Figure 4. (Color online). Pressure P and association energy EPB per pair of fused spheres, thus Neg =
N/2. The calculations are presented by lines and the corresponding simulation results by symbols. We
studied three different [* values: 0.2 (red, A), 0.6 (blue, B) and 1.0 (black, ®). Panels, (a) and (b), belong
to Kg = 1 and the panels, (c) and (d), to the case with Kg = 2. Calculation apply to T* = kg T/e = 1; pair
potential parameters are listed in table |2 note that L = 2d,. Uncertainties of simulation are within the

size of symbols.

and (ii) the arrangement of binding sites B is fixed during the simulation, which is not the case in TPT1,
where the orientation average over all geometries was assumed.

3.2. Effect of protein’s shape on the liquid-liquid phase diagram

To illustrate the influence of protein shape on the liquid-liquid phase behavior, we compared the
phase diagrams for two versions of the model: model (I) of two fused hard spheres and the model (II)
of equivalent hard sphere, which was defined as a limiting case of (I), when L — 0 and 0 — deqy. The
latter was chosen in such a way, that the volume of two fused spheres in case (I) was equal to that of the
equivalent sphere (II): deqv = 0 \3/ 1+31*/2—1*3/2. Example (II) might be interpreted as the usual hard
sphere model of diameter deqv, with 2Kp of sites B, i.e., the same number as on the two fused spheres. In
such an interpretation, the A-A contributions to the physical properties can be neglected. Describing the
aggregation of fused spheres of diameter deqy within the limiting conditions /* — 0 and D(I*) — 1 where
Neet=1N/2=7p dgqv/ 12=mpqy dg’qvl 6, led us to the model examined in reference [8]. Other parameters and
relations between examples (I) and (II) are listed in table[3]

In figure 5| we show phase diagrams for the variants (I) and (II) described above, at three [* values
and for different numbers of sites B. As observed before [41], an increase of the number of sites B shifts
the critical density toward higher values. What is more interesting here is the effect of the separation
distance parameter [* on the phase behavior. For a sufficiently small /*, i.e., [* = 0.2 — see figure 5| (a),
the difference between the phase diagrams for two versions of the model becomes negligible, regardless
of the Kp value. If centers of fused spheres are located at larger distance, [* = 0.6 — see figure [5| (b),
the difference becomes more pronounced: both critical temperature and density are lowered. Deviations
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Table 3. Pair potential parameters and relations used in investigation of effects of protein’s shape.

two fused spheres at L (I)

equivalent sphere (II)

diameter:
Teff
EBB-
dBI
[75:):8
number of sites B:

o
D(™)n
£
al2
0.10
K3 (per building block)

doqu =0 V1+ 150" —0.51*3
Tpadgy 6
L
deqe/2
0.10
2Kp

become the strongest for the limiting example of two spheres fused in contact, that is for [* = 1.0, cf.
figure [5| (c). In this case, the larger number of sites (larger area available for interaction) additionally
affects the liquid-liquid phase diagram. The shift toward lower critical densities (or packing fractions) is
consistent with experimental studies of the Y-shaped antibodies [12][13].

4. Conclusions

Proteins come in many shapes, from ellipsoidal to Y-like and are never perfectly spherical as treated
by most theoretical models. Further, even in dilute solutions they have a tendency to form dimers and
can be represented by two fused spheres. For dense systems close to precipitation, the actual geometry
of the protein molecules is important; the inter-particle interactions are directional and of short-range.
In the present study, we modify the first-order thermodynamic perturbation theory for associating fluids

0.75 . . 0.75
0.70 (a) """"""" 0.70 -(b)
0.65 |, 0.65 |
0.60 0.60

@ ©

Eﬂ 0.55 :m 0.55
0.50 | 0.50
0.45 0.45
0.40 0.40
0.35 0.35

0.75

070
0.65 |
0.60 [/~
0.55 |,/
050
0.45 [
0.40
0.35

kg T/e

Figure 5. (Color online). Phase diagrams for different [* values: 0.2 (a), 0.6 (b), and 1.0 (c), color notation
is the same as in figure[d] Model of two fused spheres (I) is denoted by dashed lines and the limiting model
of equivalent sphere (II) by solid lines. The results apply to three different Kg values, written without (I)
and within brackets (II), respectively.
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to be applicable to the models allowing hard-sphere particles to inter-penetrate. These particles can fur-
ther aggregate. We confront theoretical predictions for thermodynamic properties of the proposed model
with predictions of the corresponding Monte Carlo simulations. We obtain an excellent agreement for the
pressure and fair agreement for the excess internal energy. Next, we use this model to predict the liquid-
liquid phase diagram for protein solutions. We are interested in the effects of protein shape on the phase
coexistence curve. We show that the fused hard-sphere model reduces the critical density of the system in
comparison with the same quantity calculated for the hard-sphere model. This finding is consistent with
experimental observations for Y-shaped antibodies. Using the cloud-point temperature measurements,
we currently investigate the influence of various salts on the stability of lactoferrin solutions in water.
The latter protein has a shape of two fused spheres, and the hard-sphere model is not a good represen-
tation of it. Theoretical approach developed in this paper will be used to analyze experimental data for
lactoferrin and some other proteins of non-spherical geometry.
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MauH 3i cnasHux cpep K MoAaesib PO3UMHY NPOTEIHIB

M. Kactenid®, +0.B. KantoxHuii, B. Bnaxi®

L dakynbTeT XiMii | XiMmiuHoi TexHonorii, YHiBepcuTeT JlobnsHw, Byn. BeuHa, 113, 1000 JltobasHa, CnoBeHis

2 IHCTUTYT $i3nkm koHAeHcoBaHMX cuctem HAH Ykpainu, Byn. I. CBeHuiubkoro, 1, 79011 JibBiB, YkpaiHa

B uiii poboTi MU JOCNiAXYEMO TepMOAMHAMIKy MAWHY 3 “Monekynamu”, npejcTaBAeHUMN ABOMA CMAsHMMM
TBEPANMUN chepamu, AKi AeKOopoBaHi By3namu 3 NPUTAryBasbHUMW NoTeHLianamu Tuny KsagpaTHoi amu. B3a-
EMOZIS MiX LMK By31aMun € KOPOTKOZAitOYUA i CNPMUMHSIE acoLiaLito MiX YacTUHKamu cnasHux cdep. Mogens
MOXe ByTV BUKOPWCTaHa ANSt AOCNIAKEeHHA HechepuyHMX (Y1 AUMeprn3oBaHmnX) NPoTeiHiB y po3unHi. Tepmo-
AVNHaMIYHI BEIYUHN CUCTEMUN PO3PaXOBYHOTLCS 3a J0NOMOrot MoAndikaL,ii TepMoAMHaMiYHOI Teopii 36ypeHb
BepTraiima, i pe3ynbTaTi MOPIBHIOTLCA 3 HOBUMK CUMyAALiaMyu MeTogom MoHTe Kapno npu i306apuyHo-
i30TepMiYHMX yMoBax. 30Kpema, Hac LjikaBUTb $pa3oBe po3LllapyBaHHSA pignHa-piguHa B Takmx cuctemax. Mo-
AeNbHUIA NANH BUKOPUCTOBYETLCSH ANA OLHKM edekTy popMmM MOAeKys, LLO 3MIHIETbCA Bif CPepryHOi Ao
6inbLL BUAOBXEHOT (4B CnasiHi cdpepu). Pe3ynbTaTi BKasytoTb, WO edekT HechepnyHoi opMM MAE 3MEHLLYBa-
TV KPUTUYHY FyCTUHY | TemnepaTypy. Lie y3rogxyeTbca 3 ekcnepuMeHTanbHUMM CMOCTEPEXEHHAMN ANS aHTUTIN
i3 HecdepryHow Gopmoto.

KnrouoBi cnoBa: HecgepunyHi npoTeiHy, nepexij pignHa-piguHa, HanpsamMaaoya cuaa, arperayis,
TepMoAMHaMiyHa Teopis 36ypeHb
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