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The unified description of diffusion processes that cross over from a ballistic behavior at short times to normal

or anomalous diffusion (sub- or superdiffusion) at longer times is constructed on the basis of a non-Markovian

generalization of the Fokker-Planck equation. The necessary non-Markovian kinetic coefficients are determined

by the observable quantities (mean- and mean square displacements). Solutions of the non-Markovian equation

describing diffusive processes in the physical space are obtained. For long times, these solutions agree with the

predictions of the continuous random walk theory; they are, however, much superior at shorter times when the

effect of the ballistic behavior is crucial.
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1. Introduction

Although particle diffusion processes have been studied for about two centuries [1], there are still

some subtle issues that need to be faced at the present time. In this paper, we point out these subtle

difficulties and offer ways to overcome them.

The quantitative theory of diffusion processes begins in 1855 with the phenomenological solution

of the diffusion problem by Fick. Fick employed an empirical definition of the particle flux through the

surface of a subvolume (Fick’s first law) and the continuity equation which reflects the conservation of

particles. This combination results in the diffusion equation (the Fick’s second law) which defines the

time evolution of the probability distribution function (PDF) of particle concentration. The variance of

this PDF grows in time according to

〈r 2〉t ∼ Dt , (1)

where D is the diffusion coefficient which in general depends on the particles and medium in which they

diffuse. The equation solved by the PDF is the classical diffusion equation

∂ f (r, t)

∂t
= D

∂2 f (r, t)

∂r 2
. (2)

The solution of this equation with the initial condition

f (r, t = 0) = δ(r ), (3)

where δ(x) is the Dirac delta-function, reads

f (r, t) =
exp

[
−r 2/(4Dt)

]
p
πDt

. (4)
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This function is normalized to unity
∫∞

0 f (r, t)dr = 1 and its variance agrees with equation (1).

The first subtle difficulty that one needs to pay attention to is that this solution allows particles to

arrive at arbitrary distances from the origin in finite, and even infinitesimal time. Moreover, in many

cases, the processes that exhibit the law (1) for times larger than some time tc, possess a different behavior

at short times, i.e.,

〈r 2〉t ∼ D2t 2, for t ≪ tc . (5)

This behavior is referred to as “ballistic”. Recently, due to the development of themeasuring equipment, it

has become possible to observe the ballistic motion and the transition to normal diffusion in accordance

with equation (1) [9–11]. Therefore, the correct theory for the PDF should satisfy the two asymptotic limits

given by equation (5) and, in general, by equation (1) simultaneously.

The cure for both the infinite speed problem and for the ballistic regime in 1 dimension was proposed

by Davydov [12], who introduced an explicit time interval tc of the mean free path. In his approach, the

diffusion problem is reduced to a solution of the well known telegraph equation (see, e.g., [13]). In con-

trast to the parabolic nature of Fick’s second law, the telegraph equation is of a hyperbolic type, resulting

in a propagation of the front of the PDF with finite velocity. However, we reiterate that it was stressed

in [12] that the telegraph equation is correct only in the one-dimensional case. The equivalent treatment

for 2 and 3 dimensional diffusion does not exist in the literature. One of the main results of this paper (cf.

section 5) is a way to achieve the same in dimensions higher than 1.

Another issue that needs to be discussed is that the classical diffusion law equation (1) is not univer-

sally obeyed in Nature. Since the classical work by Hurst [2] on the stochastic discharge of reservoirs and

rivers, Nature has offered us a large number of examples of diffusion processes which are ‘anomalous’

in the sense that an observable X diffuses in time, so that its variance time dependence is

〈∆X 2〉t ∼ Dαtα , t ≫ tc , (6)

where α , 1. We expect α , 1 when the diffusion steps are correlated, with persistence for α > 1 and

anti-persistence for α< 1 [3]. This law is usually valid only at long times and for t ≪ tc we may again find

ballistic behavior. All the issues discussed above for classical diffusion reappear in the context of anoma-

lous diffusion, both in 1 and in higher dimensions. The bulk of this paper will deal with establishing the

methods to achieve a consistent theory for the PDF that is valid for all times.

As a preparation for more complex situations, in section 2 we review the telegraph equation that

regularizes all the issues raised above in 1 dimension. In section 3 we generalize the methodology of

the telegraph equation to Fokker-Planck equations with arbitrary non-local kernels in time. In the same

section we show how to relate this kernel to the observable mean square displacement of a diffusive

process. In the next section we turn to the Langevin equation for a guidance how to compute the mean

square displacement to uniquely determine the associated Fokker-Planck equation. In the next Sectionwe

generalize the methods used in this paper to the 3-dimensional case taking into account hydrodynamic

interactions. The last section offers a summary and conclusions.

2. Review: the telegraph equation in 1 dimension.

In order to develop a diffusion model with possible finite speed of propagation, it is necessary to

simultaneously take into account the mean particle velocity c and the time length tc of the mean free

path [12]. Then, the diffusion process is defined by the following equation

tc
∂2 f (r, t)

∂t 2
+
∂ f (r, t)

∂t
= D

∂2 f (r, t)

∂r 2
, (7)

where the diffusion coefficient D = c2tc.

In the limit tc → 0, the time evolution of the PDF is possible only if D , 0, e.g., the mean particle

velocity c →∞. In this case, equation (7) is reduced to the classical diffusion equation (2) and the solution

of this equation with the initial condition (3) is equation (4). This solution is normalized to unity and its

variance agrees with equation (1).
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The delta-function initial condition can be considered as a limit of a sequence of continues functions,

for example

δ(x) = lim
α→∞

δ(x,α),

δ(x,α) =
α
p
π

e−α
2x2

. (8)

Comparingwith equation (2) we conclude that normal diffusion is an inverted process to the limit defined

by equation (8), the initial delta-function spreads in spacewhen time increases, keeping the center ofmass

at rest at the origin.

In the limit tc →∞, equation (7) transforms to the wave equation

∂2 f (r, t)

∂t 2
= c2 ∂

2 f (r, t)

∂r 2
. (9)

Its solution with the initial condition defined by equation (3) reads

f (r, t) = δ(ct − r ) . (10)

This solution looks as though the initial conditions propagate with the velocity c without changing the

shape of the distribution.

For an arbitrary value of tc, the solution of the telegraph equation is given by three contributions (see,

e.g., [15] and the references cited therein)

f (ξ,τ) = e−τ/2δ(τ−ξ)+
[

fI (ξ,τ)+ fI I (ξ,τ)
]
Θ(τ−ξ) . (11)

Here, the two dimensionless variables are the normalized time τ = t/tc and the normalized length ξ =
r /

p
Dtc. Θ(x) is the Heaviside function. The variance of this distribution reads

〈ξ2〉t = 2
[
τ− (1−e−τ)

]
. (12)

Figure 1. (Color online) The three contributions to the solution of the telegraph equation PDF [equa-

tion (11)] for different time intervals τ = 0.5, 1, 2, 4, 8. Propagating contribution is shown in panel

(a). The delta-function is graphically represented by narrow Gaussians [see equation (8)]. The functions

f I ,I I (ξ,τ)Θ(τ−ξ) [see equations (13) and (14)] are shown in panels (b) and (c).
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This form clearly crosses over from ballistic to normal diffusion as τ increases. The interpretation of the

three contributions is as follows: the first term corresponds to the damped ballistic propagation of the

kind defined by equation (10). The next two terms exist only inside the compact region that expands with

the velocity c. The functions fI (ξ,τ) and fI I (ξ,τ) are given by

fI (ξ,τ) =
exp(−τ/2)

2
I0

(1

2

√
τ2 −ξ2

)
(13)

and

fI I (ξ,τ) = τ
exp(−τ/2)

2

I1

(
1
2

√
τ2 −ξ2

)

√
τ2 −ξ2

, (14)

where Iν(z) are themodified Bessel functions of the first kind. The asymptotic behavior of these functions

is defined by Iν(z)z→∞ ∼ exp(z)/
p

2πz, therefore, in the long time limit τ≫ 1, equation (11) is reduced

to the solution of the classical diffusion equation given by equation (4).

Various terms in the solution of the telegraph equation, equation (11), are shown in figure 1. Phys-

ically, the first term describes the part of the initial mass of diffusers at the origin that shoots out as a

propagating solution which decreases exponentially in time, thus providing more and more mass to the

diffusive part of the transport process. The function fI (ξ,τ)Θ(τ−ξ) represents the spreading of diffusers

whose mass peaks at the origin without participating in the propagation of the first function. Note that

this solution is zero at t = 0, but it is finite for any positive time. The third term fI I (ξ,τ)Θ(τ−ξ) is seen

to first increase in weight and in amplitude and later on to decrease. It stems from the existence of a

finitely rapid front that does not allow the unphysical infinite speed of propagation that characterizes the

solution (4). Of course, the sum of the three contributions is normalized.

3. From the telegraph equation to the time-nonlocal Fokker-Planck

equation

In order to motivate the use of the Fokker-Planck equation with time non-local kernels, we rederive

the telegraph equation in the following way: let us begin with the continuity equation in the following

form:
∂ f (r, t)

∂t
=−

∂Γ(r, t)

∂r
. (15)

Here, Γ(r, t) is the particle flux. In its turn, this flux satisfies the equation [12]

∂Γ(r, t)

∂t
=−

Γ(r, t)−Γ0(r, t)

tc
, (16)

where Γ0(r, t) is the same as the first Fick’s law

Γ0(r, t) =−D
∂ f (r, t)

∂x
. (17)

The solution of equation (16) is given by [17, 18]

Γ=−
D

tc

t∫

0

exp

(
−

t − t ′

tc

)
∂2 f (r, t ′)

∂r 2
dt ′. (18)

Substitution of this equation into equation (15) yields the time nonlocal diffusion integro-differential

equation

∂ f (r, t)

∂t
=

D

tc

t∫

0

exp

(
−

t − t ′

tc

)
∂2 f (r, t ′)

∂r 2
dt ′. (19)

After time differentiation, this equation is reduced to the telegraph equation defined by equation (7).
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Observe now [15] that equation (19) is a particular case of the time-nonlocal Fokker-Planck equation,

∂ f (r, t)

∂t
=

t∫

0

W (t − t ′)
∂2 f (r, t ′)

∂r 2
dt ′ , (20)

where W (t) is the kernel responsible for the non-Fickian behavior of the diffusion process. The Laplace

transform of the solution of this equation is given by [19]

f̃ (r, s) =
1

W̃ (s)
· P̃

(
r, s/W̃ (s)

)
, (21)

where the function P̃ (r, s) is the Laplace transform of the solution of the auxiliary equation with the same

initial condition
∂

∂t
P (r, t) =

∂2

∂r 2
P (r, t) . (22)

which is identical with equation (2). The Laplace transform of the solution corresponding to the initial

condition defined by equation (3) follows from equation (4) with D = 1

P̃ (r, s) =
√

2

π

r K1/2

(
r
p

s
)

(
r
p

s
)1/2

, (23)

where K1/2(z) is the modified Bessel function of the third kind. Substitution of equation (23) into equa-

tion (21) yields the solution of equation (20)

f̃ (r, s) =
√

2

π

r

W̃ (s)

K1/2

(
r

√
s/W̃ (s)

)

(
r

√
s/W̃ (s)

)1/2
. (24)

The Laplace transform of an even moment of the distribution is defined by

〈r 2m〉s =
∞∫

0

f̃ (x, s)x2m dx, m = 1,2, . . . . (25)

Substitution of equation (24) into equation (25) yields

〈r 2m〉s = 2mΓ(2m)
W̃ (s)m

sm+1
. (26)

For the moment of zero order, it is necessary to take into account that limm→0 mΓ(2m) = 1/2, therefore,

〈r 0〉s = 1/s, i.e., the normalization condition.

For the variance (m = 1), equation (26) reads

〈r 2〉s = 2
W̃ (s)

s2
. (27)

The kernel of the time-nonlocal Fokker-Planck equation is defined by the mean square displacement and,

therefore, [see equation (20)] the PDF is also defined by this quantity.

4. Determining the kernel from the Langevin equation

The conclusion of the last section is that in order to obtain the appropriate Fokker-Planck equation

for a given process, we need to determine the time dependence of the variance 〈r 2〉t . One way to do so is

to measure this moment from experimental data. On the other hand, if this data are not available, or if

one wants to derive this information from the physics of the problem, another starting point can be the

generalized Langevin equation [6, 7].
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The standard Langevin equation is Newton’s second law applied to a Brownian particlewhere the ran-

dom force acting on a particle is taken into account. As was shown in [20–22], the generalized Langevin

equation is written in terms of a time non-local friction force:

∂2r (t)

∂t 2
=−

t∫

0

γ(t − t ′)
∂r (t ′)

∂t ′
dt ′+R(t), (28)

where R(t) is the random force component which is uncorrelated with the velocity that has a zero

mean 〈R(t)〉 = 0. The autocorrelation of the random force is related to the kernel in equation (28) by

the fluctuation-dissipation theorem [21, 22]:

〈R(t)R(t ′)〉 =
kBT

m
γ(t − t ′), (29)

where m is the mass of a particle. For the kernel of the kind γ(t) = γ0δ(t), equation (28) is transformed

to the standard Langevin equation. In the general case, the Fourier transform of the random force corre-

lation function is colored, for example cf. [23]).

In dimensionless variables defined in the section 2 with the diffusion coefficient defined by D =
kBT tc/m and 1/tc =

∫∞
0 γ(t)dt , the Laplace transform of the mean square displacement follows from

equation (28) (see, e.g., [24]) and reads

〈̃ξ2〉s =
2

s2
[
s + γ̃(s)

] . (30)

where the dimensionless kernel satisfies in the time domain
∫∞

0 γ(τ)dτ= 1. One can see from this equa-

tion that if lims→∞ γ̃(s)/s → 0, the function 〈̃ξ2〉s ∼ 1/s3 and the mean square displacement exhibit the

ballistic behavior at short times 〈̃ξ2〉t ∼ t 2. The shape of the function γ̃(s) at small s is responsible for

asymptotic behavior of the mean square displacement in the time domain.

Substitution of equation (30) into equation (27) yields the kernel

W̃ (s)=
1

s + γ̃(s)
. (31)

This equation settles the relation between the memory kernel of the time-nonlocal Fokker-Planck equa-

tion and the memory kernel of the Langevin equation.

The solution of equation (20) given by equation (24) with the memory kernel defined by equation (31)

reads

f̃ (ξ, s) =
√

2

π
ξ
[
s + γ̃(s)

] K1/2

(
ξ

√
s
[
s + γ̃(s)

])

{
ξ

√
s
[
s + γ̃(s)

]}1/2
. (32)

Equation (32) consists of two terms,

f̃ (ξ, s) = ξ
[
s + γ̃(s)

]
Ψ̃

(
ξ2s

[
s + γ̃(s)

])
, (33)

where

Ψ̃(z) =
√

2

π

K1/2

(p
z
)

(p
z
)1/2

. (34)

The Taylor expansion of equation (34) is defined by

Ψ̃(z) =
∞∑

n=0

1

n!

∂n

∂zn
Ψ̃(z)

∣∣∣∣
z=z0

(z − z0)n . (35)

For the modified Bessel function of the third kind

∂n

∂zn

K1/2

(p
z
)

(p
z
)1/2

=
(−1)n

2n

K1/2+n

(p
z
)

(p
z
)1/2+n

. (36)
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Equation (33) defines that z = ξ2s
[
s + γ̃(s)

]
= z2

0 − ξ2
[
γ̃(s)/2

]2
, where z0 = ξ2

{
s +

[
γ̃(s)/2

]}2
, therefore,

equation (35) reads

Ψ̃(z)=
√

2

π

∞∑

n=0

1

n!

K1/2+n

(
ξ
[
s + γ̃(s)/2

])
{
ξ
[
s + γ̃(s)/2

]}1/2+n

[
ξγ̃(s)

2
p

2

]2n

. (37)

It is suitable to rewrite equation (33) in the following form

f̃ (ξ, s) = r
{[

s + γ̃(s)/2
]
+ γ̃(s)/2

}
Ψ̃

(
r 2s

[
s + γ̃(s)

])

= f̃I (ξ, s)+ f̃I I (ξ, s) . (38)

Taking into account that

K1/2(z) =
√

π

2

e−z

p
z

(39)

equation (37) can be written as

Ψ̃(z) =
exp

{
−ξ

[
s + γ̃(s)/2

]}

ξ
[
s + γ̃(s)/2

] +
∞∑

n=1

1

n!

K1/2+n

(
ξ
[
s + γ̃(s)/2

])
{
ξ
[
s + γ̃(s)/2

]}1/2+n

[
ξγ̃(s)

2
p

2

]2n

. (40)

Let lims→∞ γ̃(s) = γ0. Under this assumption, the sum in equation (40) asymptotically tends to zero and

the function defined by equation (40) reads

Ψ̃(z)

∣∣∣∣
s→∞

∼
exp

[
−ξ

(
s +γ0/2

)]

ξ
(
s +γ0/2

) (41)

and the function f̃I I (ξ, s) from equation (38) is given by

f̃I I (ξ, s)

∣∣∣∣
s→∞

∼ γ0

exp
[
−ξ

(
s +γ0/2

)]

s +γ0/2
. (42)

The inverse Laplace transform of equation (42) yields

fI I (ξ, t) = γ0e−γ0τ/2
Θ(τ−ξ). (43)

proceeding to limit limτ→0 fI I (ξ,τ) = 0 shows that this contribution to the PDF has nothing to do with the

initial condition and is responsible for diffusion of injecting particles during the transport process.

The nonvanishing term in the function f̃I (τ, s) in the limit of large s is defined by

f̃I (ξ, s)

∣∣∣∣
s→∞

∼ exp
[
−ξ

(
s +γ0/2

)]
. (44)

Its inverse Laplace transform yields

fI (ξ, t) = e−γ0τ/2δ(τ−ξ). (45)

Therefore, the part of the PDF under consideration which is responsible for the initial condition and the

further impulse propagation is contained in the first summand in equation (38).

Now we can isolate from the PDF defined by equation (32) the part corresponding to the diffusion

process of the particles which are lost by the propagating impulse

f̃diff(ξ, s) = f̃ (ξ, s)−exp
[
−ξ

(
s +γ0/2

)]

= Φ̃(ξ, s)e−ξs , (46)

where the function Φ̃(r, s) is defined by equation (32) and equation (39) and reads

Φ̃(ξ, s) =
[
s + γ̃(s)

] exp
(
−ξ

{ √
s
[
s + γ̃(s)

]
− s

})

√
s
[
s + γ̃(s)

] −exp

(
−
ξγ0

2

)
. (47)
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The inverse Laplace transform of equation (47) yields the diffusive part of the PDF in the time domain

fdiff(ξ, t) =Φ(ξ,τ−ξ)Θ(τ−ξ). (48)

The importance of this result is that the explicit Heaviside function takes upon itself the discontinuity in

the function fdiff(ξ,τ). The function Φ(ξ,τ−ξ) in the time domain is a continuous function. If it does not

have an analytical representation in a closed form, it can be evaluated numerically, for example using

the direct integration method [25].

Summing together the results (45) and (48) in the time domain we get a general solution of the non-

Markovian problem with a short-time behavior, in the form

f (ξ,τ) = e−γ0τ/2δ(τ−ξ)+Φ(ξ,τ−ξ)Θ(τ−ξ). (49)

From this solution one can see that the diffusion repartition of the PDF occurs inside the spatial diffusion

domain which increases in a deterministic way. The first term in equation (49) corresponds to the propa-

gating delta-function which is inherited from the initial conditions, and it keeps decreasing in time at the

edge of the ballistically expanding domain.

In order to estimate the PDF in the long time limit, it is necessary to suggest the form of the memory

kernel of the Langevin equation at small s. The reasonable choice is given by

γ̃(s)s∼0 ∼ sα−1. (50)

One can see from equation (30) that under condition sα+1 Ê s3 (i.e., α É 2) the inverse Laplace trans-

form of equation (30) yields the variance in the form of equation (6). Substitution of equation (50) to

equation (32) defines the Laplace transform of the PDF at small s

f̃ (ξ, s) =
exp

(
−ξsα/2

)

s1−α/2
. (51)

In the general case, the inverse Laplace transform of equation (51) is given by the Fox functions (see,

e.g. [26]). For α= 1 in the time domain, the PDF is defined by equation (4). For the special case α= 0, the

inverse Laplace transform of equation (51) is independent of time and reads

f (ξ) = e−ξ. (52)

This result coincides with the PDF from [27].

Below we demonstrate the application of the time-nonlocal approach with explicit examples.

4.1. Standard asymptotic diffusion

For γ̃(s) = 1 in equation (31) the generalized Langevin equation is reduced to the standard one which

predicts the mean square displacement in the form of equation (12). The memory kernel of the time-

nonlocal Fokker-Planck equation reads

W̃ (s) =
1

s +1
. (53)

In this case, equation (46) reads

f̃diff(ξ, s) = Φ̃(ξ,u)e−ξu , (54)

where u = s +1/2, therefore, the inverse Laplace transform is given by

fdiff(ξ, t) = e−
1
2 t
Φ(ξ, t −ξ)Θ(t −ξ). (55)

The function Φ̃(ξ,u) for the particular case under consideration follows from the definition given by

equation (47)

Φ̃(ξ,u) = uΨ(ξ,u)−1+
1

2
Ψ(ξ,u), (56)
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where

Ψ̃(ξ,u) =
exp

[
− | ξ |

(p
u2 −1/4−u

)]

p
u2 −1/4

. (57)

From the initial value theorem, it follows that

Ψ(ξ, t = 0) = lim
u→∞

uΨ̃(ξ,u)

= lim
u→∞

exp
{
− | ξ |

[
u

√
1−1/(4u2)−u

]}

√
1−1/(4u2)

= 1, (58)

Therefore, the inverse Laplace transform of equation (56) is given by

Φ(ξ, t)=
∂

∂t
Ψ(ξ, t)+

1

2
Ψ(ξ, t). (59)

The inverse Laplace transform of equation (57) is given by [28]

Ψ(ξ, t) = I0

(
1

2

√
t 2 +2ξt

)
, (60)

where I0(z) is the modified Bessel function.

Substitution of equation (60) into equation (59) yields

Φ(ξ, t)=
1

2


I0

(
1

2

√
t 2 +2ξt

)
+ (t +ξ)

I1

(
1
2

√
t 2 +2ξt

)

√
t 2 +2ξt


 . (61)

Substitution of this equation into equation (49) reduces the solution to the result for the telegraph equa-

tion given by equation (11).

The diffusion part of this solution [the sum of graphics shown in panels (b) and (c) in figure 1] is

displayed in figure 2. As was discussed above in the long time limit, this part approaches the solution of

the classical diffusion problem given by equation (2). In order to measure how fast the convergence takes

place, it is convenient to estimate the time dependence of the kurtosis of the distribution defined by

κ=
〈ξ4〉
〈ξ2〉2

−3. (62)

Figure 2. (Color online) The diffusion part of the PDF

defined by equation (11) for time intervals τ=0.5, 1,

2, 4, 8.

Figure 3. (Color online) The time dependence of the

kurtosis of the PDF corresponding to the memory

kernel defined by equation (53).
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For the Gauss distribution κ= 0, for the pure ballistic propagation κ=−2, moments are defined by equa-

tion (26) and for the kernel from equation (53) the second moment is given by equation (12). Calculation

of the fourth moment yields

〈ξ4〉τ = 12
[
τ2 +6

(
1−e−τ

)
−2τ

(
3+e−τ

)]
. (63)

The kurtosis calculated with these moments is shown in figure 3. At short times, the propagation is

ballistic with the following transition to the standard diffusion during a large time interval.

4.2. Anomalous diffusion

In order to join the short time ballistic and long time anomalous regimes [see equation (6) and equa-

tion (50)], the Laplace transform of the memory kernel of the Langevin equation can be defined by

γ̃(s)= (2−α)
sα−1

(1+ s)α−1
. (64)

It follows from this equation that

γ0 = 2−α (65)

and, therefore, the singular part of the PDF is given by

fI (ξ, t) =
1

2
exp

[
−

3(2−α)

2
τ

]
δ(| ξ | −τ) . (66)

The diffusion part of the PDF was estimated numerically and is presented in figure 4. The corresponding

kurtosis is shown in figure 5.

Figure 4. (Color online) The diffusion part of the PDF defined by the memory kernel of the Langevin

equation [see equation (64)] for different values of the parameter α. Superdiffusion [α = 3/2, panel (a)],

regular diffusion [α = 1, panel (b)] and subdiffusion [α = 1/2, panel (c)]. Time intervals from the top to

the bottom τ=0.5, 1, 2, 4, 8.
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Figure 5. (Color online) The time dependence of the kurtosis of the PDF corresponding to the memory

kernel defined by equation (64).

In a different way, the kernel of the time-nonlocal Fokker-Planck equation can be defined by themean

square displacement given in the time domain. In [14] this quantity was proposed in a form interpolating

the short time ballistic and long time anomalous behavior

〈∆r 2〉t = 2Dαtα0
(t/t0)2

[1+ (t/t0)]2−α , (67)

where 0 É α É 2 and t0 is the crossover characteristic time, at t ≪ t0, the law (67) describes the ballistic

regime and at t ≫ t0 the fractional diffusion.

Figure 6. (Color online) The diffusion part of the PDF corresponding to the mean square displacement

given by equation (67) for different values of the parameter α. Superdiffusion [α= 3/2, panel (a)], regular

diffusion [α= 1, panel (b)] and subdiffusion [α= 1/2, panel (c)]. Time intervals from the top to the bottom

τ=0.5, 1, 2, 4, 8.
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Figure 7. (Color online) The time dependence of the kurtosis of the PDF corresponding to themean square

displacement defined by equation (67).

Introduce now dimensionless variables 〈ξ2〉τ = 〈∆r 2〉t /(2Dαtα0 ) and τ = t/t0. With these variables,

the last equation reads

〈ξ2〉τ =
τ2

(1+τ)2−α . (68)

The Laplace transform of equation (68) is given by

〈̃ξ2〉s =
(α

s
−1

) 1

s
+

[
(α−1)

(α
s
−2

)
+ s

] es

sα
Γ(α−1, s) , (69)

where Γ(a, s) is the incomplete gamma function. At large s equation can be written as

s2 〈̃ξ2〉s

kB T

∣∣∣∣
s→∞

∼
2

s
−

2γ0

s2
+ . . . . (70)

Substitution of equation (69) into equation (70) yields the estimation of the asymptotic value of the mem-

ory kernel γ0 = 3(2−α) which defines the time evolution of the singular part of the PDF. The results of

numerical calculations of the diffusive part are shown in figure 6

The time evolution of the kurtosises of these distributions is displayed in figure (7).

The reader should appreciate the tremendous role of memory. The ballistic part which is represented

by the advancing and reducing delta-function sends backwards the probability that it loses due to the

exponential decay seen in figure 1, panel (a). Thus, the diffusive part of the PDF is replenished with time

and asymptotically approaches the Markovian distribution. The speed of convergence and the evolution

of the PDF shape depends on the interim behavior of the mean square displacement (or, which is the

same, of the memory kernel of the Langevin equation).

5. Hydrodynamic theory of the time-nonlocal diffusion

5.1. Memory kernel

The friction force acting upon a spherical particle has been derived in [29, 30] (the modern discussion

can be found in [31]) and is given by

Ffr(t) =−2πR3


 3η

R2
u(t)+

ρ

3

∂u(t)

∂t
+

3

R

√
ρη

π

t∫

0

1
p

t −τ

∂u(τ)

∂τ
dτ


 , (71)

where Ffr(t) is the friction force, R is the particle radius, and ρ and η are the density and viscosity of

the solvent. Substitution of this force into the Langevin equation yields the fractional equation, and the
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Laplace transform of the memory kernel can be found in a straightforward way [32]. For simplicity in-

stead of this approach we will use the results obtained [16] for the mean square displacement.

A system with hydrodynamic memory has two characteristic times

τR =
9

2

Ms

S
, (72)

where Ms is the mass of a solvent particle, S = 6πηR is the Stokes friction coefficient and

τF =
M +Ms/2

S
=

1

9

(
1+2

M

Ms

)
τR . (73)

One can see from equation (73) that τF > 0. Therefore, it is reasonable to introduce dimensionless vari-

ables τ= t/τF and β= τR /τF. Then, the projection of the mean square displacement onto one of the axis

reads

〈∆x2(τ)〉 = 2DτF

{
τ−2

(
βτ/π

)1/2 + (β−1)

+
1

α1 −α2

[
1

α3
1

eα
2
1τerfc

(
α1

p
τ
)
−

1

α3
2

eα
2
2τerfc

(
α2

p
τ
)]}

, (74)

where D is the diffusion coefficient, erfc(z) is the complimentary error function and coefficients α1 and

α2 are given by

α1,2 =
1

2

(√
β∓

√
β−4

)
. (75)

The dependence of the coefficients α1 and α2 on the parameter β is shown in figure 8.

Figure 8. (Color online) Dependence of coefficients

α1,2 on the parameter β.

Figure 9. (Color online) Time dependence of the

mean square displacement for different values of

the parameter β [〈ξ(τ)2〉 = 〈x2(τ)〉/(2DτF)].

At short times τ≪ 1, the mean square displacement is given by the Taylor expansion of equation (74)

〈∆x2(τ)〉 = 2DτFτ
2

{
1

2
−

8

15

(
βτ/π

)1/2 +
1

6
(β−1)τ

+
16

105

(
βτ/π

)1/2
τ+

1

24

[
β(β−3)+1

]
τ2 +·· ·

}
. (76)

One can see that the mean square displacement defined by equation (76) corresponds to the ballistic

motion.

In the long time limit, the mean square displacement is given by

〈∆x2(τ)〉 = 2DτFτ

{
1−2

(
β/πτ

)1/2 +
β−1

τ
−

(
β/π

)1/2
[
β−2
p
ττ

−
(β−1)(β−3)

2
p
ττ3

]}
. (77)
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equation (77) agrees with the standard diffusive.

On can see in figure (8) that there are a few particular points.

1. β= 0, (Ms = 0). Substitution of this value of the parameter β into equation (75) yields α1,2 =±i and

equation (74) is reduced to equation (12).

2. β= 3 (M = Ms). In this case, α1,2 = (
p

(3)∓i)/2 and the mean square displacement is defined by the

error function of complex argument.

3. β = 4 (M/Ms = 5/8). Substitution of β= 4 into equation (75) yields α1(2) = 1. It follows from equa-

tion (74) that

lim
α1→α2=1

〈x2(τ)〉 = 2DτF

[
τ−6

√
τ

π
+3+ (2τ−3)eτerfc

(p
τ
)]

. (78)

4. β= 9 (M = 0). In this case, the real parameters α1,2 = (3∓
p

5)/2.

The mean square displacements for different values of the parameter β listed above are shown in

figure 9. The hydrodynamic interaction results in time delay of the mean square displacement. The larger

is the value of the parameter β, the slower is the convergence to the asymptotic limit.

It is necessary to note that the predictions of equation (74) are in a good agreement with experimental

data [9]

The Laplace transform of the mean square displacement given by equation (74) reads

〈â∆ξ2(s)〉 =
2

s2
(
s +1+

√
βs

) , (79)

therefore, the memory kernel of the Langevin equation is given by

γ̃(s) = 1+
√
βs . (80)

Substitution of equation (80) to equation (31) yields the kernel of the time-nonlocal Fokker-Planck equa-

tion with due regard for hydrodynamics effects

W̃ (s) =
1

s +1+
√

βs
. (81)

5.2. Probability density function

Solutions of the telegraph equation in higher than one dimension were considered in [33] and it was

shown that the result is unphysical, in some regions the PDF becomes negative. Nevertheless, a reason-

able PDF in explicit formwas obtained for two-dimensional systems within the framework of a persistent

randomwalk model [34]. Therefore, the possibility to describe the high dimension diffusion process with

finite speed of propagation using the time-nonlocal approach is an open question.

In the general case, equation (20) reads in dimensionless units

∂ f (ξ,τ)

∂τ
=

τ∫

0

W (τ−τ′)∆d f (ξ,τ′)dτ′ , (82)

where d is the space dimension and the Laplace operator is given by

∆d =
1

ξd−1

∂

∂ξ
ξd−1 ∂

∂ξ
=

∂2

∂ξ2
+

d −1

ξ

∂

∂ξ
. (83)

For pure ballistic propagation, the kernel in equation (82) is defined by W (τ) ≡ 1. The time derivative of

equation (82) with this kernel yields d-dimensional wave equation

∂2 f (ξ,τ)

∂τ2
−∆d f (ξ,τ) = 0. (84)
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It is clear that the propagation of the ballistic impulse is specified by the function

f (ξ,τ) =
δ(τ−ξ)

ξd−1
, (85)

where the normalization condition is defined by
∫∞

0 f (ξ,τ)ξd−1dξ= 1. Nevertheless, this function is the

solution of equation (84), i.e., the one-dimensional case only; for higher dimensions, the solution differs

from the function defined by equation (85), turning negative in some regions. This is the source of the

failure of the telegraph equation for d > 1. Substitution of equation (85) into equation (84) yields

( ∂2

∂τ2
−∆d

)δ(τ−ξ)

r d−1
=

d −1

ξ

(
∂

∂ξ
+

d −2

ξ

)δ(τ−ξ)

ξd−1
. (86)

Therefore, we can suggest that the auxiliary equation which corresponds to equation (86) should be given

by

∂ f (ξ,τ)

∂τ
=

∂2 f (ξ,τ)

∂ξ2
+2

d −1

ξ

∂ f (ξ,τ)

∂ξ
+

(d −1)(d −2)

ξ2
f (ξ,τ). (87)

The Laplace transform of equation (87) reads

∂2 f̃ (ξ, s)

∂ξ2
+2

d −1

ξ

∂ f̃ (ξ, s)

∂ξ
+

[
(d −1)(d −2)

ξ2
− s

]
f̃ (ξ, s) = 0. (88)

This equation can be reduced to the Bessel equation [35] and its normalized solution is given by

f̃ (ξ, s) =
√

2

π
ξ2−d K1/2

(
ξ
p

s
)

(
ξ
p

s
)1/2

. (89)

The inverse Laplace transform of equation (89) yields the PDF in the time domain

f (ξ,τ) =
1
p
π
ξ1−d e−ξ

2/(4τ)

p
τ

. (90)

The PDF given by this equation differs from that of standard diffusion. Nevertheless, the second moment

of this function is in agreement with equation (1) and the kurtosis of this distribution is given by κ= 3.

We suggest that the time-nonlocal Fokker-Planck equation should be given by

∂ f (ξ,τ)

∂τ
=

τ∫

0

W (τ−τ′)D̂ f (ξ,τ′)dτ′, (91)

where the operator D̂ is defined by

D̂ =
∂2

∂ξ2
+2

d −1

ξ

∂

∂ξ
+

(d −1)(d −2)

ξ2
. (92)

The formal solution of equation (91) follows from equation (89) and equation (31)

f̃ (ξ, s) =
√

2

π
ξ2−d

[
s + γ̃(s)

] K1/2

(
ξ

√
s
[
s + γ̃(s)

])

(
ξ

√
s
[
s + γ̃(s)

])1/2
. (93)

This equation is similar to equation (32) to within the coefficient which depends on ξ. Therefore, the

nonvanishing part of the PDF for d = 3 and the memory kernel defined by equation (80) is given [see

equation (40) and equation (44)] by

f̃I (ξ, s) =
1

ξ2
exp

[
−r

(
s +

1+
√
βs

2

)]
. (94)
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Figure 10. (Color online) The PDF defined by equation (96) for t = 0.5,1,2,4. Panel (a): β = 3; Panel (b):

β= 4; Panel (c): β= 9

For β = 0, the inverse Laplace transform of this equation yields the damped impulse propagation corre-

sponding to equation (85). In a general case, the inverse Laplace transform of equation (94) reads

fI (ξ,τ) =
1

4ξ
e−ξ/2

√
β

π

exp
{
−βξ2/[16(τ−ξ)]

}
√

(τ−ξ)3
. (95)

In the limit τ → 0, the function defined by equation (95) tends to three-dimensional delta-function,

i.e., the initial condition of the problem under consideration. In infinitesimal time, the delta-function

due to hydrodynamic interactions becomes smooth and the PDF is free from the singular contribution.

Therefore, there is no need to pull out the ballistic contribution from the full PDF, and the solution of the

problem is given by

f (ξ,τ) =Φ(ξ,τ−ξ)Θ(τ−ξ), (96)

where the inverse Laplace transform of the continuous function is

Φ̃(ξ, s) =
[

1+1/s +
(
β/s

)1/2
]1/2

exp

(
− | ξ | ·s

{[
1+1/s +

(
β/s

)1/2
]1/2

−1

})
. (97)

This can be estimated numerically. The results of calculations for different values of the parameter β are

shown in figure 10. Note that a similar ballistic peak of the PDF was observed in simulations of the test

particle transported in pseudoturbulent fields [36]. The kurtosis of the PDF for different values of the

parameter β are compared in figure 11.

6. Conclusion

The strategy followed in this paper is to construct a time-nonlocal Fokker-Planck equation which

reproduces the time dependence of the mean square displacement of an underlying process throughout

the time domain. It should be stressed that the same mean square displacement may correspond, in
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Figure 11. (Color online) The time dependence of the kurtosis of the PDF corresponding to the memory

kernel defined by equation (81).

general, to different models for the time-dependence of the PDF. Thus, the predictions of the time non-

local Fokker-Planck approach should be compared to experimental data for the PDF to assess its scope

of validity and the quality of the approximation. The advantage of the proposed model is that it can deal

with diffusion processes that cross-over from a ballistic to a fractional behavior when time increases

from short to long values, respectively.

The general one-dimensional solution (49) demonstrates the effect of the temporal memory in the

form of a partition of the probability distribution function inside a growing spatial domain which in-

creases in a deterministic way. The approach provides a solution that exists at all times, and, in particu-

lar, is free from the instantaneous action puzzle. An extension of the employed approach to higher spatial

dimensions is used to study the implications of hydrodynamic interactions on the shape of the PDF. It is

shown that singular ballistic contribution to the PDF is smoothed out during the propagation. The expan-

sion given by equation (37) splits the Laplace transform of the PDF into two parts. One part is the ballistic

part which is the solution of an inhomogeneous differential equation in spatial variable with the initial

condition of the problem. The second one is the diffusion part, which solved the homogeneous equation

and is zero at the initial time. In its turn, the diffusion part is divided again into a few terms which cor-

respond, in general, to different auxiliary equations. Therefore, each diffusion term in s-space can be

multiplied by a coefficient C (s) so that the normalization condition and the mean square displacement

are preserved. Moreover, there is a freedom of modelling here, and this freedom has not been exhausted

in this paper. Further analysis and comparison with experimental systems are necessary to nail down

the various options of modeling different physical realizations. This research will be the subject of the

coming publications.
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Рiвняння Фокера-Планка з пам’яттю: кросовер вiд

балiстичного до дифузiйного процесу в багаточастинкових

системах i нестисних середовищах

В. Iльїн1, I. Прокаччiа1, A. Загороднiй2

1 Вiддiл хiмiчної фiзики, Науковий Iнститут Вайцмана, 76100 Реховот, Iзраїль

2 Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України, 03680 Київ, Україна

На основi немаркiвського узагальнення рiвняння Фокера-Планка запропоновано пiдхiд до об’єднаного

опису дифузiйних процесiв, який дозволяє розглядати як балiстичний режим на малих часах, так i ано-

мальну (суб- або супер-) дифузiю на великих часових iнтервалах. Встановлено зв’язок немаркiвських кi-

нетичних коефiцiєнтiв зi спостережуваними величинами (середiми та середньоквадратичними змiще-

ннями). Отримано розв’язки, що описують дифузiйнi процеси у фiзичному просторi. Для великих часiв

еволюцiї вони узгоджуються з результатами теорiї неперервних в часi випадкових блукань, а на малих

часах описують балiстичну динамiку.

Ключовi слова: немаркiвськi процеси, дробова дифузiя, балiстичнi ефекти

13004-18

http://dx.doi.org/10.1103/PhysRevE.81.030105
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.039
http://dx.doi.org/10.1103/PhysRevE.66.041101
http://dx.doi.org/10.1143/PTP.33.423
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1063/1.1860471
http://dx.doi.org/10.1103/PhysRevE.53.5872
http://dx.doi.org/10.1145/155743.155788
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/20/12/052
http://dx.doi.org/10.1103/PhysRevE.55.7771
http://dx.doi.org/10.1016/0378-4371(93)90488-P
http://dx.doi.org/10.1063/1.2794322

	 Introduction
	Review: the telegraph equation in 1 dimension.
	From the telegraph equation to the time-nonlocal Fokker-Planck  equation
	Determining the kernel from the Langevin equation
	Standard asymptotic diffusion
	Anomalous diffusion

	Hydrodynamic theory of the time-nonlocal diffusion
	Memory kernel
	Probability density function

	Conclusion

