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The approach of nonequilibrium evolution thermodynamics earlier offered is developed. It helps to describe
the processes of defect formation within the adiabatic approximation. The basic equations system depends on
the initial defects distribution (dislocations and grain boundaries). The phase diagram is determined with the
domains of the realization of different limiting structure types. The interaction effect of several defect types
on the formation of a limiting structure is investigated in terms of the internal energy. The conditions of the
formation of two limiting structures are found. The kinetics of the steady-state values establishment of the
defects density is investigated within the scope of the adiabatic approximation. The dislocations density change
follows the evolution of the grain boundaries density in this approach. It is shown that grain sizes, in limiting
structures, decrease with an increase of the elastic strains.
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1. Introduction

Metals are subjected to different processing forms to achieve high mechanical properties (high
strength and plasticity). This purpose is the most cardinally reached by grinding the grain structure of
metal as a result of its processing by the methods of severe (mega) plastic deformation (SPD) [1–5]. The
microdisperse structure of grains with their linear sizes about 100 nm is formed by such processing.
Since the processing is very complex and the real experiments are quite expensive, the development of
theoretical methods for their description acquires a large significance.
Nowadays a few methods of the SPD processes description are known. The theory of fragmentation

of the dislocation structures developed by G.A. Malygin actually describes the formation of high-angular
grain boundaries at large plastic deformations. This theory is based on the mechanism of deformation
accompanied by dislocations self-organization [6, 7]. The flexural and twisting strains and stresses are
formed during an equal channel angular extrusion process as a result of the generation of a large amount
of geometrically required dislocations. However, having appeared their behavior does not differ from the
behavior of chaotically arising dislocations. Actually, the author have extended the ideas developed ear-
lier for the representation of the cellular structure formation [8]. These ideas are based on the description
of the bigger defect generation (a grain boundary). It violates the hierarchical sequence of events because
it would seem more logical to present the formation of grain boundaries as a result of the cellular struc-
tures self-organization rather than elementary dislocations. The newly formed structure, in the course
of the 4th and 5th stages of material strengthening, should intersect a few elementary dislocation cells
to save some integrity [6]. It is possible to assume that dislocations are more advantageous to abandon
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the volume of the dislocation cell or a grain and “settle” on their boundaries. Thereby they increase the
level of their excessive energy (nonequilibrium) and only then form a new boundary like a process of its
excessive energy relaxation.
The theory of material dispergation during the SPD process offered by V.I. Kopylov and V.N. Chu-

vil’deev [9, 10] is founded on the specific mechanism of deformation which is based upon the concept
of interface slippage and anomalously high grain boundary diffusion. In addition, the representation of
the free volume taken from the theory of amorphous materials is used in the present theory. At the same
time, some supposition is put under a serious doubt by V.A. Khonik experimental studies [11]. This is due
to the fact that free volume can be used as a determining thermodynamic parameter for the description
of amorphous alloys, at least in that classic interpretation accepted in the majority of the works. Indeed,
the excess volume is the measure of an increase in the average distance that leads to the growth of the
average potential energy of atoms. The distance betweenwhich is greater than the equilibrium one. How-
ever, an increase in the distance between certain atoms in a solid body, by virtue of the closure of force
lines, inevitably entails diminishing of the distances between the other atoms (the local compression).
Thus, the potential energy of the repulsion of atoms changes much sharper than the potential energy of
weak Van derWaals attraction. Therefore, the potential energy at a lesser change of the volume due to the
compression in this domain can substantially exceed the potential energy in the region of the excessive
free volume. Consequently, it is very important to take into account in the theory not only the excessive
free volume, but also “the pressed volume”, which nobody has done so far. In addition, A.M. Glezer pre-
sented in his lecture [12] that free volume has at least a bimodal structure in sizes. Amorphous materials
having a more finely-structured free volume are more plastic, while the materials having a more coarse-
structured free volume are more brittle. It is obvious that the relationships between free and pressed
volume are different for them.
Besides, the role of actually diffusive mass transfer seems to be exaggerated. Really, from our point

of view, under the action of excessive energy of the nonequilibrium boundary and internal stresses,
a reconstruction of the material structure occurs, and grain boundaries actively participate herein. A
boundary substantially facilitates such alteration providing additional degrees of freedom. Thus, mass
transfer takes place, but it is not directly connected with the excess concentration of atoms.
Moreover, the theory [13] originating from simple mechanical representations of the deformation

processes is presently known. The system of kinetic equations is derived from the generalization of ex-
perimental results and laws. Within the framework of this theory, it is not possible to explain many
important features of the SPD processes. It cannot describe the formation of the “limiting” structure of
metals (minimum average grain sizes) in particular. Some attractor is heuristically introduced in the the-
ory in order to describe the fragmentation of grains. It compels the system to aspire to the state with the
required (fixed) grain sizes. Also the connection between the generation of several defect types has not
been revealed yet, for example, such defects as the grain boundary and dislocation. Their interaction can
provide the formation of stationary domains in the phase diagram.
At the same time, it is logical to suppose that the achievement of the limiting grain sizes as a re-

sult of dispergation during the SPD process is a general property of the steady-state material. It can be
investigated in the most general form independently of the specific deformation mechanism. The gen-
eral theory of the SPD processes was offered in the studies of the author [14–16], which is based on the
nonequilibrium evolution thermodynamics. The formation of a limiting structure within the framework
of this theory is related to a minimum or a maximum of the thermodynamic potential and is analogi-
cally described by the theory of phase transitions based on the general kinetic Landau-Khalatnikov-type
equation [14–16]. The main feature of this approach is that the defect structure is taken into account by
an obvious introduction of the corresponding terms in the basic thermodynamic relationships which is
similar to mesoscopic thermodynamics [17, 18], while the ordinary thermodynamics is an unstructured
theory. The mesoscopic character of the model implies that large enough formations such as the grain,
grain boundaries, accumulations of dislocations and so on can be the structural elements of the medium
in such consideration [5]. Besides, special methods for the description of the behavior of a thin lubricant
layer [19–23] are being developed at present. These methods are close to the concept of Landau theory of
phase transitions.
The main purpose of this article is to describe the structural phase transition between two steady-

states in terms of the internal energy (from the state with large grains to the small grain state). Further,
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the interaction effect of several defect types on the formation of a limiting structure should be investi-
gated and the kinetics of the steady-state values establishment should be also described.
This article consists of four sections and the conclusions.
The basic theoretical methods of describing the evolution of the defect structure of solids are given in

section 2. Moreover, the basic relationship for the density of internal energy is written down. It combines
the first law of thermodynamics and the law of energy transformation on the internal degrees of freedom.
The two-defect two-mode model of the nonequilibrium evolution thermodynamics, in the expression of
internal energy, is assumed to be the basis. The grain boundary and dislocation are chosen to be the main
structural defects.
The phase diagram of fragmentation regimes by severe plastic deformation is studied in the section 3.

The evolution equations based on the expansion of internal energy have been derived at first. Then, using
the adiabatic approach, the Landau-Khalatnikov equation is obtained. At last, the equation of steady-
state values based on the necessary conditions of the extremum existence is found. Also, three graphs
are built, which represent the dependence of the stationary values of the grain boundaries density on the
second invariant of strain tensor, the phase diagram of the system, the dependence of the thermodynamic
potential on the density of grain boundaries.
The kinetics of the density of the grain boundaries at the establishment of steady-state values is con-

sidered in section 4. This study includes three subsections. The relaxation dependencies are built here for
the analysis of the Landau-Khalatnikov equation. The strain influence on the process of the equilibrium
establishment in the system is examined in the second part. The check of adiabatic approximation used
for the evolutionary system of equations of the density of defects is presented in the third subsection.
Short conclusions of our investigation are finally represented (section 5).

2. Basic equations

The conservation law of energy should be performed for both external interactions of the selected
volume and the internal transformations of several energy types as a result of the flow of irreversible
internal processes. Combining the first law of thermodynamics and the law of energy transformation
in the internal degrees of freedom, it is possible to obtain thermodynamic “identity” for the density of
internal energy u as follows:

du =σi j dεe
i j +T ds +

N∑
i=1

T̃lδs̃l +
N∑

i=1
ϕlδhl , (1)

where σi j and εe
i j are the stress tensor and elastic part of the strain tensor; T , s and T̃l , s̃l are a temper-ature and an entropy of the equilibrium and l -th nonequilibrium subsystems; ϕl and hl are a conjugatepair of the thermodynamic variables that show the imperfection of a material (the energy and the defect

density of l -type).
The nonequilibrium state is defined by a set of parameters. The first two εe

i j and s describe the part
of the system which has already come to an equilibrium distribution (the reversible processes), and the
other two parameters s̃l and hl represent the nonequilibrium part (the irreversible processes) [24].The relationship (1) is written down in the general form. The specific model of the kinetics of struc-
tural defects will be determined, if we define the dependence of the internal energy or the effective
internal energy on all independent variables of a problem [25, 26]. Since the exact analytical solution is
not known, let us consider a simplified model. We shall expand the effective internal energy into power
series of its arguments. In this paper, the two-defect two-mode model is considered with the contribution
of grain boundaries taking into account up to the fourth degree relatively to their density [26].
The number of modes is determined by the number of stable stationary solutions or the maxima of

internal energy. The number of levels is defined by the quantity of the considered types of defects. The
grain boundary is the main structural defect during the SPD processes, but, at the same time, dislocations
play an important role in the generation of power conditions for the formation of grain boundaries.
Within the framework of thismodel during the SPD process, themain purpose is to describe the structural
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phase transition between two stable states, from a state with a large grain to the state with a small grain
(100 nm) [25–27].
The internal energy is represented by the relationship [14, 26]:

u
(
hg ,hD

)=u0+
∑

m=g ,D

(
ϕ0mhm−1

2
ϕ1mh2

m+1

3
ϕ2mh3

m−1

4
ϕ3mh4

m

)
+ϕg D hg hD , (2)

where u0,ϕkm ,ϕg D are some coefficients depending on the equilibrium variables s and εe
i j as the controlparameters:

u0 = 1
2λ

(
εe

i i

)2 +µ
(
εe

i j

)2
, (3)

ϕ0m =ϕ∗
0m + gmε

e
i i +

[
1
2 λ̄m

(
εe

i i

)2 + µ̄m

(
εe

i j

)2
]

, (4)
ϕ1m =ϕ∗

1m −2emε
e
i i , (5)

where λ, µ are the elastic constants of the defect-free material; gm is a positive constant characterizingthe intensity of the defect production at εe
i i > 0 (comprehensive tension) or the defect annihilation or

suppression of the defects generation at εe
i i < 0 (comprehensive compression); λ̄m , µ̄m are the elastic

constants caused by the defects existence; em is a positive constant responding similarly to gm for the
defect production at εe

i i > 0 or for the defect annihilation at εe
i i < 0; εe

i i and
(
εe

i j

)2 = εe
i jε

e
j i are the first andthe second invariants of the strain tensor. The repeated indexes mean summation. Since the compression

of the deformed object is described, the negative values of the first invariant of the strain tensor εe
i i areused for further analysis.

The components of the strain εe
i j are the control parameters, which represent the external influence,and they can be regarded as constants. Index D , in equation (2), belongs to dislocations, and index g

belongs to grain boundaries.
Note that the magnitude of the plastic strain, in the presented theory, does not appear in an explicit

form. However, it is present in a latent form. It is known that the accumulated strain is directly propor-
tional to time at the constant deformation rate, andmonotonously depends on time at variable rate of the
deformation. Therefore, the accumulated strain is accepted to be used instead of time in the mechanics
(dead time). In the presented theory, time is used in an explicit form, and the plastic strain appears in the
latent form, namely, in the form of the defect density (see the derivation of a generalized Gibbs relation
in [28]).
A polynomial of fourth degree with positive coefficients ϕkm , in equation (2), can have two maxima(two modes). We shall consider only a simplified instance of the homogeneous distribution of disloca-

tions. Therefore, the highest powers are neglected at the description of the dislocations evolution ϕ2Dand ϕ3D [26].The following set of parameters is accepted for calculations:
ϕ∗

0g = 5 ·10−3 J ·m−2, gg = 9.1 J ·m−2, λ̄g = 960 J ·m−2, µ̄g = 105 J ·m−2,

ϕ∗
1g = 3.3 J ·m−1, eg = 15.5 J ·m−1, ϕ2g = 6.5 J, ϕ3g = 2.88 J ·m,

ϕ∗
0D = 5 ·10−4 J ·m−1, gD = 33.1 J ·m−1, λ̄D = 96 J ·m−1, µ̄D = 10.5 J ·m−1,

ϕ∗
1D = 0.6 J ·m, eD = 1.55 J ·m, ϕg D = 0.03 J.

3. Phase diagram

Let us write down the evolution equation [14–16, 26]:
τhl

∂hl

∂t
= ∂ū

∂hl
, (6)
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where τhl
is the time of relaxation; hl is the density of l -type defects; ū is the effective internal energy

[26]. The system of evolution equations is defined in the explicit form [26]:
τhD

∂hD

∂t
=ϕ0D −ϕ1D hD +ϕg D hg , (7)

τhg

∂hg

∂t
=ϕ0g −ϕ1g hg +ϕ2g h2

g −ϕ3g h3
g +ϕg D hD . (8)

Let us use the adiabatic approximation τhg À τhD . The evolution of the density of dislocations followsthe change of the density of grain boundaries under this condition. In this instance, we set τhD (∂hD /∂t ) ≈
0 in equation (7) and express hD from this equation:

hD = ϕg D

ϕ1D
hg + ϕ0D

ϕ1D
. (9)

Substituting the dependence of the density of dislocations (9) into equation (8), the Landau-Khalat-
nikov equation is obtained:

τhg

∂hg

∂t
= ∂V

∂hg
, (10)

where the derivative of the effective thermodynamic potential with respect to the density of grain bound-
aries ∂V /∂hg ≡ F

(
hg

) specifies the thermodynamic force F :

F
(
hg

)=ϕ0g +ϕg D
ϕ0D

ϕ1D
−

(
ϕ1g −

ϕ2
g D

ϕ1D

)
hg +ϕ2g h2

g −ϕ3g h3
g , (11)

that tends to bring the parameter hg to the attractor corresponding to the steady-state value. The systemis described by the thermodynamic potential:

V
(
hg

)= hg∫
0

F
(
h′

g

)
dh′

g . (12)

Using the substitution (9), this relationship is identical to equation (2) for the given defect types.
The steady-state density of grain boundaries hg is fixed by the extremum condition of the potential(12), since at ∂V /∂hg = 0 according to equation (10) ∂hg /∂t = 0. Besides, the minima of the potential

correspond to the unstable states, but its maxima meet the stable states [14–16, 25].
The stationary condition leads to the expression:

ϕ3g h3
g −ϕ2g h2

g +
(
ϕ1g −

ϕ2
g D

ϕ1D

)
hg −ϕ0g −ϕg D

ϕ0D

ϕ1D
= 0. (13)

Hence, the positions of the potential extrema depend on the parameters ϕ0g , ϕ1g , ϕ2g , ϕ3g , ϕ0D , ϕ1D anddo not depend on the reference level of the energy u0. These extrema define the regimes of fragmentationduring the SPD process. It is noteworthy that equation (13) does not depend on the adiabatic approxima-
tion and is exact. This is related to the fact that solution is taken in the long-term asymptotic behavior
when both of the stationary conditions are satisfied for both dislocations (9) and grain boundaries. For-
mal analysis of the solution of equation (13) for different values of the control parameter εe

i i is presentedin figure 1. Note that we do not consider here the question of how to achieve this or that value of the
control parameter (see [24–28]). As seen, at small absolute values of the invariant εe

i i , there exist threesteady-states. Two of them correspond to the maxima of the potential V (
hg

) (solid and dashed lines) and
one to the minimum of the potential (dotted line). The first maximum can be achieved at zero and non-
zero values of the density of grain boundaries hg 0 depending on the value (εe

i j )2. It takes non-zero values
only when the value of the strain (εe

i j )2 is larger than a certain critical value. This is due to the fact that
fragmentation process during the SPD is capable of occuring when the elastic strain εe

i j and the relatedto its stresses σi j exceed the yield stress. The steady-states realized in the SPD process can be reached
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Figure 1. Dependence of the stationary values of the density of grain boundaries hg 0, hm
g on the second

invariant of the strain tensor (εe
i j )2. The curves 1–4 correspond to the values εe

i i = 0, −0.025, −0.042,
−0.085.

only at the fulfillment of this condition. If it fails, the system is also capable of approaching the stationary
states but with another and lower rate1.
According to the curves 1–3, the smaller of the steady-states hg 0 corresponds to the grain with alarge size (dashed parts of curves), the bigger of the steady-states (solid sections of curves) meets the fine

grain. They are separated by unstable state (dotted line) for the values of the density of grain boundaries
corresponding to the minimum of the potential. It is noteworthy that zero maximum meets the coarse-
grained polycrystal or a single crystal in the limit. In the instance of a single crystal, the zero maximum
of the potential is realized at first and only when it becomes non-zero, the process of fragmentation starts
proceeding.
If the sample, before the SPD process, has already had the fine-grained structure (the state similar to

the non-zero maximum of V (hg ) is realized), then according to the curve 1, in figure 1, the evolution of
the material structure to the final steady-state is possible even for small values of (εe

i j )2.
According to the curve 1, with an increase of (εe

i j )2 under the value, when zero and non-zero max-
ima of the potential coexist, the process of fragmentation cannot be realized, because these maxima are
separated by a potential barrier (dotted line). Then, zero maximum becomes non-zero (dashed line) and
a continuous process of fragmentation occurs. At further increase of strain, the first maximum disap-
pears coupled with the minimum and the system by the first-order phase transition rapidly passes into
the state described by the second maximum of the potential (solid line). At the same time, an abrupt de-
crease of grain sizes takes place. It is known that at the first-order phase transition, the system can be in
two metastable phases due to the simultaneous presence of two steady extrema of the thermodynamic
potential [30].
If we continue to increase εe

i i for absolute magnitude (curve 4), the continuous transition, in the ab-sence of the potential barrier, is realized from a single crystal to a fragmented sample. Besides, the forma-
tion of only one limiting structure is possible. In general, comparing the cures 1–4, we note an important
fact that the application of hydrostatic pressure εe

i i restrains the generation of defects. It is necessary toapply a large shear strain εe
i j to generate them. The critical value of the second invariant of the straintensor is obtained from equation (13) for hg 0 = 0:(

εe
i j

)2

c
= − 1(

ϕ1D µ̄g +ϕg D µ̄D
) [(

1

2
λ̄gϕ1D + 1

2
λ̄Dϕg D

)(
εe

i i

)2

+(
ggϕ1D + gDϕg D

)
εe

i i +
(
ϕ∗

0gϕ1D +ϕ∗
0Dϕg D

)]
. (14)

1Let us note that with an increase of hydrostatic pressure, the limit of plastic flow also increases. The model correctly reflects
the main regularities observed in real materials in this sense (see figure 13 in the article [29]).
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Figure 2. The phase diagram of the system with the realization of domains of two (
A, A′) and one (

B , B ′)
limiting structures.

The relation (14), in the coordinates (εe
i j )2 − εe

i i , represents the second-order curve below which thereexists a steady-state solution of equation (13) corresponding to the maximum of V
(
hg

) at the point hg 0 =
0. The curves, in figure 1, start from the point (14) on the abscissa axis. Therefore, the expression (14)
represents the value of the second invariant of the strain tensor at which the process of fragmentation
begins. Since equation (14) contains the value εe

i i , all the curves start from different points.The phase diagram is depicted in figure 2. The lines correspond to the loss of the system stability.
Curve 1 is defined by expression (14), below which the zero steady-state solution is possible. There is not
channel of energy dissipation for the value hg 0 = 0, which is related with the formation of the defect
structure, and the system is a single crystal or a structure close to it. The points 1–4, in the phase diagram,
correspond to the potential curves, in figure 3, which possess the maxima. Their positions are defined by
the problem parameters.
The domain A corresponds to the realization of two non-zero maxima of the potential V (

hg
) (curve 3

Figure 3. The dependence of thermodynamic potential V
(
hg

) (12) on the grain boundaries density hg .
The curves 1–4 correspond to the values of the second invariant (εe

i j )2 = 0.01, 0.025, 0.0125, 0.0005 and,
accordingly, the first invariant εe

i i =−0.02, −0.02, −0.01, −0.002 (points 1–4 in figure 2).
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in figure 3). Here, two limiting structures are observed with large (the first maximum of the potential)
and small (the second maximum of the potential) grain sizes.
The region A′ of the diagram is similar to the domain A, but with the main difference that the first

maximum of the potential is zero (the curve 4 in figure 3). Since the first limiting or the stationary struc-
ture is formed for the value hg 0 = 0, it is a single crystal. As a result of the SPD process, fragmentation
of the material in this region cannot be realized. It is worth noting that transitions between the maxima
of the potential are directly possible during the SPD processing. In the regions A and A′, two limiting
structures corresponding to different grain sizes are formed due to these processes. When the SPD pro-
cess finishes, it should be supposed that the sample has been formed and the further transitions are not
realized.
According to curve 2, in figure 3, one limiting structure is generated in the domain of a large strain B .

It is seen that with an increase of elastic strain (εe
i j )2 the grain size decreases and the sample, in the limit

(εe
i j )2 →∞, represents an amorphous structure. The only zero maximum of V

(
hg

) (curve 1 in figure 3)
is realized in the domain of small strains B ′. Here, the system is a single crystal.
Note that the first maximum of thermodynamic potential V

(
hg

) (12) directly depends on the applied
stresses, while the second one is not sensitive to the value of the first εe

i i and the second (εe
i j )2 invariants

of the elastic strain tensor. This is connected with the accuracy of taking into account the elastic strains,
in the power representation of internal energy (2)–(5). The considered strains are inserted only up to the
2-nd power of the corresponding density of defects hm . They considerably effect the formation of the firstmaximum. Such an account is realized by virtue of preservation of the approximately identical order in
all powers in relation to the internal energy (2). The total order of the first two contributions of the density
of defects hm and elastic strains εe

i i , (εe
i j )2 is approximately equal to the order of the last two ones, which

do not take into account the strains. However, if the experiment shows the high sensitivity of the second
maximum to the elastic strain, such a behavior can be considered by larger powers of approximation
over εe

i i and (εe
i j )2 in the coefficients ϕ2m and ϕ3m presented in relation to the internal energy (2).

4. The kinetics of the steady-state values establishment of the density

of grain boundaries

4.1. Time dependencies

Let us study the kinetics of the considered system and distinguish the simplified version of the system
evolutionwithin the scope of the adiabatic approximation τhg À τhD [19, 31, 32]. In so doing, the researchis reduced to the analysis of the Landau-Khalatnikov kinetic equation (10). Its explicit form is expressed
as:

ḣg =ϕ0g +ϕg D
ϕ0D

ϕ1D
−

(
ϕ1g −

ϕ2
g D

ϕ1D

)
hg +ϕ2g h2

g −ϕ3g h3
g . (15)

The relaxation time dependencies hg (t ) are obtained bymeans of an approximate numerical solution
of the differential equation (15) (figure 4) with corresponding parameters of figure 2. Figures 4 (a)–(d) are
built for different domains of the phase diagram. The points 1–4 of the phase diagram (figure 2) are
chosen as the main parameters. It should be noted that the obtained time dependencies for equation (15)
within the scope of the adiabatic approach τhg À τhD completely coincide with the solutions of systemof equations (7) and (8). This suggests that both solutions are stable and the usage of equation (15), in the
corresponding condition, is valid.
The dependencies describing the process of material fragmentation in the region A′ of the phase

diagram are presented in figure 4 (a). All curves are built for different initial conditions hg (t = 0). The
corresponding potential is shown by the curve 4, in figure 3. The first stationary state (for a small initial
value of hg (t = 0)) is in the negative region of hg . This is due to the fact that the first maximum of thepotential is actually realized for hg < 0. Since the negative values of hg have no physical meaning, so wesuppose that the system is in the regime of hg = 0. It is considered that the density of grain boundaries
stops decreasing and the system transforms into the corresponding state after zero value is achieved.
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Figure 4. Relaxation dependencies hg (t )[1/m] obtained by the solution of differential equation (15) for
parameters of figure 2. The figures (a)–(d) correspond to the points 4–1 of the phase diagram. The time
t [s] is measured in the unit of τhg

[J ·m−1 · s].

According to figure 4 (a), both a single crystal (the system goes into the steady-state value that is
described by the curve 1) and the fine-grained limiting structure (curve 2) can be realized depending on
the initial conditions.
Time dependencies corresponding to the domain A of the phase diagram (point 3 in figure 2) are

shown in figure 4 (b). The main difference from the previous instance is that the first stationary state
here is in the positive region of the density of grain boundaries hg . In other words, two non-zero maximaof the potential V

(
hg

) are realized (the curve 3 in figure 3). Accordingly, two limiting structures with
coarse (curve 1) and finer (curve 2) grains are formed.
The domain of large strains B of diagram (figure 2) is represented in figure 4 (c). There is one steady

state (curve 1). It corresponds to the onemaximumof the potentialV (
hg

) (curve 2 in figure 3). The system
relaxes to this value under any initial conditions and the limiting structure with the corresponding grain
sizes is generated.
Figure 4 (d) conforms to the domain of small strains B ′ (point 1 in figure 2). As the maximum of the

potential V
(
hg

) is observed at hg < 0, the steady-state is formed in the negative range of hg . The valueof hg 0 should be equal to zero, as well as for figure 4 (a). Thus, as a result of the fast system relaxation tothe steady-state, coarse single-crystal grains are formed. The corresponding potential is shown by curve
1 in figure 3.
It should be noted that the first two terms, in equation (15), describe some constant source of defects.

This source leads to an increase in the density of grain boundaries hg . Large values of the first twoterms move the steady-states of the system to the region of higher values of imperfection and promote
the formation of finer grains. In particular, the existence of this source is connected with the material
imperfection, namely, grain boundaries and dislocations, which during the deformation process interact
with each other. Meanwhile, this does not rule out the presence of the defects of the deeper structural
levels, such as impurity, inclusions of the other phase, a dislocation substructure, etc. For example, in case
of alloys, the dependence of the limiting grain sizes on the percentage of the alloying elements is defined
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by this parameter. Thus, data are provided for the alloys on the basis of aluminum in the A.A. Mazilkin
et al. experimental work [33]. It follows from the data that the average size of the grain, in the alloy of
Al–Mg, amounts to 150 and 90 nanometers for 5 and 10% of Mg; for alloys Al — 5% Zn— 2%Mg and Al —
10% Zn — 4%Mg the size of a grain is respectively equal to 150 and 120 nanometers (before deformation
500 microns). This confirms the regularity stated above.

4.2. Dependence of the ḣg on hg

Let us investigate the strain effect on the establishment process of the system equilibrium taking into
account definitions (3)–(5) [34, 35]. The analyzed function is on the right-hand side of equation (15) [or
F

(
hg

) (11)] and is presented in figure 5. The values of the first and the second invariants of the strain
tensor for the construction of curves 1–4 are located in all the above mentioned domains of the phase
diagram.

Figure 5. The change rate of the density of grain boundaries ḣg (15) as a function of hg for the parametersof figure 1. The curves 1–4 correspond to the values of the first and the second invariants εe
i i = −0.005

and (εe
i j )2 = 0.001, 0.004, 0.0075, 0.015.

Curve 1 is constructed at the smallest value of strain. It does not have the intersection point with the
abscissa axis. As is seen in the figure, the change velocity of the density of grain boundaries is negative for
the value hg = 0. This is due to the fact that the potential V

(
hg

) has a maximum in the region of hg < 0.
Since the change rate of grain boundaries is negative, it is supposed that the process of grain shattering
is slowed down. However, the negative values of hg have no physical sense, because the channel of theenergy dissipation (which is connected with the formation of defects) becomes a source of additional
energy output for these values. This contravenes the law of energy conservation. Therefore, we should
believe that the density of grain boundaries stops decreasing when zero value is achieved.
If the strain value quickly increases, the density of grain boundaries also increases. This is shown by

curve 2, in figure 5. The grain sizes, in the limiting structures, decrease. This curve has three intersection
points with the abscissa axis. The first and the third intersections correspond to stable steady-states [the
maxima of the potential V

(
hg

) (12)]. However, it should be noted that the first intersection lies in the
range of negative values of the density of grain boundaries like in the previous instance. That is why it
is supposed that the process of grain scattering slows down. The value of hg 0 should be assumed to bezero because the values of hg < 0 have no physical meaning. Thus, two limiting structures having large
and small grain sizes are formed. The second intersection corresponds to the minimum of the potential
and, consequently, to the unstable value of hg . The system does not return after the deviation from thisstate. It is noteworthy that the kinetics approaching the steady-state is exponential because the ḣg vs hgdependence near the intersection point is close to linear.
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If we continue to increase (εe
i j )2, three intersection points of the dependencewith the abscissa axis are

observed. This is shown by curve 3, in figure 5. However, the main difference is that the first stationary
point realizes in the positive range of the density of grain boundaries hg . The first intersection describesthe stable steady-state. The limiting structure with large grain sizes is realized since it is close to the
value of hg = 0. The potential has one minimum and two maxima in the positive range of hg . In thenegative range, it monotonously increases for hg → −∞. There is only one steady state at the further
(εe

i j )2 increase (the curve 4). It corresponds to the realization of a limiting structure having small grain
sizes.
It should be noted that in the real experiment the achievement of a stationary mode is impossible due

to the geometric feature of the SPD methods. Such classical methods as equal channel angular pressing,
twist extrusion, equal channel multiangular hydroextrusion and so on are characterized by conservation
of the sample section before and after the SPD process. However, it is not possible to reach a steady mode
because it is impossible to provide elastic strain constant in time (in our instance εe

i j ) in these methods.The sample with some constant velocity enters an active zone of the experimental setup and leaves it.
The working shear stresses σi j (i , j ) are changed from zero to some maximum value at the entrance to
an active zone and from the maximum value to zero at the exit from it. Nevertheless, in an active zone,
the structure of the material will evolve towards the stationary value, but during the sojourn time in the
zone, the system will be capable of passing only a part of the way in this direction. Therefore, repeatedly
iterative processing of thematerial on the same setup or a combination of processing on setups of various
types are widely practiced to achieve the stationary limiting average grain sizes [36–38].
The idea of intensive homogeneous loading of the sample, in the process of its processing, is also used.

In this instance, the stationarymode can be achieved by the strain εe
i j = const, but due to the cross-sectionchange of the sample during such processing only for a limited period of time.

4.3. Check of adiabatic approximation

The kinetics analysis from the arbitrary initial nonequilibrium state to one or two (at their existence)
stationary states was carried out above. In the presence of two stationary states, the first of them de-
scribes the structure with the large grain (smaller or zero values of hg 0) and the second one representsthe structure with the fine grain (large values of hg 0). The transition between stationary states was notconsidered in this article. This transition presents the essence of grain grinding during the process of
severe plastic deformation, at the same time. Such an approach has been investigated in detail earlier in
the works of one of co-authors [27, 28].
This is of interest to consider as far as the hypothesis of an adiabatic process of the defects generation

leads to a deviation from the “exact” solution. To this effect, the calculation of the density of disloca-
tions and grain boundaries is carried out in the course of evolution by exact formulas (7), (8) at model
parameters, presented in [28]. Then, the adiabatic value of the dislocations density is calculated by equa-
tion (9) through exactly finding the solution for grain boundaries. The maximum shear elastic strain
εe = max{shear(εe

i j )} is specified by Taylor relation [28]
εe = A

√
hD , (16)

where a constant A = 2.75×10−11 m3/2.
The difference in the found values defines the degree of deviation from an adiabaticity in this instance

(figure 6). As is seen from the figure, on the whole, the adiabatic approximation for the fixed parameters
of the model is performed rather well. The adiabatic solution has the greatest deviation on the initial
section of the intensive generation of dislocation. This means that adiabatic approach can be successfully
applied, at least, in some instances to the kinetics research of the structural defects in the SPD course.

5. Conclusions

The study based on the principles of the Landau theory of phase transitions is presented. This ap-
proach enables us to describe the mode of the material fragmentation during the SPD process. The two-
defect two-mode model of nonequilibrium evolution thermodynamics, in the expressions of the internal
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Figure 6. The kinetics of the density of grain boundaries (1) and dislocations (2). Solid lines correspond to
the “exact” solution, dashed line corresponds to the adiabatic approximation. The section to the left-hand
side of the point A meets a stage of intensive generation of dislocation, the section A–B corresponds to
the SPD stage.

energy, is assumed to be the basis. The grain boundary and dislocation are chosen in the capacity of the
main structural defects.
This approach allows us to describe the existence of a limiting grain structure (non-zero maximum

of the thermodynamic potential) achieved as a result of the SPD process. The coarse-grained state of the
material (in a limit single crystal) meets the zero energy maximum and it is examined as a limiting struc-
ture, which is equilibrium relatively to the ordinary plasticity in the theory context. It is shown that the
transition from a coarse-grained structure to the fine-grained one during the SPD process can take place
according to the schemes of the first- and second-order phase transitions. The phase diagram is built,
where the values of the first two invariants of the elastic part of the strain tensor εe

i i and (εe
i j )2 define the

domains of the realization of various types of the limiting structures. Four domains are allocated, among
which two domains with one limiting structure and other two regions with two structures. In these do-
mains, the limiting structures can be formed both for zero value of the density of grain boundaries (large
single-crystal grains) and for non-zero value of the density of grain boundaries (finer grains). Themaxima
of the potential V

(
hg

) correspond to the formation of limiting structures with the different grain sizes.
The kinetics of the steady-state values establishment of the density of defects is investigated. The re-

laxation dependencies hg (t ) are built for the analysis of the Landau-Khalatnikov equation. The research
is carried out for all domains of the phase diagram within the adiabatic approach (at which the disloca-
tions density change follows the evolution of the density of grain boundaries). It is found that the type of
the formed limiting structure depends on the initial values of the density of grain boundaries. It is shown
that grain sizes, in the limiting structures, decrease with an increase of the elastic strains.
It is possible to predict the existence probability for the other limiting structures with finer grain

sizes in the materials, if we take into consideration higher powers of the expansion of thermodynamic
potential. It is necessary to sharply increase the deformation rate (to increase εe

i j ) in order to experimen-tally detect the limiting structures of a higher rank, when the first limiting structure has been attained.
This can be achieved either by an increase of the rate of the material fed in the SPD setup, or by a sharp
decrease of the cross-section of the blank in the production process with the same feed rate.
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Термодинамiка i кiнетика фрагментацiї твердих тiл

при iнтенсивнiй пластичнiй деформацiї

О.В. Хоменко1, Д.С. Трощенко1, Л.С. Метлов2,3
1 Сумський державний унiверситет, вул. Римського-Корсакова, 2, 40007 Суми, Україна
2 Донецький фiзико-технiчний iнститут iм. О.О. Галкiна НАН України, просп. Науки, 46, 03028 Київ, Україна
3 Донецький нацiональний унiверситет, вул. 600-рiччя, 21, 21021 Вiнниця, Україна
Розвинено ранiше запропонований пiдхiд нерiвноважної еволюцiйної термодинамiки, котрий допомагає
в рамках адiабатичного наближення описати процеси дефектоутворення. Базова система рiвнянь зале-
жить вiд початкового розподiлу дефектiв (дислокацiй та меж зерен). Побудована фазова дiаграма, що ви-
значає областi реалiзацiї рiзних типiв граничних структур. Дослiджено взаємодiю декiлькох видiв дефектiв
на формування граничної структури з точки зору внутрiшньої енергiї. Знайдено умови формування двох
граничних структур. В рамках адiабатичного наближення, при якому змiна щiльностi дислокацiй слiдує
за еволюцiєю щiльностi меж зерен, дослiджено кiнетику встановлення стацiонарних значень щiльностi
дефектiв. Встановлено, що зi збiльшенням пружних деформацiй зменшуються розмiри зерен у граничнiй
структурi.
Ключовi слова: межа зерна, дислокацiя, фазовий перехiд, гранична структура, внутрiшня енергiя
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