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We consider the dynamics of pattern formation in a system of point defects under sustained irradiation within

the framework of the rate theory. In our study we generalize the standard approach taking into account a

production of defects by elastic fields and a stochastic production representing internal multiplicative noise.

Using 3D-modelling we have shown that with the damage rate growth, a morphology of clusters composed of

vacancies changes. The same effect is observed with variation in the multiplicative noise intensity. Stationary

patterns are studied by means of correlation analysis.
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1. Introduction

It is well known that metals and alloys under irradiation are typical examples of far-from-equilibrium
systems with nonlinear coupling between their elements. The simplest ones are vacancies (V-defects) and
interstitials (I-defects). Depending on irradiation conditions related to both defects replacement rate and
temperature, the point defects can arrange into defects of higher dimension such as clusters, defect walls
with vacancy loops [1, 2], voids [3], precipitates [4], bubble lattices [5–7]. At the same time, irradiation
can modify a surface of targets due to sputtering resulting in the formation of ordered nano-size sur-
face structures widely used in modern electronics [8–10]. Such patterns are considered to be dissipative
structures. Their theoretical and experimental investigations are widely discussed in literature during
last four decades (see, for example, [7, 11–15]). The production of defects and their microstructure can
principally modify the physical and mechanical properties of an irradiated material leading to swelling,
hardening, etc. As far as defect clusters are responsible for material embrittlement [16, 17], a study of
microstructure of materials, defects and their arrangement into clusters is an urgent problem in modern
material science and in statistical physics. In the present paper we consider the processes of the forma-
tion of V-type defect structures using both analytical treatment and numerical modelling.

In theoretical investigations ofmicrostructure formation, a formalism known asmultiscale modelling
serves as an effective tool. In the framework of this approach, properties of the system on lower (micro-
scopic) hierarchical level are self-consistently taken into account in the modelling procedures at higher
levels of description (mesoscopic or macroscopic). On the other hand, one can use the so-called “hybrid”
methods such as phase field crystals method where the dynamics of microscopic crystal system is de-
scribed in terms of atomic densities covering time scales for elastic interactions between atoms and their
diffusion [18, 19]. It can be used to study the diffusion of defects [20], dislocation dynamics [21, 22] and
structural transitions [23, 24]. At a mesoscopic hierarchical level, one can consider the dynamics of de-
fects using the rate theory where concentration of both interstitials and vacancies are considered (see, for
example, references [11, 13, 15, 25]). Usually such models take into account irradiation production rate
and interactions between defects except defect production caused by elastic deformation of amedium. An
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idea of stochastic production of defects during irradiation was exploited to study the ordering, chemical
patterning and phase separation of irradiated materials [26–32].

The main goal of our paper is to consider the dynamics and spatial arrangement of an ensemble of
point defects using the rate theory describing the evolution of point defects. We take into account the pro-
duction of defects by irradiation, relaxation (the effect of sinks) and the production of defects by elastic
deformation of a medium caused by point defects. We generalize the standard approach [33] considering
a system with two spatial scales related to the diffusion and microscopic interactions. Within the frame-
work of the previously derived approach used to study nanosize patterns in stochastic systems (see ref-
erences [34–37]) we consider the most probable stationary defect structures. In numerical investigations
we solve a three-dimensional problem and discuss the effect of the system parameters onto the dynamics
and morphology change of defect structures. We describe stationary patterns by means of correlation
analysis.

The paper is organized as follows. A generalized model described by the main mechanisms of the
formation of defects with two spatial scales related to diffusion scale and defect interaction scale is pre-
sented in section 2. The analysis of stationary states and their stability is provided in section 3. In section 4
we numerically study the pattern formation where we discuss the dynamics of statistical averages and
analyze stationary patterns. We conclude in section 5.

2. Model and basic equations

Following the standard approach [39] the dynamics of point defects is described by a two-component
model

∂tcv = K −DvSv(cv −c0
v )−αcvci ,

∂tci = K −DiSici −αcvci . (1)

Here, cv corresponds to populations of vacancies (c0
v is the equilibrium vacancy concentration) and ci

relates to interstitials. The first terms in equation (1) relate to the displacement damage rate and take
into account a production of defects due to irradiation. The second terms describe the effect of sinks (Si

and Sv) related to bias factors Zi,v, network dislocation density ρN , vacancy loops ρv, and interstitial loop
densities ρi as follows: S{v,i} = Z{v,i}NρN + Z{v,i}V ρv + Z{v,i}Iρi, where ZvN = ZvI = ZvV = 1, ZiN = 1+B ,
ZiI ≃ ZiV ≃ 1+B ′ , B ′ Ê B , B ≃ 0.1. Diffusivities of vacancies and interstitials are defined in the standard
manner: D{v,i} = D0

{v,i}
e−Em{v,i}/T , where Em{v,i} is the migration energy for vacancies and interstitials, re-

spectively, T is the temperature. The last terms govern the nonlinear contribution caused by point defects
annihilation with the recombination coefficient α= 4πr0(Di+Dv)/Ω given in terms of recombination ra-
dius r0 and atomic volume Ω.

In metallic systems due to the difference between migration energies of point I- and V-defects (for
example, for pure nickel Emv = 1.04 eV, Emi = 0.3 eV with r0 = 1.5 · 10−9 m) there is a difference be-
tween their diffusivities. It allows one to introduce a small parameter ν ≡ Dv/Di ≪ 1. In such a case, a
renormalization of time scales allows us to put ν∂tci ≃ 0 and eliminate the adiabatically fast variable ci

from the reduced second equation of the system (1). Next, rewriting Sv,i = Z{v,i}NρN (1+ρ∗
v +ρ∗

i
), with

ρ∗
v,i ≡ ρv,i/ρN , and using dimensionless quantities t ′ ≡ tλv, λv ≡ DvZvNρN , and definitions x{i,v} = γc{i,v},

γ ≡ α/λv, µ ≡ (1+ρ∗
v +ρ∗

i
), ZiN /ZvN = 1+B , one can introduce K ′ ≡ γK /λv measured in units of dis-

placement per atom. Then we drop primes for simplicity. In such a case, the system (1) is reduced to
∂tx = K −µ(x − x0)−Kνx/[µ(1+B) +νx], where x relates to the vacancy concentration. Here, the last
term is related to nonlinearity caused by interaction of interstitials and vacancies governing the cor-
responding annihilation processes. In our previous study (see reference [25]) we neglected the effect of
interstitials assuming their fast dynamics andmotion to sinks. An allowance for interstitials in the follow-
ing derivation of the model does not change the qualitative picture of the microstructure evolution, but
this allowance encumbers the physical model. This statement was discussed previously in reference [12].

We have to note that the obtained one-component model does not incorporate the production of de-
fects by an elastic field caused by the presence of defects. Following reference [38] this effect can be
considered by introducing an additional source term into dynamical equation for x as e−E/T , where
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E = Ef −φ(r ). Here, φ(r ) is the potential of the deformation field caused by the presence of defects. It
facilitates the processes of defect generation by decreasing the activation energy E ; Ef is the defect for-
mation energy in the absence of deformation field; r = x−1/3 is the averaged distance between the defects.
At r → 0, the field φ has the asymptotics [38]: φ ≃ E e

0 r 3/(1+ r 6). Therefore, the source term of defects
can be rewritten as follows: G exp[εx/(1+ x2)], where ε ≡ 2Z E e

0/T is defined through the defect forma-
tion energy E e

0 ≃ 0.01 eV and coordination number Z ; the renormalized constant G is proportional to
the probability of defect generation by an elastic field caused by the presence of defects. It is determined
by means of Debye frequency and atomic volume; it exponentially depends on the relation between the
defect migration energy and temperature. The introduction of an additional term means that the defor-
mation field created by defects facilitates the defect generation due to a decrease in the activation energy.
This is essential in laser radiation due to temperature instabilities, whereas at particle irradiation its ef-
ficiency is small compared to the defect production in cascades. However, in our case, without loss of
generality, we retain this term assuming G ≪ 1.

As far as point defects are mobile species of a microstructure the corresponding rate equation would
include spatial operators defined by introducing a flux of defects. This diffusion flux has an ordinary Fick
component −L2

d
∇∇∇x with diffusion length L2

d
≡ Dv/λv and component describing the motion of defects

with the velocity v = (L2
d

/T )F, F =−∇∇∇U , where U describes the interaction of defects. In such a case, for
the total flux, one has

J =−L2
d∇∇∇x +vx. (2)

It can be rewritten in the canonical form J = −L2
d

M(x)∇∇∇µ(x), where M(x) = x is the mobility; µ(x) =
δF/δx plays the role of chemical potential, where the free energy functional

F =
∫

dr f [x(r)]−
1

2T

∫

dr

∫

dr
′x(r)ũ(r,r

′)x(r
′) (3)

has the density f (x) = x(ln x − 1). Here, the second part relates to pair interactions in a self-consistent
manner:U (r )=−

∫

u(r −r ′)x(r ′)dr ′ [25, 36, 40]. We assume the attraction potential −ũ(r ) in a symmetric
form, i.e.,

∫

ũ(r )r 2n+1dr = 0. If the field x(r ) does not vary essentially on the interaction range of defects
r0 ≃Ω

1/3, then one can use the approximation
∫

dr
′ũ(r−r

′)x(r
′) ≃ ε(x + r 2

0∇∇∇
2x). (4)

The first term in equation (4) leads to the standard relation between U and x in the framework of the
elasticity theory [33]. Indeed, the effective flux takes the form J =−D(1−̟2κx/T )∇∇∇x, where κ is the bulk
modulus, ̟ is the dilatation parameter. The second term in the above expansion is responsible for mi-
croscopic properties of defect interactions described by interaction radius r0. Under normal conditions,
this term is negligible compared to the ordinary diffusion one. However, as far as one has a density de-
pendent diffusion coefficient [D(1−̟2κx/T )], it can be negative in some interval for x. It means that a
homogeneous distribution of defects, starting with some critical speed of its formation related to the tem-
perature, sinks the density, and the dilatation volume becomes unstable. The emergence of a directional
flux of defects results in supersaturation of vacancies and in the formation of voids. From mathematical
viewpoint such a divergence appearing at short time scales cannot be compensated by a nonlinear part
of the dynamical equation for x. The second term in the expansion (4) can prevent divergencies of the
derived model due to microscopic properties of defect interactions. Therefore, the term with the second
derivative should be retained. This term governs the typical sizes of defect clusters.

Inserting the above expressions into a rate equation for a vacancy concentration we arrive at a deter-
ministic reaction-diffusion equation of the form

∂tx = R(x)−∇∇∇· J (5)

with

R(x) ≡ K −µ(x − x0)−
Kνx

µ(1+B)+νx
+G exp

( εx

1+ x2

)

,

J ≡−
[

∇∇∇x −εx∇∇∇(x +ℓ2∇2x)
]

. (6)
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Here, we use renormalization of a spatial coordinate as r′ = r/Ld and introduce a dimensionless length
ℓ= r0/Ld.

Considering real systems we have to take into account the effect of fluctuations or stochastic sources
representing the microscopic action onto the system dynamics. In our further study we introduce a ran-
dom source treated as an internal noise resulting in dissipative dynamics of the whole system. Such a
noise should satisfy the fluctuation dissipation relation. Acting in the standard manner, we rewrite the
original deterministic model in the form

∂tx = R(x)+∇∇∇ ·M(x)∇∇∇µ , µ≡
δF

δx
, (7)

where for the free energy functional F [x] we have

F [x] =
∫

dr

[

x ln x − x −
ε

2
x2 +

εℓ2

2
(∇∇∇x)2

]

. (8)

Formally, equation (7) can be represented in the canonical form

∂tx =−
1

M(x)

δU

δx
, (9)

where for the functional U [x] we know only its first derivative, i.e.,

δU =−
∫

drδx
{

M(x)R(x)+M(x)∇∇∇ ·
[

M(x)∇∇∇µ
]}

. (10)

Following references [34–36] we can introduce a fluctuation source obeying the fluctuation-dissipation
relation in an ad hoc form:

∂tx =−
1

M(x)

δU

δx
+

√

1

M(x)
ξ(r, t), (11)

where ξ is white noise with 〈ξ(r, t)〉 = 0, 〈ξ(r, t)ξ(r′, t ′)〉 = 2σ2δ(r− r′)δ(t − t ′); σ2 is the noise intensity
proportional to the bath temperature. Hence, equation (11) treated in the Stratonovich interpretation
represents the generalized model considered below.

3. Stationary states analysis

In our study, the main attention is paid to stationary patterns. Therefore, to describe the stochastic
system behavior in the stationary limit we have to obtain a stationary distribution Ps[x]. To this end, we
need to find a stationary solution of the corresponding Fokker-Planck equation satisfying the Langevin
equation (11) [41]. As it was shown previously (see references [35, 36, 42–46]) the functional of the sta-
tionary distribution of the vacancy concentration field has the explicit form

Ps[x] ∝ exp(−Uef[x]/σ2) , (12)

where the effective potential is

Uef[x] =U [x]−Σ

∫

dr ln M(x) . (13)

Here, Σ is a renormalized parameter proportional to σ2. It is seen that the second term in the effective
potential (13) serves as entropy contribution. It may lead to the so-called entropy-driven phase transitions
[42, 45–47], phase decomposition [32, 44] and patterning [35, 36, 43].

Firstly, let us consider the stationary states xs of the homogeneous system determined as solutions of
the equation

R(x)+
Σ

M2(x)

dM(x)

dx
= 0. (14)

The corresponding solutions are shown in figure 1 (a). It is seen that at large defect damage rate the sys-
tem is always in monostable state, whereas at small K the bistable regime is observed. The last effect
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Figure 1. ((a) Stationary dependencies of the point defects population at different values for K at

G = 0.015, Σ= 0. (b) Phase diagram at different values for G and Σ. Thick lines are spinodals. The corre-

sponding thin lines relate to ω(k) = 0 obtained for different G and Σ.

means that at small K the formation of defects by elastic field plays an essential role and leads to bista-
bility of a system. At large K , the main mechanism of defect production relates to defect generation in
cascades. At small K , the bistability domain for ε at fixed K is [εb1,εb2]. In the plane (K ,ε) binodals εb1(K )

and εb2(K ) form a cusp binding the bistability of the system states [see figure 1 (b)]. Here, in the cusp, the
system is bistable, while outside the cusp the system is monostable. Below the cusp, the system is consid-
ered to be in a depleted state of defects, while above the cusp, an enriched state of defects is realized. For
a homogeneous system, the depleted state can be related to a “crystalline” phase with a small amount of
defects, whereas enriched state corresponds to some kind of “amorphous” phase with a large number of
defects. Therefore, in the cusp, two possible phases (“crystalline” and “amorphous”) can be observed1.

As far as the functional of stationary distribution Ps[x] is known, the solution of the variational prob-
lem δPs[x]/δx = 0 allows one to find stationary structures xs(r) as its solution. Following references
[34–37] the most probable solutions x(r) corresponding to the minima of Uef[x] can be found as solutions
of the equation

∂tx =−
1

M(x)

δUef[x]

δx
. (15)

Substituting the necessary expressions we get

∂tx = R(x)+∇∇∇·M(x)∇∇∇µ+
Σ

M2(x)

dM(x)

dx
. (16)

According to this equation and stationary states behavior we can study the stability of stationary
states in linear analysis by introducing small fluctuations δx = x−xs. In such a case, the linearized equa-
tion (16) has an exponential solution δx ∝ e[Λ+ω(k)]t , where Λ is the Lyapunov exponent responsible for
homogenous perturbations, whereas ω(k) takes care of the stability of stationary states due to inhomoge-
neous perturbations. It gives dispersion law allowing one to define critical wave-numbers kc as solutions
of equation ω(k) = 0. Expressions for Λ and ω(k) are:

Λ(xs) =−µ−
Kνµ (1+B)

(

µ+µB + xsν
)2

+G
ε(1− x2

s )

(1+ x2
s )2

exp

(

εxs

1+ x2
s

)

−
2Σ

x3
s

,

ω(k; xs) =−k2
[

1−εxs

(

1−ℓ2k2
)]

. (17)

It follows that the noise action stabilizes the stationary state with respect to homogeneous perturbations.
In figure 1 thin lines bind a domain of inhomogeneous distribution of vacancies: at ω(k) < 0 no patterns

1To distinguish real crystalline and amorphous states the long range order parameter should be used. In our approachwe do not
have such a criteria. Therefore, two macroscopic phases can be distinguished only by the value of the population xs of stationary
defects.
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can be realized (below thin curves), in the opposite case dissipative structures of point defects emerge
(above thin curves). The analysis of the dispersion relation with respect to three different solutions of
equation (14) realized in bistable domain allows one to set that for stable solutions xs, the noise extends
the domain of unstable modes whereas in the vicinity of unstable branch xs , the noise shrinks the domain
for wave-numbers related to unstable modes. Moreover, here the noise is capable of decreasing the value
for the most unstable mode k0 = kc/

p
2.

4. Numerical results

Let us study the spatial arrangement of defect structure by means of computer simulations. To this
end, we make discretization of the system in 3-dimensional space with N ×N ×N sites, where N = 128.
Using data for pure nickel with the network dislocation density ρN = 1014 cm−2 and diffusion length
Ld ≃ 10−7 m as a reference system we can define the total length of the system L = N∆l , with the mesh
size ∆l = 0.5. It provides the linear size of our 3D-system L = 25Ld. The time step satisfying the stability of
the simulation algorithm is ∆t = 10−4 in dimensionless units. Physically it corresponds to the time during
which relaxation of one cascade is finished, i.e., 10−8 s. Boundary conditions are periodic. To study the
dynamics of pattern formation we have numerically solved the equation (16). At large time scales it gives
the solutions equivalent in statistical sense to solutions of the Langevin equation (11).

In order to accelerate computations we exclude initial stages when vacancy concentration increases
from its equilibriumvalue by taking elevated initial conditions 〈x(r, t = 0)〉 = 0.5, 〈(δx)2〉 = 0.1. Simulation
procedures were done using GRID infrastructure of Ukrainian National Grid in the virtual organization
MULTISCALE on computer clusters www.iap.sumy.org (Institute of Applied Physics, NAS of Ukraine) and
www.icmp.lviv.ua (Institute for Condensed Matter Physics, NAS of Ukraine).

Let us consider the behavior of a deterministic system, firstly, setting Σ= 0. Snapshots of the typical
evolution of the system at K = 0.075 are shown in figure 2. Here, in figure 2 (a) the total distribution
of the vacancy field is shown [blue domains (online) relate to a small vacancy concentration limit, red
ones (online) correspond to high concentration limit]. In figure 2 (b) spatial defect structures are shown
as a cross-section at a fixed concentration value x = 0.9. Here, the concentration of initially Gaussianly
distributed defects is small. During the system evolution, the concentration increases essentially. It is
stipulated by the production of defects through irradiation and elastic field in the system having an an-
nealed concentration of defects at previous stages. When supersaturation is reached, the defects start to
condense into phases (structural type of grain boundaries) with high concentration of defects. At next

(a)

(b)

Figure 2. (Color online) Snapshots of the system evolution obtained at t = 0, 1, 10, 100, 300 (from left

to right). (a) Total concentration field: blue domains relate to small concentration values, red domains

correspond to high concentration of vacancies. (b) Spatial patterns of defects at the same times. Snapshots

are taken at K = 0.075, ε= 10.5, Σ= 0.
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Figure 3. (Color online) The dynamics of the averaged concentration (a) and its dispersion (b) at different

K and ε= 10.5, and Σ= 0. (c) Stationary defect structures at K = 0.001, 0.1, 0.2 (from left to right).

stages of the system evolution one gets grains without defects. From thermodynamical viewpoint such
“ideal” grains are unstable and at the next time steps one can observe the formation of additional defects
inside the grains. Grains evolve according to Ostwald ripening mechanism. At late stages corresponding
to stationary limit one has a net of vacancy loops and vacancy walls with voids.

The quantitative picture of the system evolution is shown in figure 3. Here, the averaged concentra-
tion 〈x〉 [see figure 3 (a)] increases at small times and after supersaturation it decreases toward stationary
value 〈x〉s due to the formation of defect clusters and motion of defects to sinks. It is seen that with the
growth of the defect production rate, an average concentration 〈x〉 takes up elevated stationary values.
The principal information about the ordering process is provided by the dispersion behavior 〈(δx)2〉 [see
figure 3 (b)]. This quantity plays the role of an order parameter in phase transition, phase separation and
pattern formation processes [29, 31, 36, 48]. An increasing dynamics of this quantity means the order-
ing of the system with the formation of different phases (in our case, phases with low and high vacancy
concentrations). If it attains a non-zero stationary value, then an ordered phase organizes. In our case it
is seen that 〈(δx)2〉 increases toward maximal value corresponding to the formation of well-structured
grains: if grains have a small number of defects inside, then the order parameter takes a large maximal
value. At late stages, due to reconstruction of defect clusters, it decreases toward its stationary non-zero
values. It is seen that with the growth of defect production rate, the reconstruction of clusters is faster.
Moreover, at elevated K , the order parameter takes up larger values meaning the formation of well orga-
nized structure of point defect clusters. The corresponding stationary snapshots [see figure 3 (c)] illustrate
different structures of defects at different values for K . The dynamics of spatial arrangement of defects
can be seen from the structure function S(k, t) time behavior as the Fourier transformation of the two-
point correlation function C (r, t) ≡ 〈δx(r, t)δx(0, t)〉. The spherical analogue of S(k) is shown in figure 4.
It is seen that during the system evolution, the peak of S(k) that denotes the period of spatial structures
increases and shifts toward large wave-numbers k meaning the formation of a structure with a smaller
period compared to structures related to the early stages when supersaturation is reached. An increase
in the peak height corresponds to the formation of well-organized phases enriched by V-type defects.
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Figure 4. (Color online) Spherically averaged structure function dynamics at K = 0.1, ε= 10.5, Σ= 0.

More information on spatial arrangement of V-type clusters in the stationary limit is provided by a
two-point correlation function C (r, t →∞). It is a spherical analogue calculated in 3D space at different
values for defect production rate shown in figure 5 (a). It follows that C (r ) exponentially decays from its
maximal value at the point r = 0. The decaying rate depends on the damage rate K . It is worth noting
that with an increase in K , spatial correlation function manifests an oscillatory behavior meaning the
formation of ordered structures with a fixed period. To study stationary patterns in detail we use an
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Figure 5. (Color online) (a) Spherically averaged two-point correlation function C (r ) for stationary pat-

terns at K = 0.01, 0.1, 0.2. (b) The dependence of correlation radius rc and period of patterns r0 vs damage

rate K . (c) Snapshots of stationary patterns illustrating microstructure at different values for their period

r0 and correlation radius rc at variation of the damage rate K . Other parameters are: ε= 10.5, Σ= 0.
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approximation of the correlation function in the form C (r, t →∞) ≃ Cmaxe−r /rc cos(2πr /r0), where rc is
the correlation scale, r0 relates to the period of the pattern. From the dependence C (r ) one can find the
correlation radius of defect structures indicating spatial interactions between structural elements in the
pattern. From the Fourier transform of C (r ) we can obtain a period of patterns r0. The corresponding
dependencies rc and r0 are shown in figure 5 (b). It follows that at small K the correlation function
manifests decaying oscillations with small amplitude and large period, where C (r ≫ 1) → 0. In such
a case we arrive at a network structure where all V-defects are arranged into statistically independent
loops [see left hand snapshot in figure 5 (c)].When we increase K , a well pronounced oscillatory behavior
of the correlation function with decaying correlations is realized. Compared to the previous case, one can
say that the period of spatial structures decreases, and nonzero values for C (r ≫ 1) indicate the formation
of a pattern representing defect walls with defect voids and loops [see centered snapshot in figure 5(c)].
In the case of large K (K = 0.175), the decaying rate for C (r ) is characterized by large values for the
correlation radius and small period of structures. Such correlations are caused by the formation of planar
structures shown infigure 5 (c) (right hand snapshot). At a further increase in K , the production of defects
leads to the formation of defects inside planar structures resulting in the correlation radius decrease and
a small decrease in the period of patterns [see figure 3 (c) right hand snapshot]. The predicted behavior
of the period of patterns versus damage rate is in good correspondence with well-known experimental
data [49].

Next, let us study the most probable stationary patterns in stochastic case by varying the noise in-
tensity Σ. For a homogeneous system one can find most probable values for the vacancy concentration
as solutions to the stationary homogeneous equation (14). It follows that the noise action leads to an
increase in the most probable vacancy concentration due to a stochastic mechanism of defect produc-
tion compared to the deterministic case. Studying the stationary patterns by a numerical solution of the
original equation (16) one can find dependencies of 〈x〉s and 〈(δx)2〉s versus the noise intensity Σ. The
corresponding results are shown in figure 6. It is seen that with the growth of noise intensities the aver-
aged concentration increases. The same effect is observed in the dependence 〈(δx)2〉s(Σ). It means that
large fluctuations in the production of defects promote the organization of well-ordered structures of
V-type defects due to an entropy-driven mechanism of pattern formation [25].

From the naive consideration one can predict a decrease of the period of structures and an increase in
their correlation radius. Indeed, analyzing the corresponding structure function shown in figure 7 (a) one
can find that with the noise intensity growth the position of its maximum is shifted toward large wave-
numbers, i.e., the period of defect structures decreases. A growth of the peak at elevated Σ corresponds to
an increase in the correlation radius. The corresponding dependencies of the correlation radius and the
period of patterns are shown in figure 7 (b). Snapshots of stationary patterns at different noise intensities
and fixed main system parameters are shown in figure 7 (c) in order to show the morphology changes
of patterns. It is seen that in the noiseless case one has a large amount of voids and a small number
of linear defects. If we introduce the noise, then the effective potential (13) determining the stationary
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Figure 7. (Color online) (a) Stationary structure function at different noise intensity. (b) Dependencies of

the correlation radius rc and period of patterns r0 vsnoise intensityΣ. (c) Snapshots of stationary patterns

obtained at Σ= 0.0, 0.001 and 0.005 (from left to the right). Other parameters are: ε= 9, K = 0.05.

distribution of the vacancy field Ps[x] acquires logarithmic component (i.e., entropy contribution), or
pre-exponential term in Ps[x]. Therefore, due to this effect one gets a morphology change of patterns at
an essential increase of the number of linear defects only if the noise term is introduced. In such a case,
the emergence of a net of linear defects results in a decrease of the correlation radius rc at small Σ. With
a further growth of Σ, one gets large correlations in patterns in the directions of the developed linear
defects.

5. Discussion

In our study we have considered the pattern formation in systems of point defects under the action of
irradiation. We have generalized a standard approach of point defects dynamics by taking into account
the production of defects by an elastic field caused by the presence of defects, their interactions and
stochastic production of defects as a microscopic effect on the system described at mesoscopic level.

Themain result of our paper relates to identifying the effect of irradiation conditions andmicroscopic
processes of defect production and their interactions onto morphology changes of the V-type defect struc-
ture. Considering the deterministic picture of pattern formation in the framework of correlation analysis
we have shown that the period of patterns decreases with the displacement damage rate growth. It is
compared with the diffusion length and according to the data for pure nickel with the net dislocation
density ρN ∼ 1014 m−2 it takes up values around 10−7 m. For a cold worked nickel characterized by
ρN ∼ 1015 m−2, the period of patterns is around 100 Å. This result was discussed previously by experi-
mental investigations [49]. We have studied the morphology changes of stationary patterns by measur-
ing the correlation radius of stationary structures. It was shown that when the morphology of patterns
changes crucially the correlation radius manifests an anomalous behavior. In a deterministic system,
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this effect is well seen when transition from linear structures toward the formation of planar structures
(defect walls or grain boundaries) is realized. Here, the correlation radius takes up large values for pure
planar defect structures.

Considering stationary patterns in a stochastic system it was shown that the noise action plays a role
similar to the displacement damage rate which increases the number of defects. Due to supersaturation
of point defects their organization into clusters of higher dimension can be observed. We have compared
stationary patterns for a deterministic system and the corresponding stationary patterns for a stochastic
one. Here, the period of patterns decreases with the noise intensity growth. We have shown that due to
reconstruction of stationary distribution of the vacancy concentration field caused by the noise effect,
the morphology of patterns changes essentially: there is a transition from patterns with voids to patterns
with linear defects. Such a morphology change corresponds to a decrease in the correlation radius of
spatial structures. With further noise intensity growth, spatial arrangement described by an increasing
correlation radius is observed.

We have considered the dynamics of vacancies only assuming fast relaxation of interstitials and ne-
glecting the dynamics of other elements such as di-, tri-, tetra-vacancies and dislocations. The proposed
approach can be generalized by taking into account the dynamics of all the above elements. In our study
we have used material constants for pure nickel. However, the obtained results, which are quite general,
can be applied to the study of an ensemble of point defects in certain material under sustained irradia-
tion.
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Особливостi просторової органiзацiї дефектiв вакансiйного

типу в опромiнюваних системах: 3D–моделювання

В.О. Харченко, Д.О. Харченко

Iнститут прикладної фiзики НАН України, вул. Петропавлiвська, 58, 40000 Суми, Україна

Проведено дослiдження динамiки структуроутворення в системi точкових дефектiв при сталiй дiї опро-

мiнення в рамках швидкiсної теорiї. Нами узагальнено стандартний пiдхiд врахуванням впливу пружних

полiв та стохастичного виробництва дефектiв, що представляється внутрiшнiм мультиплiкативним шу-

мом. В рамках застосування процедури 3D-моделювання встановлено, що зростання швидкостi набору

дози приводить до змiни морфологiї структур, якi складаються з вакансiй. Аналогiчний ефект спостерiгає-

ться при варiюваннi iнтенсивностi мультиплiкативного шуму. Стацiонарнi структури дефектiв дослiджено

iз застосуванням кореляцiйного аналiзу.

Ключовi слова: дефекти, опромiнення, структуроутворення, шум
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