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The order-disorder type phase transition caused by the vibronic interaction (collective Jahn-Teller effect) in a
monoclinic CulnP2Sg crystal is analyzed. For this purpose, a trigonal protostructure model of CuInP2Sg is cre-
ated, through a slight change in the crystal lattice parameters of the CulnP2Sg paraelectric phase. In parallel
to the group-theoretical analysis, the DFT-based ab initio band structure calculations of the CulnP2Sg proto-
structure, para-, and ferriphases are performed. Using the elementary energy bands concept, a part of the band
structure from the vicinity of the forbidden energy gap, which is created by the d-electron states of copper, has
been related with a certain Wyckoff position where the Jahn-Teller's centers are localized. A construction proce-
dure of the vibronic potential energy matrix is generalized for the case of crystal using the elementary energy
bands concept and the group theoretical method of invariants. The procedure is illustrated by the creation of
the adiabatic potentials of the I's-I'5 vibronic coupling for the protostructure and paraphase of the CulnP,Sg
crystal. A structure of the obtained adiabatic potentials is analyzed, followed by conclusions on their transfor-
mation under a phase transition and the discussion on the possibility for the spontaneous polarization to arise
in this crystal.
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Introduction

The order-disorder type phase transitions occur in a series of compounds, including the CulnP,Sg one
[1] and, in particular in the case of this crystal, they can be explained by the realization of the cooperative
Jahn-Teller effect (see e.g., references [2} [3]). The theory of this effect described in literature [4] is based
on the partially model approach. Namely, the effect of vibronic interaction in the Jahn-Teller’s centers
in a unit cell of a crystal is considered, and further, the interaction between these centers is modeled. It
should be emphasized, that a procedure describing the realization of the collective Jahn-Teller effect is
discussed in book [4]. However, as opposed to the consideration here, it is not founded on the real band
structure of crystal. Instead, the collective Jahn-Teller effect is studied in reference [4] in a model way,
i.e., the effect is analyzed initially at the isolated structural unit that coincides with the Jahn-Teller center
(unit cell of a crystal or another atoms formation which has a degenerated electronic state and is unstable
with respect to Jahn-Teller effect), and next, minimization of the potential energy of interaction between
structural units is performed.

As opposed to molecules, where the degenerate or pseudodegenerate local electron states take part
in the vibronic process, in crystals the band structure E(k) over the Brillouin zone (BZ) should be taken
into account. This circumstance forces us into searching for a new approach to describe the Jahn-Teller
effect in crystals which will be the subject of study in this paper. Herein, we present a theory of the
Jahn-Teller effect illustrated for the CulnP,Sg crystal. The theory is based on the symmetry of the crystal
band structure in the framework of the elementary energy bands (EEBs) concept, introduced in papers
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by Zak [5} [6]. The essence of this concept is that the information about the symmetry and topology of
the band structure of a crystal is encoded in the site-symmetry group of a certain Wyckoff position, that
was identified later on as the actual Wyckoff position [7,[8]. The physical meaning of the actual Wyckoff
position has been demonstrated in our papers [7, [8], where it has been shown that the maximum of
the spatial valence electron density distribution is focused in this position in the unit cell of a crystal.
Moreover, representations of the irreducible band representation describing the symmetry of the EEBs
that form the crystal valence band can be induced only from the irreducible representations (irrep) of the
site-symmetry group of the actual Wyckoff position. The most evident example of a relation between the
EEB’s symmetry, actual Wyckoff position, and the localization of maximum of the valence spatial density
distribution in this position are germanium, silicon, AzBs type crystals, and the superlattices based on
them [8].

It should be expected that the band structure of crystals with the Jahn-Teller centers will be composed
of the EEBs reflecting the local symmetry of certain Wyckoff positions which, in turn, coincide with cer-
tain Jahn-Teller centers. Since the EEBs concept allows us to present the ‘spatial issue’ (i.e., the energy
spectrum of crystal) as the issue concerning a point symmetry, it is possible to utilize in our approach the
theory of the Jahn-Teller effect, elaborated for molecules [9].

The structure of this paper is as follows. In section [1} the information on the crystalline structure
of CulnP,Sg and its phase transition related to the Jahn-Teller effect is presented. A low symmetry of
the CulnP,Sg paraphase permits one to consider only the cooperative Jahn-Teller effect [4]. In order
to demonstrate the existence of nearby-in-energy local electronic levels which are necessary to discuss
this effect, a modelling of the high-symmetry CulnP,Sg ‘protostructure’ is performed in section |2} to-
gether with the comparative group-theoretical analysis of energy states of all CuInP,Sg phases. Section 3|
presents the results of the DFT-based ab initio band structure calculations of all phases of the CuInP,Sg
crystal. Attention is paid to the presence of the EEB in the band structure of paraphase, which is related
to the Wyckoff position d (%, %, %) where Cu atom is located. In section the theory of Jahn-Teller effect
is formulated, together with its generalization for the case of a crystal. A special role of the actual Wyck-
off position as the information carrier about the electronic component of the vibronic instability is ex-
plained. Additionally, the symmetry of normal vibrations which are active in the Jahn-Teller effect is dis-
cussed for the CulnP,Sg protostructure, based upon the irreducible representations of the site-symmetry
group of the actual Wyckoff position. In the vibronic instability analysis, the normal vibrations which are
associated with the degenerate states near the energy gap have been checked with respect to their ac-
tivities in the above mentioned group-theory sense, for several high-symmetry points in the BZ. This has
been done to confirm the validity of using the site-symmetry group of the actual Wyckoff position, whose
symmetry encodes the symmetry of the EEB associated with d-states of copper. Section[5]is devoted to the
construction of the vibronic potential energy in a matrix form, as well as of the adiabatic potentials for
protostructure and paraphase. The Pikus’ method of invariants [10] is used there for the first time to solve
such kind of a problem. The final section [6] presents the analysis on the completeness of our approach in
the description of the Jahn-Teller effect, as a mechanism of the transition from the para- to ferriphase in
the CulnP,Sg crystal.

1. Structure and symmetry of the CulnP,S¢ crystal

The CulnP,Sg crystal possesses a layered structure (see figure [I) with the atomic layers separated by
the van der Waals gaps [11]. A single atomic layer is composed of the octahedral sulfur framework in
which Cu, In, and P-P atom pairs fill the octahedral voids. A peculiarity of the CuInP,Sg crystal structure
is the presence of three types of copper atoms sites which are partially occupied, i.e., (i) quasitrigonal
Cul, shifted from the centers of the octahedra, (ii) octahedral Cu2, located in the centers of the octahe-
dra, and (iii) nearly tetrahedral Cu3, which penetrates into the interlayer space. The occupancy of these
positions varies significantly with temperature [2]. Furthermore, there are two types of Cul positions:
Cul" which is shifted upward from the middle of the layer, and cul?, shifted downwards from it. At low
temperatures (T < 153 K), copper atoms fully occupy positions Cul" [1]. Upon heating, the occupancy of
Cul" position decreases while the occupancy of Cul? begins to increase. A hopping motion between Cul"
and Cu1d positions leads to an increase in the atomic layer thickness, i.e., to an increase in the volume of
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Figure 1. (Color online) Projection of the CulnP,Sg crystal structure. Dashed line encompasses the primi-
tive unit cell of the protocrystal.

the elementary unit cell without change of the number of structural units [1].

In the region of the phase transition from the ferrielectric to paraelectric phase (7; = 315 K), the po-
sitions Cul" and Cul? are filled with equal probability and the polarity of both copper sublattices disap-
pears. This phase transition is accompanied by the space symmetry group change, within the monoclinic
system, from Cc (C2) (ferriphase) to C2/c (Cgh) (paraphase). Above T, = 315 K, the Cul" and Cul¢ sites be-
come equivalent, while at higher temperatures the Cul occupancy decreases, and the Cu2 and Cu3 sites
start to fill up (see figure[T). In our study below, we shall focus on the premises of the order-disorder type
phase transition that occurs at T =315 K.

The lattice parameters of both ferrielectric and paraelectric phases of CulnP,Sg are as follows [2]:
a = 6.09559 A, b = 10.56450 A, ¢ = 13.6230 A, f = 107.1011°, while the primitive cell parameters are
a; =13.6230 A, ap = ag = 6.096846 A, a =120.0311°, § = y = 98.4508°. Crystals of both phases belong to
the monoclinic base-centered lattice. The basis vectors of the primitive lattice can be expressed by the
lattice parameters in the following way a; =c, a, = (a—b)/2, a3 = (a+b)/2, and we associate with them
a non-orthogonal x, y, z coordinate system shown in figure 2}

The symmetry group Cgh (C12/c1) of the CulnP,Sg paraphase is chosen in such a way that the two-fold
leading axis coincides with vector b. Moreover, the values of its lattice parameters allow us to construct

z
b (C,)
a;
i p & a
B
X a=c a, y

Figure 2. Basis vectors of the base-centered monoclinic primitive lattice of the CulnP,Sg paraphase in the
non-orthogonal x, y, z coordinate system.
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Table 1. Atomic coordinates of the CulnP,Sg para- and ferriphases.

Structure | Coordinates | site | Site-symmetry group |

paraphase Cu (0.5000,0.8355,0.2500) 4e 2
In (0.5000,0.5019,0.2500) 4de
P (0.5591,0.1682,0.1193) 8f
S1 (0.7296,0.1620,0.1193) 8f
S, (0.7612,0.8304,0.1237) 8f
S3 (0.2439,0.0117,0.1215) 8f
ferriphase [11] | Cu" (0.5957,0.8355,0.3869) | 4a
cu? (0.4310,0.8355,0.1490) | 4a
In (0.5000,0.5019,0.2500) 4a
P1 (0.5686,0.1690,0.3491) 4a
P2 (0.4505,0.1674,0.1788) 4a
S1 (0.2808,0.1512,0.3950) 4a
S2 (0.2332,0.1645,0.8930) 4a
$3 (0.7845,0.0177,0.3950) 4a
$4 (0.7400,0.1727,0.1336) 4a
S5 (0.7555,0.1747,0.6404) 4a
S6 (0.2722,0.9943,0.6379) 4a

e e e e e e e )

a hexagonal cell of the CulnP,Sg protostructure with c axis directed along the basis vector a of the mono-
clinic lattice, using only a small displacements of atoms. To accomplish this task we have first calculated
the atomic positions of the CulnP,Sg paraphase by symmetrizing those of the ferriphase, and preserving
the same lattice parameters. The obtained atomic coordinates are presented in table[I} The model of the
CulnP,Sg protostructure will be discussed in the next section.

2. Model of CuInP,S¢ protostructure and comparative group-theoretical
analysis

A paraphase of the CulnP,Seg crystal which is relative to CulnP,Sg belongs to the trigonal system
with hexagonal Bravais lattice and is described by the D% 4 Sbace symmetry group [12]. Both this fact and
the appropriate values of the CuInP,Sg primitive lattice parameters (a;, az, a3, @, §,) urge us to create a
model of the CulnP,Sg protostructure with the trigonal symmetry. This can be done in the following way.
A three-fold leading axis can be directed along the primitive vector a;, which will become the basis vector
cin the hexagonal unit cell, a; = c. A slight deformation applied to the angles 8 and y can transform them
into the right angles. As a result, a hexagonal lattice is obtained with parameters ¢ = 13.623 A and the
angle y = 120°, which roughly coincides with the angle a = 120.0311° of the monoclinic unit cell. Hence,
the monoclinic a; axis becomes the c axis of the hexagonal lattice, and two monoclinic basis vectors
with length a, = as spanning the angle 120° lie in the plane perpendicular to ¢ axis. Next, the atomic
coordinates of the CulnP,Sg paraphase are slightly changed from their original sites in such a way that
the obtained trigonal CuInP,Sg protostructure is described by the D%d (P312/c) space group of the relative
CulnP,Seg crystal. The atomic coordinates of the CulnP,Sg protostructure are contained in table

As it is known, there exist 6 different kinds of the Brillouin zone for a monoclinic lattice [10], depend-
ing on the relation between the basis vectors length of the direct and the reciprocal spaces, respectively.
In our case, the BZ is presented in figure[3] together with the description of the high-symmetry points, ex-
pressed by the combination of by, by, and bs reciprocal lattice vectors [10]. Passing from the monoclinic to
the hexagonal model cell. these three vectors are transformed in the following way, by — bgex, b, — blz‘ex,
b; — b, the angle £(b"**,bl¥) = £(b}*X,b5**) = 90°, while £(b}*¥,b}**) = 60°. The resulting hexago-
nal BZ with high-symmetry points of the CulnP,Sg protostructure is presented in the right-hand part of
figure 3| A correspondence between the high-symmetry points, their irreducible representations of the
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Table 2. The atomic coordinates of the trigonal model of CulnP,Sg protostructure.

| Atom | Coordinates | site | Site-symmetry group |
Cu 337 2d 3.2
In 0,0,3) 2a 3.2
P (3,%,0.1655) 4f 3..
S (0.3306,0.3401,0.1201) 12 1

Figure 3. (Color online) Left: Brillouin zone for the para- and ferrielectric phases of the monoclinic
CulnP,Sg crystal and its high symmetry points, I': 0, N: %bl, Q: %bz, P: %b;-}, F: %(bg —by), Np:
%[bl +(bz —b3)], Q' %(bl —by), P %(bl —b3). Right: hexagonal BZ for the model protostructure. High-
symmetry points: I': 0, M: %bl, A: %bg, L: %(b1+b3), K: %(bl +by), H: %(b1+b2)+%b3, p: %(bl +by)+pubs.

wave vector groups for the trigonal CulnP,Sg protostructure and the CulnP,Sg para- and ferriphases is
displayed in table

The investigation on the additional degeneracy of energy states due to the time reversal symmetry for
some high-symmetry points of the BZ, on the presence of extrema in E(k) dependencies in these points,
as well as on the dispersion laws near these points have been performed for the symmetry groups Cgh
(paraphase) and C} (ferriphase) in paper [13]. In order to determine the changes in the energy spec-
trum parameters when passing from the protostructure to the CulnP,Sg paraphase, we have performed
a group-theoretical analysis of the E(k) dependencies in some high-symmetry points of the hexagonal
BZ (D%d space symmetry group). This comparative group-theoretical analysis will serve as an additional
verification of the validity to simulate the phase transition by using the CulnP,Sg protostructure model.
In our studies the Herring’s criterion [14], Rashba formula [15], as well as the Pikus’ method of invariants
[10] have been applied. Table [ presents the investigation results concerning the presence of extrema in
the E(k) dependencies in certain directions of the hexagonal and monoclinic BZs, as well as of the addi-
tional degeneracy of energy states due to the time reversal symmetry, which is classified according to the
Herring’s criterion. Comparing the results of paper [13] and Table IV it can be stated that when passing
from the protostructure to the CulnP,Sg paraphase, neither changes in the presence of additional de-
generacy of states at most high-symmetry points, nor in the presence of the E(k) extrema in particular
directions of the reciprocal space can be observed.

In order to solve the issue concerning the relationship between the energy spectrum and the insta-
bility of the system caused by the vibronic interaction, attention should be paid to the following high-
symmetry points of the hexagonal BZ I'(0,0,0), A(0,0,3), M(3,0,0), L(3,0,3), H(3,3,3), K(3,3,0), as
well as to their counterparts from the BZ of a monoclinic crystal, as will be shown below. From table [4]it
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Table 3. The correspondence between the high-symmetry points, as well as between the irreducible repre-
sentations for the hexagonal BZ of protostructure and the monoclinic para- and ferriphases of CulnP»Sg.

| Hexagonal BZ [ Irrep [ MonoclinicBZ | Irrep
I I
rz FZ
I's I's
100,0,0) T, 1(0,0,0) T,
F5 Fl + F3
T [2+1y
Al Nl
A(0,0,3) Ay N(3,0,0) N,
Asg N3
M
M. P
1 2 1 1
M(3,0,0) Ms P(0,0,+3) P,
M,
L(3,0,%) L P'(3,0,£3) P}
K 141
K(3,3,0) K; V (1, o, i2) Vs
K3 i+V,
H, 141
HGE, 1,3 Hy V (1, pa, o) Vs
Hj n+W
P, 141
P(%r%)“) PZ V(#l)#ZJ“Z) VZ
Ps N+V,

follows that the extrema in the E(k) dependencies can be observed in all three main directions of the BZ
in the vicinity of certain high-symmetry points of hexagonal BZ and their counterparts, i.e., I'(I'), A(N),
L(P',Q"), M(P,Q). The discussed ng space symmetry group exhibits 6 irreducible representations in
the BZ center [16], two of which (I's (Eg) and I'g (E,) in notation by Kovalev [16]) are two-dimensional.
Therefore, they are of particular interest for our study. These representations are reduced to two one-
dimensional representations, describing split energy states, at the transition from Cgh (paraphase) to Cg
(ferriphase). This is an important remark that validates the necessity to model the trigonal protostruc-
ture of the CulnP;,Sg crystal. A near-in-energy distance between the split energy states, described by the
one-dimensional irreducible representations, can indicate slight changes in structural parameters when
passing form the real paraphase to the trigonal CulnP,Sg protostructure. As will be shown below, the ab
inito band structure calculation results confirm both the presence of a small splitting of the I's and I'g
degenerate states when passing form the trigonal to monoclinic CulnP;,Sg crystal, and the occurrence of
such splitting at other BZ points of the monoclinic lattice.

The important information confirming the correct modelling of protostructure at which the parame-
ters of the energy spectrum are changed slightly can be obtained by the analysis of the dispersion laws for
charge carriers in the vicinity of certain high-symmetry points from the corresponding Brillouin zones.
Below we present the investigation on the dispersion law near the point I' for the doubly-degenerate I's
state of the CuInP,Sg protostructure. For this purpose, the Pikus’ method of invariants [10] is used. In this

33705-6



Vibronic interaction in crystals with the Jahn-Teller centers

Table 4. The effect of the time-reversal symmetry on the presence of band extrema in the main directions
of the hexagonal and monoclinic BZs of CuInP,Sg, as well as on the additional degeneracy of represen-
tations expressed by the Herring’s criterion (cases a or b). The local coordinate systems have the same
orientation of axes for all high symmetry points in both BZs.

Hexagonal Monoclinic
Point Irrep Case %’Z‘ =0 Point Irrep Case %’Z‘ =0
Fl 1—‘1
1"2 1—‘2
I's . I's .
T I, a i=x)2z T T, a i=x,)z
I's I'+TI3
Tg I'y+Ty
A3 a) i= X,y N1
A {A; + Ay} by - N N> ay i= X,y
N3
M
M, . Py .
M Ms a i=x)2z P P, ap i=x)2z
M,
L Ly a i=x,7),2 P P] a i=x)z
K1 Vl
K K ar i=xyz %4 V) a i=xy
K3 n+v
H, 1%
H H, a i=x)2z \%4 1% ap i=xy
H; i+V,
P, 1%
P P, ap i=x)2z \%4 Vv, ap i=xy
P3 Vi+V,

method, the secular matrix D(k), which allows one to obtain the E(k) dependence, is presented as a sum
of invariants. The invariants are products of the A; basis matrices and the f (k) functions depending on
the wave vector components, whose symmetry is defined by means of the symmetric and antisymmetric
decomposition of square character of the irreducible representation I's. The decomposition is defined
as [10]

1
ny=— Y x*@{x@”*+x(g*)} @1
2n ¢G
and
1
ng==— Y r@ix@”’*-x(&)} 2.2)
2n ¢<G

where n{ and n; denote numbers of irreducible representations (irreps) 7° in the considered symmetric
(n}) and antisymmetric (25 ) squares of irreps, n is a number of elements in the space group, the summa-
tion runs over elements of the wave vector group, and y*(g) is a character of irreducible representations
of the wave vector group in the center of the BZ. From equation it follows that the even functions
f+ (k) are transformed according to the representations 75 = I'y, I's, while from equation (2.2), that the
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uneven functions f_(k) are transformed according to 75 = I's. The A; basis matrices which enter the
sum of invariants can be obtained using a transformation rule of a matrix of the given order, under the
effect of symmetry operations. In particular, for I';, the basis matrix will be identical to the second order
unity matrix o, and for the representation I's, the basis matrices will be the o, and o, Pauli matrices. In
order to determine the basis functions f; = k2 + k§ (or fi = k2) for the representation I';, and f; = kyk;
(kykz) for I's, the projection operator method has been used [10]. It should be noted that the obtained
D(k) matrix does not contain any components, which are transformed according to the irreducible rep-
resentation I's. This is a consequence of parity of the corresponding basis function, whose application
result does not coincide with that of an inversion element, for this representation. Our analysis allows us
to present the secular matrix D(k) in the following form:

a(k§+k§) + bk2 + chyk, ckyk,

D k) = .
ckyk, a (k2 + k2] + bkZ - ckyk,

(2.3)

By solving the resulting secular equation, the following dispersion law for charge carriers of the
CulnP,Sg protostructure is obtained for the electron state described by the irreducible representation

[s,
EK) =a(k§+k§)+bk§i \J€2h2 (k2 + K2). 2.4)

Now, it can be checked how the obtained dispersion law is transformed when passing to the CulnP,Sg
paraphase. By comparing the characters of irreducible representations of the Cg’h symmetry group of
the monoclinic crystal and the characters of I's of ng (see tables [5| and |§I in appendix), we conclude
that the I's representation is reduced to two representations: I'; and I's of the monoclinic crystal. For
small changes in the energy spectrum parameters which are caused by the protostructure model used
instead of the CulnP,Sg paraphase, the splitting between the energy states described by the irreducible
representations I'; and I's of the monoclinic crystal will be small. Hence, it can be concluded that these
states interact with each other. For the joint representations which describe the split interacting states,
the D(k) matrix, being the basis for the E(k) dependence, is two-dimensional [10]. The diagonal terms of
this matrix are transformed according to the representation 75 = |T'; 12+ T's 12 = 2T'1, while the off-diagonal
terms, according to 7 =T x '3+ T3 xI'; = 2I'3. As a result, the D(I_é) matrix takes the form:

a ki +bik3+ e kZ+ 5 akyk,+ fkyk,

Dg = akck, + fkyk, ark2+ bk + k2 -5 )

(2.5)

where A denotes the energetic distance between two interacting states. A comparison of equations
and shows that both matrices are composed of functions of the same wave vector components. From
the analysis presented above it follows that the comparison of the band structures of the paraphase and
of the CulnP,Sg protostructure model is essential, in particular, in the I" point. This issue will be discussed
in the next section.

3. Ab initio band structure calculations of CulnP,Sg protostructure,
para- and ferriphases

Electronic energy structure of the CuInP,Sg protostructure, para-, and ferriphases has been calculated
within the framework of the density functional theory [17| [18] in the local approximation (LDA) [19}
20], by means of the software packages ABINIT and SIESTA [21} 22]. In our calculations, plane waves
and linear combination of atomic orbitals have been used correspondingly as a basis set for ABINIT
and SIESTA programs. A periodic crystal structure has been taken into account through the boundary
conditions at the boundaries of the unit cell. Ab initio norm conserving pseudopotentials [23} 24], for
the following electron configurations of atoms have been utilized in calculations, Cu: [Ar] 3d%4s! In:
[Kr] 5525p?, P: [Ne] 3523p2, and S: [Ne] 3523 p*.

The cutoff energy E,: = 20 Ry of plane waves for the self-consistent calculation has been chosen to
obtain a convergence in the total energy of the cell not worse than 0.001 Ry/atom. Such basis set consists

33705-8



Vibronic interaction in crystals with the Jahn-Teller centers

CulnP_S, (prot.)

15 & ~ T T
L \ / Cu
: =—In

10 b s _2_
3 ]

()

o
w
T
]

max.

ENERGY (eV)
o
o
1
1
1
1

|
NS
{
\I/\//

A0k + .
P = ]

A5 — i
P 0 5 10 15

r M L AT K" H A’ 00sau.

Figure 4. (Color online) Ab initio band structure and density of states of the CuInP,Sg trigonal protostruc-
ture. The calculated valence band maximum is in K—H (or P) direction. Black line in the right-hand panel
indicates the contribution of Cu atoms in the total DOS.

of about 6000 plane waves. The total and partial electronic densities of states have been determined by a
modified method of tetrahedra [25], for which the energy spectrum and wave functions are calculated on
the 80 points k-mesh. Integration over the irreducible part of the Brillouin zone has been performed using
the special k-points method [26} [27]. Finally, the optimization of the structural parameters has been done
for all phases CuInP,Sg. A contribution of particular atomic orbitals in the creation of various valence
band ranges has been analyzed by means of the partial density of states function.

Figures 4] and |5| show parts of the band spectrum of the protostructure and paraphase of CulnP»Sg
crystal, respectively, together with the partial density of electronic states functions. As can be seen, the
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Figure 5. (Color online) Ab initio band structure and density of states of the CulnP,Sg paraelectric phase.
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obtained valence band edges throughout the Brillouin zones are weakly dispersive for both phases of
CulnP,Sg. Both phases exhibit indirect bandgaps. In particular, the valence band top of the protostructure
is located in the H-K direction, while the conduction band minimum is present in the I point.

Moreover, the valence band top of the CulnP,Sg paraphase (figure |5) is composed of the elementary
energy band which consists of four weakly split branches. Since the valence band top of the CulnP,Sg
protostructure exhibits an identical topology (i.e., 4-branch EEB), it can be stated that this elementary en-
ergy band is indeed suitable for analysis of protostructure — paraphase transformation of the CulnP,Sg.
In addition to the band structure calculations, we have performed the symmetry description of the ob-
tained energy states near the energy gap in the I' point of both phases. As a result, two highest energy
states of the CulnP,Sg protostructure are described by two-dimensional irreducible representations I's
and I'g in the T point, in the direction of increasing energies. By comparing figures[dand|]it can be seen
that these states undergo splitting when passing from the trigonal protostructure to the monoclinic para-
phase. As a result, four nearby-in energy states described by one-dimensional irreducible representations
from the monoclinic Cgh space group are obtained. Furthermore, the representations are reduced in the
following way, I's — I', + I'4, I's — I'1 + I'3. The obtained representations exhibit different parity, i.e., I'»
and I'y are uneven representations, while I'; and I'; are even ones. When the symmetry of the system
is further lowered, i.e., the transition from paraelectric to ferrielectric phase occurs, the discussed four
states become more distant in energy and the corresponding four-branch subband becomes more spread
which indicates that the connection between the respective branches is weaker (see figure[6).

Cu™InP,S, (ferri)
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Figure 6. (Color online) Ab initio band structure and density of states of the CulnP,Sg ferrielectric phase.
Configuration of copper site: Cu“.

4. Vibronic interaction as a mechanism of the configuration change of
molecule and of the order-disorder phase transition in crystals with
degenerate electron states

As it is known, some symmetric molecules can undergo the Jahn-Teller effect [9], which consists in
lowering the symmetry of molecule due to the electron-vibronic interaction. As a result of this interac-
tion, a degenerate electronic term is split and a rearrangement of the vibronic spectrum occurs. For the
molecule configuration to be stable, the molecule energy, which is a function of the distance between
cores, should exhibit a minimum at the given configuration of cores. It means that the expression that
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describes the energy change due to a small shift of core positions cannot contain terms linear with re-
spect to the normal coordinates. Neglecting the adiabatic approximation, the expression that describes
the potential energy of an electron subsystem can contain terms dependent on the electron subsystem
coordinates. This can lead to the instability of the molecule, change in its configuration, as well as to the
degeneracy removal of the electronic state, which takes part in this vibronic interaction.

A part of the Hamiltonian of electron subsystem related to the deviation from the adiabatic approxi-
mation can be written with accuracy to quadratic terms of the normal coordinates, which are treated as
parameters of the potential energy, in the following way:

H =) Vai(NQai+ Y, Wapik(NQaiQpi+-.., (4.1)
ai afik

where r denotes a set of coordinates of the electron subsystem. Expression (4.1) is at the same time the
perturbation term of the Hamiltonian Hj that describes the electron subsystem of the symmetric config-
uration of molecules. The first-order perturbation correction linear with respect to normal coordinates,
which describes the electronic energy of a molecule, can be written, within the adiabatic approximation
by means of the matrix element

Vpa = ZQaif\Pp Vai(r)¥,dg, 4.2)
ai

where ¥, and ¥, denote wave functions of the electron subsystem describing a degenerate electron
term.

The Hamiltonian A is invariant with respect to the transformations of the symmetry group, of con-
sidered system. Since it contains a linear term of decomposition in series with respect to Qg;, the coeffi-
cients Vo (r) and Wypii(r), dependent on the coordinates of electron subsystem, are transformed under
the action of symmetry elements in the same way as the normal coordinates Qg;, or their products. The
subscript @ denotes the number of irreducible representation, while i is the number of the basis wave
function of this representation.

In analogy to the way how the dispersion law E(k) for charge carriers has been found, in our ap-
proach a secular equation is used, where the Hamiltonian is presented in a matrix form with the ele-
ments <‘I’;§|ﬁ1 |W ). This Hamiltonian is called the vibronic potential energy operator [4]. It should be

noted that those vibrations which are related to the linear terms of the vibronic interaction operator H;
with respect to the normal coordinates are called active vibrations in the Jahn-Teller effect. By solving the
secular equation, the so-called adiabatic potential is obtained, which can be used to predict the presence
of some stable or unstable configurations of a molecule.

Recently, a construction procedure of the vibronic potential energy and of the adiabatic potential for a
high-symmetry molecule by means of the Pikus’ method of invariants has been reported [28]. It has been
demonstrated that the representations 7, according to which the functions dependent on the normal
coordinate components are transformed, together with the vibrations active in the Jahn-Teller effect, as
well as the matrices A;s contained in invariants [10], can be obtained only based upon a decomposition
of the symmetric square of character of the irreducible representation, which describes a degenerate
electron state.

While investigating the Jahn-Teller effect in a crystal, a problem arises how to transform the criteria
obtained for the degenerate electron states to the corresponding energy bands E(k) in the BZ. It is obvious
that one should concentrate first on the energy states which form a vicinity of the forbidden energy band
gap. In this case, a possibility occurs for exchanging energy between electrons from a degenerate state
and the respective phonons, if this process is allowed by the selection rules. It has been demonstrated in
the previous section that copper d-electron states create a connected so-called elementary energy band
throughout the BZ at the valence band top of CulnP,Sg. Therefore, as opposed to molecules, one should
consider this EEB in the CulnP,Sg crystal, instead of a degenerate d-electron level. As it is mentioned
in introduction, the symmetry of the EEB is described by the so-called irreducible band representation
[5)[6]. Since neither periodicity of the CulnP,Sg crystal lattice nor the number of atoms in a unit cell is
changed in its phase transition, it should be expected that a phonon with the symmetry described by
the representation of the wave vector group in q = 0 will be active in the Jahn-Teller effect. Note that
in order to identify a normal mode that is active in the vibronic interaction, we utilize in our study a
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fact that the EEB of the CuInP,Sg valence band top originates from the d-electron states of copper atoms.
These atoms, in turn, occupy the Wyckoff positon d(%, %, i) in the protostructure of CulnP,Sg crystal.
Representations of the corresponding irreducible band representation which describes the symmetry of
the EEB can be induced from the irreducible representations of the site-symmetry group of one of the
Wyckoff position d multiplicities. The coordinates of this position d (%, %, i) coincide, in turn, with the
localization of the Jahn-Teller center in the CulnP,Sg crystal. Hence, the actual Wyckoff position d can
be regarded as a distinct center, where the information on the electronic band structure of the CulnP,Sg
crystal is encoded. Therefore, in order to find the symmetry of a normal vibrational mode that is active in
the Jahn-Teller effect, it is enough to consider a decomposition of the symmetric square of characters of
the representation induced from the irreducible representations of the site-symmetry group of the actual
Wyckoff position d. This site-symmetry group coincides with the factor group of space-symmetry group
of CulnP,Sg at the point k= 0.

Hence, it can be postulated that the above group-theoretical procedure to find a vibrational mode
that is active in the Jahn-Teller effect coincides with the procedure elaborated for molecules. In order to
confirm this statement, a direct calculation concerning the Jahn-Teller’s criterium can be performed, for
all high-symmetry points of the BZ, describing the states from the vicinity of the forbidden energy gap
of the discussed crystal. Generally, in the case of centrosymmetrical crystals, the wave vector groups can
contain an inversion element /. If it is the case, then the action of this element on a wave vector is as
follows, Ik = —ko = ko +b, otherwise Iky = —ko # ko + b, where b is a reciprocal lattice vector. However,
the construction of the symmetric square of representation characters differs in both cases. In the first
case, the symmetric square of representation characters of the ko wave vector group can be decomposed
into irreducible representations of the ko wave vector group by means of the formula [15]

=g 2 (@ o 6} 20(0), s

where n; is the number of irreps 7° in the considered direct product, n denotes the number of elements
in the space group, and y is the character of irreducible representations of the wave vector group in the
center of the BZ. When the wave vector group does not contain the inversion element, the decomposition
is as follows [15]],

1 _
ng=— Y {x’(&) 1 (8) 1o (R'8R) + x* (RE) 11, [(RD)*]}, 4.4)
2n g<Gi,

where R denotes an element that transforms the kg into —kg (inversion in our case, since it is present in
the space group of a centrosymmetrical crystal).

As we have demonstrated in section[3] the valence band top of the CuInP,S¢ crystal protostructure is
composed of the EEB that is created by d-electron states of copper. Meanwhile, its symmetry is described
by the following irreducible band representation,

I5+Tg—A1+Ap+A3—M+My+ M3+ My—2L, - Ky +K, +Ks— Hy + Hy + Hs, 4.5)

that is related to the actual Wyckoff position d (%, %, i) in which a copper atom is located. Note that the ab-
solute maximum of the valence band of the CuInP»Sg protostructure is observed in the K 2L direction.
Hence, the analysis of energy states that are situated in these high-symmetry points of the BZ becomes
crucial. The wave vector groups at points K (%, %,0) and H (%, %, %) (see figure (3} right) do not contain
the inversion element. Hence, the decomposition of their symmetric square of representation characters
can be described by equation (4.4). However, from the viewpoint of the Jahn-Teller effect realization,
only two-dimensional representations of the wave-vector groups which are contained in the irreducible
band representation are interesting for study. The wave vector groups of other points in the BZ
(I'(0,0,0), A(0,0, %), M(%,O, 0), L(%,O, %)) contain an inversion element. Hence, the decomposition of their
symmetric square of characters of two-dimensional representations (in particular I's and I'g) is given
by equation (4.3). Consequently, representations for the I' point which can be found from equation
become a background to construct the adiabatic potential for the collective Jahn-Teller effect.
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5. Vibronic potential energy and adiabatic potential of CuIlnP,S¢ proto-
structure and paraphase

We shall find in the beginning of this section the normal vibrational modes of the CulnP,Sg crystal
protostructure which take part in the vibronic instability. By analyzing the transformation of the atomic
positions under the action of symmetry elements of the structure, the following expression that describes
the character of the mechanical representation is obtained

XM:4FI+6F3+10F5. (5.1

In order to construct a matrix of the vibronic potential energy that is connected with the doubly-dege-
nerate electron states of the EEB (4.5), one should establish first the symmetry of the normal vibration
(phonon) that is active in the Jahn-Teller effect. Correspondingly, by applying decomposition to the
representations I's, I's, and equation to K3, Hsz from the EEB , we obtain the expected result:
ns # 0, only for 7, =T';, and 7, = I's. It means that these representations can describe the vibrations ac-
tive in the Jahn-Teller effect. The same result can be found by means of the decomposition of the symmet-
ric square of characters of the irreducible representations I's and I'g, from the extended site-symmetry
group of the actual Wyckoff position d comprising its two muliplicities d; (1,2, 1) and d (%, 1, 1). In these
positions, there are the Jahn-Teller’s centers located, i.e., copper atoms. Hence, the normal vibrations that
are active in the Jahn-Teller effect exhibit the symmetry described by the irreducible representations I'y,
and I's in the center of the BZ. However, the vibration I'; should be excluded from the considerations,
since it does not lead to a change in configurations of atoms in a unit cell. Therefore, the matrix of the
vibronic interaction potential energy is built based on the normal coordinates Q; and Qy, being the func-
tions which are transformed according to the representation I's of the space group ng. The construction
procedure of this matrix is analogous to the way how the dispersion law E (k) was obtained in section[2} In
order to create the matrix of the vibronic interaction potential energy, it is necessary to construct some
invariants in the form of matrices being the products of Q; and Q, functions, and their combinations.
Theses matrices and functions are transformed according to the representation 7, = I's. Similarly to the
D(k) matrix, the above matrices should be chosen in the form of Pauli matrices, as well as a second-
order unity matrix. It is obvious that the normal coordinates Q; and Q- are also transformed according
to the representation I's. Using the projection operator technique and the matrix of representation I's
written in a real basis (see table [7|in appendix) one obtains that the functions Qf - Qg and 2Q; Q- are
transformed according to the representation I's, as well [28]. Moreover, these functions forming the ba-
sis of the representation I's are mutually transformed one into another under the action of the D3q space
group symmetry elements. In order to obtain a result of the action of a D3gq group element on the first of
the above functions, one should utilize the first row of I's matrix, while in the case of the second function,
the second row. Finally, the resulting D(Q;, Q) matrix for the vibronic coupling I's-I's, or I's-I'¢ can be
written as a sum of invariants,

1 2 2 2 1 2 2
D(Q1,Q0) = 20 (Q1+Q3) 01+ VQiox+ WEWQIQZ 0x+VQeo,+W(Q7-Q3)0oz, (5.2)

where @ denotes the frequency of a phonon in the harmonic approximation, V and W are matrix ele-
ments of the linear and quadratic vibronic coupling, I'y, and I's denote representations which describe
degenerate electron states of the CulnP,Sg protostructure. The solution of the secular equation

ID(Q1,Q2)— €l =0, (5.3)

leads to the adiabatic potential.

In order to obtain a more convenient expression for further manipulations, one shall express equa-
tion in the Cartesian coordinates. It should be taken into account at the same time that the basis of
representation I's are the x? — y? and 2xy functions. Next, changing to the polar coordinate system (p, ¢)
in which the p axis coincides with the ¢ leading axis of the protostructure crystal, we are in position to
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Figure 7. (Color online) Left: A dependence of the adiabatic potential €12 of CulnP,Sg protostructure
versus polar coordinates p and ¢. Middle and right: cross sections of the adiabatic potential for various
energy values marked by different colors.

write the D(p, ) matrix elements as follows:

_1 2 4 2 4
Dy = 2w p +Vp“sin2¢+ Wp~ cosdey,

Dy = %a)zp4 —Vp?sin2¢ - Wp* cos4e, G4
D1z = Dyy = Vp?cos2¢ + Wp?sin4g.
The adiabatic potential € calculated from the respective secular equation takes the form
w?p* 2 4 6 o 2 gyl/2
e12(p @) = — [Vep* +2VWp®sinbp + Wop°] . (5.5)

A dependence of the adiabatic potential versus p and ¢ coordinates, together with its cross-sections for
various energy values, is presented in figure[7}

As can be seen from figure [7} the obtained adiabatic potential possesses 6 minima. Such a shape
of the adiabatic potential allows a transition from the CulnP»Sg protostructure to the paraphase of the
symmetry Cgh, since its symmetry with respect to the inversion operation is then preserved.

It should be noted here that the symmetry of the CulnP,Sg protostructure crystal is the same as that
of paraphase of a related CulnP,Seg crystal. The shape of adiabatic potential for the CulnP,Seg para-
phase allows, therefore, its phase transition to the ferrielectric phase of the symmetry Cgv, at the simul-
taneous loss of symmetry with respect to the inversion operation. Moreover, the shape of reflects
the presence of the inversion element in the symmetry group ng of the CulnP,Sg protostructure. The
£(p, @) function which exhibits 6 minima is transformed during the phase transition to the paraelectric
phase of CulnP;,Sg to a function having 2 minima, whereas at the phase transition paraphase—ferriphase
of CulnP,Seg, this function attains 3 minima.

The two-minima adiabatic potential can be obtained in an analogous way for the paraphase of
CulnP,Sg. It is responsible for the realization of the Jahn-Teller pseudoeffect, which is connected with
the existence of two nearby-in-energy electron states. As has been demonstrated in section when pass-
ing from the model protostructure of the CulnP,Sg crystal to its paraphase, there occurs a splitting of the
double degenerate electron states in points I, K, and H of the elementary energy band that forms the
vicinity of the forbidden band gap (figure[4). Moreover, two doubly degenerate electron states which are
described in the I" point by representations I's and I' are reduced to representations of the monoclinic
paraphase as follows: I's — I'y + 'y, I'e — I'; +I's. As a result, there occurs a splitting of two double degen-
erate states into four energy states, described by one-dimensional representations with different parity.
The adiabatic potential takes the form:

1 2
£Q=5Q+ VA2 +V2Q2, (5.6)
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Due to the presence of pairs of states I'; and I', as well as I'3 and 'y with the opposite parity, the Jahn-
Teller pseudoeffect can take place in the system. States with the opposite parity are connected by a
phonon with odd parity. This leads to the appearance of the dipole moments in the CulnP,Sg crystal.
As a consequence of the vibronic interaction between the quasi-degenerate electronic state and a polar
phonon, the levels nearby-in-energy become apart from one another, a connection between them is lost,
and the adiabatic potential becomes a single minimum one. In the case of double minimum adiabatic
potential related to the CulnP,Sg paraphase, two possible atomic sites Cu" and cu? of copper in the unit
cell are filled with equal probability. When the transition to the single minimum adiabatic potential takes
place, the ordering of dipoles occurs with the appearance of spontaneous polarization.

6. Conclusions

It has been demonstrated in this paper that it is enough to use a local symmetry of the crystal’s ac-
tual Wyckoff position where the Jahn-Teller center is located in order to obtain a correct theory of the
order-disorder type phase transitions in crystals. The group-theoretical approach together with the Pikus’
method of invariants can be successfully utilized to construct the vibronic potential energy, and the adi-
abatic potential of a crystal. At the same time, it should be taken into account that the information on
the symmetry and topology of the whole energy band structure of a crystal is encoded in the symmetry
of the actual Wyckoff position. The developed approach allows one to find the mechanisms of the effect
on the parameters of the phase transition in the CulnP,Sg crystal, which will be the subject of the study
elsewhere.
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A. Tables of irreducible representations

Table 5. Characters of irreducible representations of the D3gq point group, as well as of the wave vector
group in k = 0 for the D% 4 Space group (notation of symmetry elements and representations in tables
is adapted from reference [16]. /13 denotes inversion element).

’ | h [ hahs | hgho iz | s [ s, iz | hoo, hog, Boy |

I (A9 | 1 1 1 1 1 1
(A | 1 1 1 -1 -1 -1
I3(By) | 1 1 -1 1 1 -1
4By | 1 1 -1 -1 -1 1
Is(Ep) | 2 -1 0 2 -1 0
T (B | 2 -1 0 -2 1 0

Table 6. Characters of the irreducible representations of the Cyp, point group, as well as of the wave vector
group in k = 0 for the Cgh space group. (h25 denotes inversion element).

’ | mi [ hs [ hes | hos |

I(4g) | 1 1 1 1
(A | 1 1 -1 | 4
I3(By) | 1 -1 1 -1
T4 (B | 1 -1 | -1 1

33705-15



D.M. Bercha et al.

Table 7. Irreducible representations I's (Eg) and I'g (Ey), written as real matrices (in cartesian coordi-

nates).

L] hy hs hs | hg h1o hio
3 3 3 3

T (1 0) —% - —% 2 (1 0) —% 2 —% 2
> 1o 1 Vi1 _vi _1lll =21 Vi o1 V3ol
2 2 2 2 2 2 2 2

his his hi7 hoo hoo hog

1 V3 1 V3 1 V3 1 V3

r (1 0) T2 Tz 2 2 (1 0) 2 2 2 2
1 o 1 Vi1 _v3 _1] |l -1 N V31
2 2 2 2 2 2 2 2

’ ‘ h hs hs ‘ hg ‘ hio hio
13 e 3 3

T (1 0) 3 T2 3 Tz (1 0) -3 % -3 %
1 o 1 Vi1 3 _1]llo -1 N Vi1
2 2 2 2 2 2 2 2

hi3 his hi7 oo hoo hog4
V3 V3 1 V3 1 V3
r (—1 0) ;. ¥ : % (—1 0) 2 Tz 2 Tz
*1lo 1) || v 1 Vi1 o 1)||_v _1 V3 1
2 2 2 2 2 2 2 2
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Bi6poHHa B3aEMoJisi B KpUCTaNax 3 AH-TeNIePOBCbKUMN
LEeHTPaMM B KOHLenLii MiHiMalbHUX KOMNJIEKCiB 30H

AM. bepud® C.A. bepudl, K.€. Tnyxosl, M. LWHaiiaep?

L IHCTUTYT $i3nkuy Ta xiMii TBEPAOTO Tina, YXXropoAcbKuiA HauioHanbHWIA yHiBepcuTeT, ByA. BonowwuHa 54, 88000
Yxropog, YkpaiHa

2 ®akynbTeT MaTeMaTUYHMX Ta NPUPOAHNYUNX HayK, YHiBepcuTeT XKeluysa, ByA. MiroHia 1, 35-959 Xewwuys,
MNMonbuwa

AHanisyetbcs GpasoBuii nepexig TNy nopsAok-6e3nopsagok B MOHOKAIHHOMY kpucTtani CulnP2Sg, cnpunumnHe-
HWIi BIGPOHHMMK B3aemogiamu (edekT SiHa-Tenepa). 3 Lji€l0 MeTOl CTBOPEHO MOAeb TPUroHaNbHOI NPOTo-
cTpokTypun At CulnP2Sg WinaxoM Hesenmkoi 3MiHWM napameTpisB rpaTkn CulnP2Se B napaenekTpuuHiii ¢asi.
OAHOYACHO 3 TEOPETUKOTPYMOBMM aHaNi30M, 34iACHIOETLCA MEPLUONPUHLUMHN PO3PaxyHOK Ha OCHOBI MeTo-
Ay GYHKUioOHany rycTuHm 30HHOI cTpykTypu CulnP2Sg B NpOTOCTPYKTYPI, Napa- i depodaszax. Bukopucrosytoun
KOHLIENLIit0 e1eMeHTapHNX eHepreTUYHNX 30H, BCTaHOB/EHO 3B'A30K YaCTVHU 30HHOI CTPYKTYpWY B 0KoAi 3a60-
POHeHOI eHepreTMYHOI 30HY, L0 CTBOPKOETLCS CTaHaMK d-enekTPOoHIB Migi, 3 NeBHUM NonoxeHHsIM Bikodda,
Je nokanisoBaHi siH-TenepiBcbki LeHTpu. Mpouesypa NobyAoBy MaTpuLi BIGPOHHOT NOTeHLUiaNbHOT B3aEMOZIT
y3aranbHIETLCA Ha BUNAA0K KPUCTany, BUKOPUCTOBYHOUW KOHLENLi0 eleMeHTapHUX eHepreTUYHUX 30H i Te-
OpeTMKOrpyrnoBoro Metogdy iHBapiaHTiB. MpoLeAypa iNtoCTPYETLCA Ha NPUKNAAI CTBOPEHHS adiabaTU4HUX no-
TeHUujanie BibpoHHoro 38'a3ky I's-I's ans npotocTpykTypu i napadasm kpuctany CulnP2Sg. Ha ocHoBI aHanisy
OTPUMaHOI CTPYKTYpUW agiabaTUYHUX NOTeHLianiB 3p061eHO BUCHOBKU LLOAO iX NepeTBopeHHs npu ¢pa3oBomMy
nepexogi i 06roBOPeHO MOXNUBICTb BUHVKHEHHS B KPUCTaNi CIOHTaHHOI nonspm3ai.

KniouoBi cnoBa: epekt AHa-Tenepa, agiabatndHi moteHyiaav, noaoxeHHs Bikogga, Teopis rpyn
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